Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиус октаэдрические

    Соединения с ковалентными связями обычно характеризуются тетраэдрической координацией, реже встречаются плоские квадратные и гексагональные структуры. Ковалентные радиусы атомов зависят от их координационного числа. В табл. 6.8. приведены значения тетраэдрических ковалентных радиусов, октаэдрических ковалентных радиусов и радиусов для конфигурации плоского квадрата. Ковалентные соединения с тетраэдрической конфигурацией [c.89]


    Две различные линии на рис. 15.2 обусловлены разностями изомерных сдвигов двух различных атомов железа в октаэдрических центрах. Изомерный сдвиг—результат электростатического взаимодействия распределения заряда в ядре с электронной плотностью, вероятность существования которой на ядре конечна. Конечную вероятность перекрывания с плотностью ядерного заряда имеют только 5-электроны, поэтому изомерный сдвиг можно рассчитать, рассматривая это взаимодействие. Следует помнить, что р-, и другие электронные плотности могут оказывать влияние на 5-электронную плотность путем экранирования 5-электронной плотности от заряда ядра. Предполагая, что ядро представляет собой однородно заряженную сферу радиуса К, а 5-электронная плотность вокруг ядра постоянна и задается функцией > (0), разность между электростатическим взаимодействием сферически распределенной электронной плотности с точечным ядром и той же самой электронной плотности с ядром радиуса Я выражается как [c.289]

    Радиусы ионов элементов вставных декад имеют тенденцию уменьшаться с ростом порядкового номера (d-сжатие). Однако зависимость радиусов ионов от заряда ядра имеет довольно сложный характер. Изменение радиуса двухзарядных ионов, находящихся в октаэдрическом окружении, в ряду Са + — Zn + представлено на рис. 1.62. Неравномерное изменение г, хорошо объясняет теория кристаллического поля. Действительно, при переходе от Са + к V + d-электроны попадают на слабо экранирующие 2й-орбитали, что обусловливает сильное уменьшение радиуса иона при возрастании заряда ядра. В ионах Сг + и Мп + заполняются сильно экранирующие g-орбитали и раднус ионов при уве- [c.126]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Появление определенной симметрии в молекулах было уже объяснено (разд. 6.3.2) на основе метода валентных связей при образовании ковалентной связи (гибридизация). Однако как чисто электростатические, так и геометрические соотношения могут привести к определенной симметрии в координационных соединениях, если исходить из ионной модели строения молекулы. Рассмотрим, например, координационный полиэдр А +Вр, в котором центральный ион с зарядом - п окружен р однозарядными лигандами. Потенциальная энергия комплекса складывается из отдельных членов, учитывающих кулоновское взаимодействие ионных пар. Сумма отрицательных (связывающих) членов тем больше, чем меньше расстояние между ионом и лигандом. Минимальное расстояние между ионом и лигандом равно гп+г (гп —радиус центрального иона, г —радиус лиганда). Для октаэдрического комплекса с симметрией Ол [c.121]

    Напомним, что, согласно изложенному в разд. 7.3, ч. 1, анионы, как правило, имеют большие радиусы, чем катионы. Поэтому можно представить себе кристаллическую решетку ионного вещества в виде плотноупакованной анионной структуры, в которой тот или иной тип дырок занят катионами. Относительные размеры катионов и анионов определяют тип дырок, занимаемых катионами. Наиболее устойчивая структура достигается при максимальном числе контактов между катионами и анионами, что соответствует наибольшей суммарной величине сил электростатического притяжения между противоположно заряженными ионами в кристаллической решетке ионного вешества. Однако устойчивая структура не может существовать при наличии прямых контактов между анионами, которые привели бы к появлению слишком больших электростатических сил отталкивания. Рассмотрим подробнее различные возможности на примере ситуации, когда небольшие катионы в точности заполняют тетраэдрические дырки, образованные плотноупакованным расположением анионов. Как было указано, такая ситуация возникает при условии, что отношение радиусов катиона и аниона rJr равно 0,225. При таком условии катион касается четырех окружающих его анионов. Теперь посмотрим, что произойдет, если размер катиона начнет увеличиваться, так что станет выполняться условие rJr > 0,225. В таком случае анионы раздвигаются, что уменьшает дестабилизующие контакты между ними, тогда как стабилизующие структуру катионно-анионные контакты сохраняются. Однако, когда отношение радиусов достигает значения 0,414, положение катиона в тетраэдрической дырке перестает быть устойчивым. Более устойчивым положением для катиона становится октаэдрическая дырка, находясь в которой он обеспечивает большее число [c.352]

    Многие ионные соединения обладают структурой, которую можно представить себе как плотноупакованное расположение анионов с катионами, внедренными в октаэдрические или тетраэдрические дырки. Чтобы определить, какой тип дырок в анионной структуре занимает конкретный катион, следует прежде всего принять во внимание отношение радиусов катиона и аниона. В минералах часто наблюдается замещение ионов одного типа ионами другого типа, если те и другие имеют близкие значения ионных радиусов и одинаковые заряды. [c.365]

    Описывать различие между октаэдрическими и тетраэдрическими дырками в плотноупакованных ионных структурах и на основании соображений об отношении радиусов катиона и аниона предсказывать, дырки какого типа должен занимать тот или иной конкретный ион. [c.366]

    Измерения С, ф-кривых в расплавах различных галогенидов щелочных металлов позволяют разделить эти соли на две группы по их влиянию на емкость двойного слоя. В расплавах солей лития и натрия емкость велика, сильно зависит от природы аниона и существенно возрастает с температурой, а в расплавах солей калия и цезия емкость относительно мала и слабо зависит от природы аниона и температуры. Такую зависимость емкости от природы соли можно понять, если учесть что анионы галогенов С1" и Вг имеют больший объем, чем катионы и Na . Поэтому в расплавах солей лития и натрия существует значительное отталкивание между анионами, которое определяет особенности структуры таких расплавов, а именно катионы располагаются свободно в октаэдрических дырках, образованных более или менее плотно упакованными анионами. Для галогенидов калия и цезия роль взаимного отталкивания анионов не существенна, так как ионные радиусы этих катионов и анионов галогенов близки. Поэтому в структуре расплава ионы разного знака занимают более равноправное положение. [c.146]

    Закономерности, которые относятся к реакционной способности октаэдрических комплексов, часто оказываются неприменимыми к комплексам с другим числом лигандов. Это объясняется тем, что скорость реакции зависит от механизма реакции,, который в свою очередь зависит от конфигурации комплекса. В реакциях с октаэдрическими комплексами скорость реакции и ее энергия активации определяются энергией разрыва связи комплексообразователь — лиганд. Поэтому малый радиус центрального иона и его высокий заряд обусловливают большую энергию связи и соответственно большую энергию активации и малую скорость реакции. Наоборот, в четырехкоординационных квадратных комплексах высокий заряд центрального атома способствует быстрому протеканию реакции. Это объясняется тем,, что реакция проходит не через стадию разрыва связи комплексообразователь— лиганд (как это имеет место в октаэдрических комплексах), а через стадию образования новой связи с увеличением координационного числа комплексообразователя. Большой положительный заряд комплексообразователя способствует образованию такой связи. [c.348]


    Радиусы ионов элементов вставных декад имеют тенденцию уменьшаться с ростом порядкового номера элемента ( /-сжатие), хотя зависимость радиусов ионов от заряда ядра имеет довольно сложный характер. Ход изменения радиуса г, двухзарядных ионов, находящихся в октаэдрическом окружении, в ряду Са -2п (от 2-20 до 2-30) представлен на рис. 1.58. Неравномерное изменение г/ хорошо объясняет теория кристаллического поля. Действительно, при переходе от Са к /-электроны попадают на слабо экранирующие /а -орбитали, что обусловливает сильное уменьшение радиуса иона при возрастании заряда ядра. В ионах СН и Мп заполняются сильно экранирующие г,-орбитали и радиус ионов при увеличении заряда ядра не уменьшается, а растет. Аналогичная зависимость наблюдается у следующих элементов электроны заполняют сначала Г1,-орбитали, а затем е,-орбитали. [c.135]

    Как мы знаем (см. стр. 83), радиусы ионов элементов вставных декад имеют тенденцию уменьшаться с ростом порядкового номера. Однако при общей тенденции к уменьшению зависимость радиусов ионов от заряда ядра имеет довольно сложный характер. Данная зависимость для радиусов двухзарядных ионов в октаэдрическом окружении в ряду представлена на рис. 105. Эта закономерность хорошо [c.225]

    Ковалентные радиусы в свою очередь подразделяют на тетраэдрические, октаэдрические и др., на радиусы при одинарной, двойной.и тройной связях. [c.13]

    Структура комплексов характеризуется координационным числом комплексообразователей, значение которого зависит от природы, радиуса атома, окислительного числа металла. У большинства металлических комплексообразователей координационное число четыре (тетраэдрическая или квадратная форма) или шесть (октаэдрическая форма), хотя встречаются координационные числа и меньше (три и два) и больше (восемь). У одного и того же металла с повышением окислительного числа увеличивается и координационное число [у Pt(II) к. ч.=4, а у Pt (IV) к. ч.=6]. [c.20]

    Комплексы с 5р й -гибридизацией имеют октаэдрическую конфигурацию. При этом отношение радиуса иона и молекулы-лиганда должно быть больше или равно 0,41. Такие комплексы образуют двухвалентные катионы (магний, кальций, кобальт и др.), трехвалентные (хром, алюминий), четырехвалентные (олово, свинец) и др. [c.219]

    Фазы внедрения образуются и при взаимодействии титана, циркония и гафния с углеродом и азотом. Растворимость этих элементов в титане и его аналогах значительно меньше, чем водорода, хотя они также образуют твердые растворы внедрения. Поскольку атомные радиусы углерода и азота больше, чем водорода, предельный состав фаз внедрения в этом случае отвечает формуле ЭС и ЭЫ, т. е. заполняются только октаэдрические пустоты в ГЦК решетке. Эти фазы относятся к наиболее тугоплавким. Ниже приводим температуры плавления карбидов и нитридов в сопоставлении с температурами плавления металлов  [c.243]

    Лимитирующий радиус октаэдрических пустот в плотнейшей упаковке из кобальта равен 0,52 А-Следовательно, атомы кобальта будут сдвинуты на расстояние 2(1,17—0,52)=1,30 А- По-видимому, в таких соединениях эффективный радиус атомов, заполняющих пустоты, значительно понижен. (Обзор подобных соединений см. в книге Wells, hapter 27.) [c.175]

    В плотной упаковке анионов размеры октаэдрических и тетраэдрических дырок различны, так что заполнение тех или иных дырок определяется отношением размеров катиона и аниона, или так называемым отношением радиусов. Определить размеры тетраэдрической дырки можно проще всего, рассматривая четыре сферы, расположенные в чередующихся вершинах куба. Центр дырки совпадает с центром куба. Поскольку анионы соприкасаются вдоль диагонали грани, радиус дырки равен разности между половиной диагонали всего объема и половиной диагонали грани. Если радиус анионов равен г, то радиус дырки равен Уг V г) — 1/2 2г) или 0,225 г. В решетке из ионов О ", где радиус аниона равен 1,40 А, катионы с радиусами меньше 0,315 А будут размещаться в тетраэдрических дырках. Радиус октаэдрической дырки равен (У2 — 1) г или 0,414 г. Этот радиус можно представить как разность между половиной диагонали и половиной ребра квадрата, составленного четырьмя из шести координированных соседей. В окислах октаэдрические дырки могут вмещать катионы с радиусами до 0,580А. Если данный катион достаточно мал и может расположиться как в октаэдрической, так и в тетраэдрической дырке, он занимает тетраэдрическую дырку, так как в ней расстояние между анионом и катионом короче и, следовательно, куло-новская энергия ниже. [c.92]

    Свободная энергия образования зародыша зависит не только от степени нересьпцения или от размеров (радиуса) зародыша, но и от его формы, отражаемой коэффициентом формы в случае сферического зародыша /гф=16л/3 для кристаллического зародыша, имеющего форму куба, кф = 32 для октаэдрическо. о = 16/ / 3 и т. д. Поэтому в общем случае вместо (16.7) следует писать [c.331]

    Рассмотрим, как влияет й-элек-троннак конфигурация на величину радиуса двухзарядного иона, находящего я в октаэдрическом окружении иснов лигандов в кристалле. [c.509]

    При общем сходстве свойств рассматриваемых элементов имеется определенная закономерность в их изменении от Ре.к N1. В ряду Ре, Со, N1 вследствие -сжатия уменьшаются радиусы ионов у Ре + г,- = 74, у 00 + г,- = 72, у N 2+ =69 пм. В связи с этим при переходе от Ре + к N1=+ ослабевают основные свойства гидроксидоь Э(0Н)2 и- возрастает устойчивость комплексов, что связано также с заполнением электронами -орбиталей с низкой энергией (гри октаэдрическом окружении лигандами). Рост заряда ядра ведет к более прочной связи электронов с ядром, поэтому для кобальта, и особенно для никеля, степень окисления +3 менее характерна, чем для желеча. Для железа известна степень окисления + 6 (КгРе04), которая не наблюдается у Со и N1. [c.560]

    Основу слоистого строения глинистых минералов составляют кремиекислородные тетраэдрические и алюмогидроксидные октаэдрические сетки, неограниченно развитые в плоскости. Тетраэдрические сетки состоят из тетраэдров, связанных между собой через вершины своих оснований. Четыре вершины тетраэдра (5104] заняты аиионамн О , а в центре его находится более мелкий катнон. Расстояния 81—О в тетраэдрах меняются в зависимости от структурного типа силиката в пределах (1,55— 1.72)-10 см. В слоистых силикатах средние расстояния —О в пределах одного тетраэдра равны 1,62-10" см. Центральная по.зи-ция в тетраэдрах иногда частично изоморфно замещается на А - +. При этом в слоистом силикате расстояние А1—О уже составляет в среднем 1,77-10 см. Сопоставление этих расстояний с суммой ковалентных радиусов З н О, а также А1 и О свидетельствует о преимущественно ковалентном характере связей в тетраэдрах. [c.14]

    Однако из-за отталкивания одноименно заряженных ионов друг от друга устойчивость системы достигается лишь при определенной взаимной координации ионов. Последняя зависит от заряда и размеров ионов. Так, для кристаллов состава. 4В при отношении ионных радиусов катиона и аниона в пределах 0,41 —1,37 имеет место октаэдрическая координация ионов, при соотношении 0,73—1,37 — кубическая координация, при соотношении 0,22—0,41 — тетраэдрическая. Например, для ионных радиусов N3+ (л а =0,098 нм) и С1 (гс =0,181 нм) отношение равно 0,54. Это отвечает октаэдрической взаимной координации ионов (рис. 60, а) в кристаллической решетке ЫаС1 (см. рис. 52, а). Соотношение радиусов ионов Сз + (гс ,+ =0,165 нм) и С (Л( =0,191 нм) равно 0,91. Поэтому при их взаимодействии возникает кубическая координация (рис. 60, б) и кубическая объемно-центрированная решетка СзС1 (см. рис. 52, б). [c.97]

    Так, при соотношении ионных радиусов в пределах 0,41—0,73 имеет место октаэдрическая координация ионов, при соотношении 0,73— 1,37 — кубическая координация и т. д. Например, при взаимодействии ионов Ыа+ (rNa+=0,98 А) иС1-(гс1- = 1,81 А), соотношение значений радиусов которых равно 0,54, возникает октаэдрическая координация (рис. 62). Соотношение ионных радиусовСз+ (гс5+ = 1,65 А)и( 1 (гс1- = [c.103]

    Электронная конфигурация валентной оболочки атомов этих элементов в значительной степени определяет их химическое поведение. В соответствии с правилом Хунда на двух из трех р-орбиталей находится по одному неспаренному электрону. Тем самым у атома возникает возможность образовать две ко- еалентные связи путем соединения с двумя атомами того же ли иного вида. С использованием свободных -орбиталей атомы серы, селена и теллура в зависимости от типа лиганда мо-тут давать от шести до восьми связей. Гибрвдная зр -конфи- Гурация соответствует октаэдрическому расположению, например, в SFe. С ростом радиуса атомов и, следовательно, увели- чением способности к предоставлению орбиталей усиливается [c.512]

    Согласно этой теории (с учетом дополнений В. А. Кожеурова и И. С. Куликова), взаимное расположение атомов в твердых силикатах характеризуется более или менее плотной упаковкой атомов кислорода, тетраэдрические пустоты которой заполнены частично трех-, четырех- и пятивалентными катионами, такими, как 81, Р, В, А1, а октаэдрические — атомами Ыа, К, Са, Мд, Ре и др. Выполнение правил радиусов указывает на координационный характер решеток и на отсутствие в них замкнутых групп атомов, т. е. молекул. [c.184]

    Минерал гематит РегОз имеет кристаллическую р< шетку с кубической плотноупакованной структурой из оксид-ионов, в полостях которой размеш ены ионы Ре . В каких дырках, тетраэдрических или октаэдрических, располо-жены ионы железа (Радиус иона Ре " равен [c.353]

    Во многих природных оксидах металлов ионы переходных металлов могут располагаться в октаэдрических или тетраэдрических дырках оксидной плотноупакованной решетки (см. разд. 22.5 и рис. 22.14). Конкретный тип дырки, занимаемой ионами переходных металлов, определяется электронными факторами и отношением ионных радиусов аниона и катиона. С учетом того, что энергия расщеп.ления кристаллическим полем в тетраэдрической дырке приблизительно вдвое меньше, чем в октаэдрической дырке, а также принимая во внима- [c.406]

    Расщепление октаэдрическим окружением -подуровня на уровни t-ig п eg с тремя и двумя орбиталями обнаруживается в закономерностях изменения других свойств комплексных соединений. Аналогично тому, что каждый подуровень (р, d, /) обладает повышенной устойчивостью в состоянии, наполовину и полностью заполненном электронами, наблюдается повышенная устойчивость уровней ( g и eg, если они не заполнены или заполнены наполовину и полностью. Влияние числа электронов на этих уровнях проявляется во многих свойствах октаэдрических комплексов, в том числе и в ионных радиусах комплексообразователей (рис. 4.26). В ряду -элементов четвертого периода при переходе от Са + к обнаруживается уменьшение ионных радиусов. Это означает, что окружающие молекулы или ионы (лиганды) подходят на более близкие расстояния к ионам-комплексообразователям. У иона Са + -электроны отсутствуют двухзарядный ион скандия неизвестен. Ион Ti + имеет конфигурацию , и два электрона находятся на двух орбиталях из трех dxy, dy илиd . В октаэдрическом окружении эти орбитали располагаются в пространстве не на осях координат, а а областях, наиболее удаленных от лигандов. Поэтому лиганды могут подойти ближе к центральному иону, а это означает уменьшение размера иона. Аналогичным способом объясняется дальнейшее уменьшение ионного радиуса у иона V +. [c.207]

    Комплексные соединения содержат в своем составе комплексные группы, или комплексы, отличительные признаки которых указаны выше. Комплексные группы состоят из центрального атома, или ком-плексообразователя, около которого координируются лиганды. Структура комплексов характеризуется координационным числом комплек-сообразователей, значение которого зависит от природы, радиуса и окислительного числа центрального атома. У большинства комплексо-образователей координационное число четыре (тетраэдрическая или квадратная форма) или шесть (октаэдрическая форма), хотя встречаются координационные числа и меньше (три и два) и больше (восемь). У одного и того же комплексообразователя с повышением окислительного числа увеличивается и координационное число. [c.65]

    Если считать, как это делали Коссель и Магнус, взаимодействие частиц в комплексах чисто электростатическим, происходящим поза-кону Кулона, то может быть подсчитана энергия связи лигандов с комплексообразователем. В этих расчетах комплексообразователь и лиганды рассматривались как недеформируемые заряженные сферы. Читатели легко могут провести такие вычисления для ионов (тетраэдрическое строение), 1А1Рв) (октаэдрическое расположение лигандов), 1А 12) (линейная структура), воспользовавшись величинами соответствующих ионных радиусов. [c.216]

    Ковалентные радиусы обычно подразделяют на нормальные, тетра едрические, октаэдрические, квадратные и металлические радиусы. В общем, для данного атома различие между радиусами раз- [c.110]

    Однако при этом всегда надо иметь в виду, что каждый из минералов может разместить в своей решетке лишь определенное количество примесей, зависящее прежде всего от особенностей его тонкой структуры. Эту сумму оксидов обычно называют либо предельной растворимостью твердого раствора, либо изоморфной емкостью. Было показано, что наибольшее количество примесей сосредоточивается в алюминатной [в пересчете на оксиды 12— 13% (мае.)] и алюмоферритной [около 10—11% (мае.)] фазах клинкера благодаря своеобразию их структур. В решетке трехкальциевого алюмината имеются крупные полости радиусом около 0,147 нм, облегчающие осуществление гетеровалентных изоморфных замещений и размещение крупных катионов. Решетка же алюмоферритов кальция содержит четыре удобные для таких катионов позиции, как Mg, Мп, 81, Т1,—две октаэдрические и две тетраэдрические— у Ре + и АР+. Изоморфная емкость 2Са0-8102 около 6% (мае.). Наименьшее же количество примесей размещается в решетке ЗСаО 8102 —около 4% (мае.). [c.240]

    Соли гетерополикислот как ионообменные сорбенты известны давно, однако применять их начали совсем недавно. В качестве синтетических минеральных ионообменников пользуются труднорастворимыми солями гетерополикислот общей формулы МзХУ12О40- Н2О, где X — фосфор или мышьяк, сурьма, кремний V — молибден или вольфрам. Простейшим представителем труднорастворимых солей гетерополикислот является фосфоромолибдат аммония (МН4)зРМо1204о. Замещение иона аммония возможно вследствие структурных особенностей соли, содержащей центральную октаэдрическую группу РОе и 12 октаэдров МоОб, в целом составляющих рыхлую решетку, в которой могут поместиться ионы даже с большим, чем у аммония, ионным радиусом. [c.45]

    Устойчивость соединения, состоящего из ионов, достигается в результате их определенного взаимного расположения, характеризуемого координационными числами. Координационное число иона показывает, сколько ближайших соседних ионов находится в его окружении и не зависит от заряда. В этом и проявляется ненасы-щаемость и ненаправленность ионных связей. Координационное число зависит от отношения радиусов взаимодействующих ионов. Если это отношение находится в пределах 0,41-ь0,73 (к. ч. =6), имеет место октаэдрическая координация ионов, при отношении 0,73-Ь 1,37 (к.ч.=8) — кубическая. [c.65]

    Устойчивость ионного соединения достигается в результате определенного взаимного расположения ионов, характеризуемого их координационными числами. Координационное число иона показывает, сколько ближайших соседних ионов находится в его окружении, и не зависит от заряда. В этом проявляется ненасыщаемость и ненаправленность ионных связей. Координационное число иона зависит от соотношения размеров ионов разного заряда. Если отношение их радиусов находится в пределах 0,41 + 0,73, имеет место октаэдрическая координация ионов (к. ч. = 6), при отношении [c.81]

    По типу внедрения образуют твердые растворы с титаном, цирконием и гафнием также кислород и бор. Так, кислород в a-Ti растворяется вплоть до 34 ат. долей, % при 925 °С, до 40 ат. долей, % в a-Zr и до 20 ат. долей, % в a-Hf, по типичных фаз внедрения обычно ие образует в силу высокой электроотрицательности. Однако существующие низшие оксиды титана Ti O и TiaO с металлидными свойствами можно формально рассматривать как фазы внедрения с частично заполненными октаэдрическими пустотами. Бориды состава ЭаВ и ЭВ являются металлоподобиыми фазами внедрения, твердыми и тугоплавкими, хотя и уступают в этом отношении карбидам и нитридам. Известны, кроме того, фазы состава ЭВг для всех элементов подгруппы титана. Однако их принадлежность к фазам внедрения сомнительна, поскольку атомный радиус бора не позволяет его атомам размещаться в небольших тетраэдрических пустотах. [c.244]

    Физико-химические свойства дифосфида меди. Дифосфид меди СиРа обладает моноклинной элементарной ячейкой. Атомы фосфора объединяются в гоф-рированные слои, параллельные плоскости Ьс, образуя двухмерную сетку, состоящую из десятичлениых колец Р. Кратчайшее расстояние между атомами фосфора п слоях составляет З.бОД, в то время как среднее расстояние в кольцах — 2,20 (тетраэдрический ковалентный радиус фосфора 1,10 Д). Между слоями в середине колец имеются октаэдрические пустоты, каждая из которых занята парой Си—Си. Расстояние между атомами меди равно лишь 2,48 А (радиус Гольдшмидта для меди 1,28 Д). Каждый атом меди тетраэдрически окружен четырьмя атомами фосфора иа среднем расстоянии 2,37 Д. Атомы фосфора структурно неравноценны атом Р окружен тремя атомами Си и двумя атомами Р", а атом Р" тетраэдрически окружен одним атомом Си, двумя атомами Р" и одним атомом Р. Фосфорные слои связаны между собой только связями Р—Си. [c.68]

    Чтобы атомы какого-либо элемента В могли внедряться в междоузлия кристалла вещества А, диаметр атома В должен быть невелик. Действительно, твердые растворы внедрения в металлах образуют элементы Н (г = 0,46 А), N (г = 0,71 А), С (г = 0,77 А), В (г = = 0,57 А). Их атомы имеют малые радиусы. Особенно много структур внедрения образуют с ними переходные металлы ( -элементы 1ПВ— VIПВ подгрупп). Например, аустенит считают твердым раствором внедрения атомов С в октаэдрические пустоты решетки -(-Ре (К-12), водород в палладии тоже образует твердый раствор внедрения и т. п. По Хэггу, внедряющиеся атомы могут занимать октаэдрические пустоты в кубической гранецентрированной и гексагональной плотных [c.143]


Смотреть страницы где упоминается термин Радиус октаэдрические: [c.245]    [c.88]    [c.129]    [c.352]    [c.353]    [c.138]    [c.138]    [c.178]    [c.534]    [c.110]    [c.161]    [c.194]   
Теоретическая неорганическая химия Издание 3 (1976) -- [ c.446 , c.447 ]




ПОИСК





Смотрите так же термины и статьи:

Октаэдрические ковалентные радиусы

Тетраэдрические и октаэдрические ковалентные радиусы



© 2025 chem21.info Реклама на сайте