Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фторид обнаружение

    Обнаружение фторид-ионов [c.153]

    Из производных фтора с другими неметаллами представляют интерес фториды галогенов. Последние являются интергалогенидами. Все фториды галогенов — экзотермические соединения с нечетной положительной степенью окисления хлора, брома и иода. Известны гептафторид иода, все пентафториды, трифториды и монофториды. Только IF не получен в чистом виде, а обнаружен в следовых количествах спектроскопически. Дело в том, что стабильность фторидов возрастает с увеличением положительной степени окисления галогенов. Поэтому наименее устойчивы монофториды. Фториды галогенов диамагнитны, так как неспаренные электроны галогенов входят в состав обобществленных электронных пар при образовании ковалентных связей с атомами фтора. [c.462]


    В присутствии фторид-ионов образуется также нерастворимый в уксусной кислоте фторид кальция, который не мешает в данном случае обнаружению оксалат-ионов. [c.210]

    При малом содержании фторид-ионов (в сточных водах илп в водопроводной воде), т. е. содержание фторида близко к пределу обнаружения, целесообразнее использовать метод добавок. [c.125]

    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]

    Для обнаружения фторид-ионов можно использовать реакцию образования малорастворимого фторида кальция, если при этом в растворе отсутствуют другие анионы, образующие с ионами Са + малорастворимые соединения. Более специфичными являются реакции образования фторид-ионами устойчивых фторидных комплек- [c.152]

    Оставшуюся часть осадка IV отделяют от раствора FV, промывают один раз водой, добавляют 2 н. раствор серной кислоты и по каплям раствор перманганата калия. Обесцвечивание КМПО4 свидетельствует о присутствии оксалат-ионов. Фторид-ионы не окисляются перманганатом калия и не мешают обнаружению оксалат-ионов. [c.226]

    Из производных фтора с другими неметаллами представляют интерес фториды галогенов. Последние являются интергалогенидами — межгалогенными соединениями. Все фториды галогенов — экзотер-мичные соединения с нечетной положительной степенью окисления хлора, брома и иода. Атом фтора в них поляризован отрицательно, как и в случае фторидов кислорода. Известны гептафторид иода, все пентафториды, трифториды и монофториды. Только 1Р не получен в чистом виде, а обнаружен в следовых количествах спектроскопически. Дело в том, что стабильность фторидов возрастает с увеличением положительной степени окисления галогенов. Поэтому наименее устойчивы монофториды. Фториды галогенов диамагнитны, так как неспаренные электроны галогенов входят в состав обобществленных электронных пар при образовании ковалентных связей с атомами фтора. Если предположить, что интегралогениды (в том числе фториды) парамагнитны, то обязательна четная степень окисления галогена и подобные производные должны представлять собой нечетные молекулы , т. е. свободные радикалы, и быть нестабильными. [c.357]


    Реакция высокочувствительна предел обнаружения катионов желе-за(Ш) составляет 0,25 мкг. Мешают многие вещества окислители, восстановители, ртуть(П), фториды, иодиды, фосфаты, цитраты, тартраты и другие соединения. Катионы железа(П) Fe" не мешают. [c.399]

    К капле исследуемого (по юзможности близкого к нейтральному) раствора в микротигле прибавляют каплю раствора реагента и нагревают до кипения. В присутствии циркония появляется красная или фиолетовая окраска. Такую же окраску могут дать алюминий, бериллий, титан и торий. Если прибавить каплю разбавленной соляной кислоты, то остается только окрашенное соединение циркония красно-фиолетового или красно-бурого цвета. При добавлении фторидов раствор желтеет (цвет реагента), так как образуется бесцветный комплексный анион [2гРв] . Кроме фторидов, обнаружению циркония мешают сульфаты, фосфаты и органические оксикислоты. Обнаруживаемый минимум — 0,5 мкг 2т при предельном разбавлении 1 ЫО . [c.47]

    Обнаружение фторид-ионов. В отдельных пробах из нескольких капель анализируемого раствора определяют присутствие фторид-ионов реакцией а) с раствором СаС1г и б) с раствором роданида железа (III). [c.156]

    Для обнаружения фторид-ионов пластинку опрыскивают 0,1%-ным раствором циркониевоализаринового лака в сильно кислой среде, в месте образования пятна окрашенный лак обесцвечивается. [c.146]

    Недавно был обнаружен интересный и необъясненный до настоящего времени факт [1299] смесь твердого карбоната калия и 1 мол. % твердого фторида калия является очень эффективной синергической щелочной системой при условии, что обе используемые соли тщательно высушены, а в качестве катализатора применяют BU4NHSO4 реакционную смесь кипятят [c.295]

    Обнаружению карбонат-ионов мешают N-, F-, SOa , SjOa -. В присутствии N- нельзя проводить обнаружение небольших количеств СО2 (почему ). Добавлением Hg b связывают цианид в недиссоциированный Hg ( N)2. Фториды маскируют раствором ZrO b 50з и ЗгОз окисляют пероксидом водорода. [c.56]

    Растворимые силикаты также могут мешать обнаружению фосфатов (желтое окрашивание раствора), но они не образуют малорастворимые осад-ки кремнемолибдатов. Большие количества фторидов и хлоридов могут ме-шанъ определению (снижение чувствительности обнаружения), образуя фторо- и хлорокомплексы молибдена. [c.64]

    Фториды калия и натрия растворимы в воде, поэтому реакция образовании мпл0раств0рим010 LIF можеп быть использована для обнаружения ионов Li+ в присутствии ионов Na+ и К . Из катионов I аналитической группы реакции обнаружения ионов Li " мешают линИ) ионы Mg , образуюн.ии> с фторид-ионами малорастворимый MgI-2 (ПР = 6,5 10 "). [c.243]

    Реакция широко применяется для обнаружения ионов ре . Железо в степени окисления +3 образует бесцветные прочные комплексные ионы с фторидами (рерб) -, (рерв) ", с фосфатами [Ре(Р04)з] , с пирофосфатами, оксалатами и др. [c.157]

    Поскольку и тетраэдрический механизм и механизм присоединения— отщепления начинаются одинаково, их обычно бывает трудно различить, и часто этого и не пытаются делать. Наиболее веским доказательством в пользу механизма присоединения — отщепления служит обнаружение перегруппировки (как в случае превращения 74 в 76), но, конечно, реакция все же может идти по этому механизму, даже если перегруппировка не обнаруживается. Доказательством [201] того, что в конкретных случаях действует тетраэдрический механизм или механизм присоединения — отщепления (а не SnI или Sn2, например), служит тот факт, что скорость реакции возрастает при замене уходящей группы с Вг на С или F (это называется эффектом элемента) [202]. Такой результат ясно показывает, что на лимитирующей стадии не нроисходит разрыва связи углерод — галоген (как это было бы в механизмах SnI и Sn2), так как фтор — самая плохая уходящая группа из всех галогенов как в SnI, так и в SN2-peaкцияx (разд. 10.12). В упомянутых выше реакциях фторидов скорость выше вследствие того, что более электроотрицательный характер атома фтора делает атом углерода связи С—F более положительным, и поэтому он легче подвергается атаке нуклеофила. Однако имеются указания на то, что в тетраэдрическом механизме для субстратов винильного типа лимитирующей может быть и вторая стадия [203]. [c.62]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]


    Растворимость фторида Л1ггия в воде уменьшается в присутствии аммиака. Предел обнаружения 50 мкг. Мешают катионы Са , Sr ", Ва , Си , РЬ " , также дающие осадки фторидов. [c.346]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    Применение разнолигандных комплексов во многих случаях приводит к повышению селективности, контрастности реакций, улучшению экстракционных и других свойств. Приведем несколько примеров. Определение малых количеств тантала в присутствии больших количеств ниобия — очень трудная задача. Однако эта задача была успешно решена с применением экстракционно-фотометрического метода определения тантала в виде ионных ассоцнатов гекса фторид ноге комплекса тантала с основными красителями. Аналогичную трудность испытывали аналитики при определении малых количеств рения в присутствии больших количеств молибдена. Только применение экстракции с трифенилметановыми красителями дало возможность определять очень малые количества рения в молибдене или молибденовых рудах с довольно низким пределом обнаружения. Это же относится к определению осмия в присутствии других платиновых металлов, определению бора и других элементов. Введение второго реагента часто приводит к улучшению экстракционных свойств комплексов и снижению предела обнаружения. Так, дитизонат никеля очень плохо экстрагируется неводными растворителями. Для полной его экстракции тетрахлоридом углерода требуется примерно 24 ч. Если же ввести третий компонент — 1,10-фенантролин или 2,2 -дипиридил, то комплекс экстрагируется очень быстро, а предел обнаружения никеля снижается в пять раз. [c.299]

    Для обнаружения ионов фторида готовят циркон-али-зариновую бумагу. К 0,1 %-ному раствору цирконилхлори-да ZrO la в 5 н. растворе НС1 приливают небольшой избыток 0,2 %-ного этанольного раствора ализарина С. Чтобы убедиться в наличии избытка ализарина С, пробу смеси взбалтывают с эфиром ализарин С окрашивает эфирный слой в желтый цвет. Смесь нагревают на водяной бане 10 мин и теплым раствором пропитывают полоски фильтровальной бумаги. Полоски сушат на воздухе. Для проведения реакции на фторид-ион на бумажку помещают каплю 50 %-ной уксусной кислоты и каплю исследуемого раствора. В присутствии иона F образуется желтое пятно па красно-фиолетовом фоне (окраска свободного красителя). Реакцию ускоряют нагреванием в парах воды. [c.108]

    Определение. Качественно И. может быть обнаружен по сине-фиолетовому окрашиванию пламени или спектральным методом. Предложен ряд р-ций с СэС , фторидом, тиоцианатом, оксалатом аммония, акридином, 8-гидроксихинолином и др., а также ряд цветных р-ций с ализарином, морином, алюминоном и др. реагентамн. Эти хим. р-ции малоспецифичны и требуют предварит, отделения И. от большинства др. элементов. [c.227]

    Komm. Как влияет на окислительно-восстановительные свойства кобальта(П) замена молекул воды во внутренней сфере комплекса на другие лиганды Укажите функции нитрит-иона в П5. Почему не происходит окисления никеля(П) при введении пероксида водорода в реакционную смесь П2 (аналогично П1) Сравните устойчивость ацидокомплексов железа(П1) а) с тиоцианат-ионом и фторид-ионом (Пц) б) с ортофосфат-, гидроортофосфат- и ди-гидроортофосфат-ионами (П12)- Как влияет на цвет комплекса кобальта(П) а) замещение молекул воды во внутренней сфере на хлорид-ионы б) изменение КЧ центрального атома и превращение октаэдрического комплекса в тетраэдрический (Пе—Пд) Укажите координационное число комплексообразователя и дентатность лигандов для всех образующихся комплексов. К какому типу комплексов относятся продукты реакций в Пю, П13 и П Как меняется устойчивость комплексных соединений элементов семейства железа а) при переходе от степени окисления +П к -ЬП1 б) при замещении монодентатного лиганда на полидентатный (П13, Пи) Предложите способы обнаружения и разделения катионов железа(П), железа(П1), кобальта(П) и никеля(П) при их совместном присутствии в растворе. Составьте алгоритм опыта. [c.225]

    Маскировка (в аналитической химии) — связывание мешающих ионов в малодис-социированные комплексные соединения при обнаружении, определении и отделении каких-либо компонентов анализируемого объекта. Напр., железо (П ) мешает определению никеля (II) при осаждении диметилглиоксимо.м, так как железо (III) одновременно осаждается в виде Ре(ОН)з. Но если в раствор ввести винную кислоту, образующую с железом (III) малодиссоциирующий растворимый комплекс, то оно не будет осаждаться и мешать определению никеля. Для М. широко применяются органические кислоты (лимонная, винная, уксусная, щавелевая и др,), комплексоны, а также неорганические соединения, напр, фториды, цианиды и др. [c.80]

    Фторидный электрод пригоден для прямого опре еления фторид-ионов, если в растворе отсутствуют ионы (А1 ", Ре ", ТЬ ", Се" " и др.), связывающие ионы фтора в комплексы. Мешающие ионы обычно маскируют добавлением цитрата натрия. Электрод реагирует также на некоторые фторсодержащие комплексы, например SiF6 . Фторидная функция электрода сохраняется в диапазоне от насыщенных растворов фторидов до концентрации моль/л. При меньших концентрациях наблюдаются отклонения от прямолинейной зависимости. Причина этого отклонения - в растворимости фторида лантана в водных растворах. При внесении электрода в раствор с низкой концентрацией фторид-ионов из электродного материала вымывается такое количество ионов фтора, которое соответствует растворимости ЬаРз, и в растворе устанавливается постоянная активность фторида. Именно она и определяет нижний предел обнаружения фторид-ионов. [c.194]

    НИИ 150 эВ оно все еще почти в 30 раз хуже разрещения, получаемого с хорощим кварцем или к р ИСталлом фторида лития. Принципиально влияние ухудщения разрещения проявляется в понижении отношения пик/фон (Р/В) для данной энергии и, следовательно, понижении чувствительности или минимального предела обнаружения для данного элемента (см. гл. 7, обсуждение обнаружения следов элементов). Уменьщение Р/В происходит из-за того, что для получения основной части интенсивности пика Р необходимо выбирать более широкий энергетический интервал, дающий больщий счет интенсивности фона. На рис. 5.52, взятом из [112], это показано для детектора с разрещением 160 эВ, используемого для получения Р и Р/В для линий Рел-а и на чистом железе и кремнии соответст- [c.259]

    Растущий кристалл льда избирательно сорбирует ионы, большую часть которых он оттесняет в жидкую фазу. Следствием избирательной сорбции ионов в районе концентраций примесей 10- °—10 моля при медленной скорости роста кристалла 10 см/сек являются большие разности потенциалов, которые возникают между твердой и жидкой фазой в процессе роста кристалла. Эта разность потенциалов для раствора МН4804 при концентрации соли 10 моля составляет 100 в. Впервые этот эффект был обнаружен и описан Воркманом и Рейнольдсом в 1950 г. Когда концентрации примесей в воде не превышают 10" моля, твердая фаза, как правило, заряжена положительно по отношению к жидкой, за исключением растворов фторидов. [c.63]

    Описан эффект прикатодного усиления интенсивности спектральных линий элементов с низкими потенциалами ионизации [944]. Использование прикатодной области плазмы дуги постоянного тока позволяет значительно снизить предел обнаружения натрия. Так, при определении натрия в материалах на основе урана (пробу помещали в анод) он равен 5 10 % [590]. Такой же метод используют при анализе фосфатов [591]. Дуговой разряд стабилизируют с помощью КОН [43] или К2СО3 [132]. В последней работе имеются сведения о влиянии количества К2СО3 на интенсивность линий натрия. Изучено влияние хлоридов, фторидов и иодидов на определение натрия в AI2O3 [1189]. [c.98]

    Определению ванадия в 5 мл раствора не мешают Са, Ва, РЬ, С<1, 8г в количестве 100 мкг и 1п, ТЬ, Ьа, Ге(П1), Ое, А1, Со, Мн, Hg(П), 8п(1У), Mg, РОГ, Ве, Сг(1П, VI) в количестве 10 мкг. Ускоряют реакцию ионы W04 , МПО4, замедляют фториды, хлориды сульфаты, цитраты. При температуре 60—80° С предел обнаружения понижается и составляет 5-10" мкг/мл. [c.193]

    Сурьму О 4,3-10 %) во фториде лития определяют активационными методами. По одному из них [50] ЗЬ выделяют из облученного материала экстракцией хлороформом в виде 8-меркапто-хинолината и измеряют у-активность экстракта. В другрм методе [331] пробу вместе с эталонами облучают потоком 4-10 нейтрон/см -сек в течение 15 час, затем дают остыть 75 час и измеряют 7-активность 8Ь 100-капальным сциитилляционным 7-спектрометром. Предел обнаружения ЗЬ — 8-10 % (Sr 20%). [c.136]

    Несмотря на то что в описанных условиях празеодим и галлий проявляют очень слабую флюоресценцию, в их присутствии получаются завышенные результаты. Обнаружению мешают также 2г и Ре снижающие интенсивность флюоресценции тория. Се, А , Аи и Н разрушают реагент, действуя как окислители. Присутствие фосфатов, фторидов и сульфатов уничтожает флюоресценцию. Иодаты, арсенаты, оксалаты, мо-либдаты и вольфраматы вызывают осаждение тория. Ь1, Ма, К, КЬ, Сз, Си, Ве, Mg, Са, Ва, 5г, 2п, С(1, А1, р. з. э. цериевой подгруппы (за исключением Рг), 1п, Та, 2г, НГ, 5п, РЬ, В1, 5Ь, Сг, Мп, Со и N1 не мешают. [c.85]

    Родан-ион образует с ионом кобальта комплексный ион [Сс(5СЫ)4]" голубого цвета, а с ионом трехвалентного железа кроваво-красный ион [Ре(5СЫ)б]=. Следовательно, в присутствии железа невозможно обнаружить кобальт, однако (как уже указывалось на стр. 22) если к раствору прибавить фторид натрия, то железо образует с ионом фтора более прочный бесцветный комплексный ион [РеРб]" и не будет мешать обнаружению кобальта, который не образует со фтором прочных комплексных соединений. [c.24]

    В тех случаях, когда после вышеуказанной обработки все же остается еще неразложившийся остаток, исследуйте его на присутствие сульфатов, фторидов, силикатов и окислов. Пользуясь небольшими порциями остатка, произведите определение сульфат-ионов, как указано в 48, ионов фтора — по 47 и сплнкат-ионов — по 44, в. При обнаружении какого-либо из этих ионов возьмите 10—20 Л1г хорошо промытого и высушенного остатка и сплавьте его с карбонатом натрия, как указано на стр. 125. Более подробные сведения относительно анализа сульфатов, фторидов и силикатов см. Анализ сульфатов (стр. 132), Анализ фторидов (стр. 133), Анализ силикатов (стр. 140). Если же вышеуказанные реакции дали отрицательный результат, то нерастворимый остаток представляет собой окисел или смесь окислов. Сплавьте его с пиросульфатом калия- и исследуйте, как описано в главе Анализ окислов . [c.118]


Смотреть страницы где упоминается термин Фторид обнаружение: [c.318]    [c.101]    [c.46]    [c.121]    [c.335]    [c.228]    [c.364]    [c.274]    [c.208]    [c.29]    [c.163]    [c.302]   
Курс качественного химического полумикроанализа 1973 (1973) -- [ c.538 , c.563 ]




ПОИСК







© 2025 chem21.info Реклама на сайте