Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кислота кислота, производство

    От 70 до 80% серной кислоты в США производят из серы, —15% — из отработанной серной кислоты или НгЗ, а остальное — из сульфидных руд цветных металлов или пирита. Кислоту, которую получают на заводах цветных металлов, иногда называют фатальной кислотой , так как она является побочным продуктом, и ее выход нельзя изменить в зависимости от спроса и цен на серную кислоту. Для расположенных в отдаленных районах заводов цветных металлов затраты на производство - фатальной кислоты и ее перевозку к потребителю иногда превосходят выручку при ее продаже, несмотря на даровой ЗОг. [c.241]


    Нитрование ароматических соединений осуществляется на производстве в огромном большинстве случаев с помощью смеси азотной и концентрированной серной кислот (нитрующая смесь, нитрующая кислота). Серная кислота связывает воду, образующуюся При нитровании, а также содержащуюся в азотной кислоте она поддерживает необходимую концентрацию последней и тем самым делает возможным почти полное ее использование. Серная кислота является также отличным растворителем для очень многих веществ. Благодаря ее сравнительно большой теплоемкости она исключительно удобна для поглощения тепла реакции и поэтому способствует спокойному и равномерному течению реакции. Большой избыток серной кислоты Меже г даже защитить свободную аминогруппу от действия азотной кислой (см. 2 Нитра-4-толуидин, стр. 149) . [c.67]

    Осушка газа в производстве серной кислоты контактным методом осуществляется в башне с насадкой, орошаемой концентрированной серной кислотой. Так как при поглощении пара воды серной кислотой выделяется большое количество тепла, то кислота нагревается и частично испаряется. Пары серной кислоты поступают в более холодный поток газа и конденсируются в объеме с образованием тумана. Этому способствует также то, что в газе содержится значительное количество паров воды (примерно 35 г-м при нормальных условиях), в присутствии которых равновесное давление пара серной кислоты снижается. Поэтому пар серной кислоты практически полностью переходит в туман. Таким образом, расчет количества тумана, образующегося в сушильных башнях, сводится к определению количества серной кислоты, испаряющейся со смоченной ею поверхности насадки. Такой расчет может быть сделан по уравнению (5.1) с учетом имеющихся данных о значении коэффициента [c.236]

    Оборудование производства серной кислоты можно разделить на следующие основные группы печи для обжига серусо-держащего сырья, аппаратуру для очистки обжигового газа, контактные аппараты, аппараты для абсорбции серного ангидрида, а также абсорбционные башни в производстве серной кислоты башенным способом. Наряду с перечисленными типами аппаратов в сернокислотном производстве широко применяют различное дробильно-размольное оборудование для дробления колчедана, транспортирующие машины специальных типов, специальную теплообменную аппаратуру и установки для концентрирования серной кислоты. В сернокислотной промышленности применяется большое количество футерованных кислотных башен, отдельные конструкции которых приведены в гл. VI. В настоящей главе рассматриваются только печи для обжига колчедана и контактные аппараты. [c.265]


    В производстве серной кислоты большие трудности возникают при выборе конструкционных материалов для строительства и эксплуатации основной и вспомогательной аппаратуры, газопроводов, кислотопроводов и т. д. Эти трудности заключаются в том,, что нитрозный и контактный способы производства серной кислоты включают весьма сложные по своему составу газовые и жидкостные потоки, состоящие из химических веществ, разрушающе действующих на многие конструкционные материалы, принятые в строительстве химической аппаратуры. Повышенные температуры при отдельных стадиях технологического процесса производства серной кислоты, как правило, ускоряют разруше- [c.23]

    Наиболее крупным потребителем серной кислоты является производство минеральных удобрений суперфосфата, сульфата аммония и др. В Советском Союзе около 40% всей производимой серной кислоты расходуется на получение минеральных удобрений. Значительная часть фосфорной, соляной, уксусной и некоторых других кислот производится при помощи серной кислоты. В металлообрабатывающей промышленности серная кислота применяется для снятия ржавчины с поверхности черных металлов при подготовке их к защитным и декоративным покрытиям лаками и цветными металлами. Большие количества серной кислоты расходуются на очистку нефтепродуктов. Производства красителей, лаков, красок, лекарственных веществ, некоторых пластических масс, многих ядохимикатов, эфиров, спиртов были бы невозможны в современных масштабах без серной кислоты. Разбавленные растворы серной кислоты или ее солей применяют в производстве искусственного шелка, в текстильной промышленности. В пищевой промышленности серная кислота используется для приготовления крахмала, патоки и других продуктов. Транспорт использует свинцовые сернокислотные аккумуляторы. В процессах нитрования для производства многих органических соединений, в том числе и большинства взрывчатых веществ, также применяется серная кислота. [c.252]

    Амилфенол получают алкилированием большого избытка фенола приблизительно при 140° т /лет-амилсульфатом. При этом образуется главным образом м-трег-амилфенол. В смесях обоих амиленов, образующихся в качестве побочного продукта при производстве амилового спирта, триметилэтилен избирательно превращают с 62%-ной серной кислоты в грет-амилсульфат, в то время как 2-пентен при комнатной температуре остается непревращенным. Схема процесса представлена на рнс. 47. В смесителе 1 разбавлением концентрированной кислоты водой приготовляют 62%-ную серную кислоту. Теплота разбавления отводится циркуляцией слабой кислоты через холодильник 2. [c.225]

    Используя данные приложения 3, начертить график роста производства серной кислоты и минеральных удобрений с 1940 г. по 1985 г., приняв величину производства этих продуктов в 1940 г. за единицу. Определить, во сколько раз темпы роста производства пластмасс превышают темпы роста серной кислоты и минеральных удобрений. [c.10]

    До первой мировой войны фталевый ангидрид получали из нафталина путем окисления его серной кислотой в присутствии ртутного катализатора. Во время первой мировой войны почти одновременно в Германии и в США [3, 14, 15] был открыт каталитический процесс окисления воздухом в паровой фазе,- что привело к снижению стоимости производства фталевого ангидрида и к значительному увеличению потребления его. В 1945 г. [2,6] этот процесс был использован в промышленных масштабах Для окисления о-ксилола. [c.8]

    Одним из недостатков сернокислотного способа является большой расход серной кислоты. Для производства 1 т дифенилолпропана используют около 3 т кислоты (в расчете на моногидрат) (5,8 моль на 1 моль ацетона). При этом потери кислоты (в основном с промывной водой) составляют 1—1,2 т (моногидрата) на 1 m дифенилолпропана. Кроме того, получается до 2,8 т отработанной 69—71 %-ной кислоты, загрязненной органическими примесями использование ее представляет известные трудности. Недостатком способа является также образование большого количества (6 т/т) фенолсодержащих сточных вод кислотного характера. Поэтому на протяжении ряда лет проводились работы по изысканию возможностей сокращения расхода кислоты. Для этого предложены два пути уменьшение количества кислоты, подаваемой в реактор, и возвращение отработанной кислоты на синтез. [c.114]

    Обработка нефтяных дистиллятов серной кислотой обычно производится для того, чтобы растворить нестабильные окрашивающие вещества и сернистые соединения, а также для осаждения асфальтенов. Когда условия очистки становятся более жесткими (например при очистке масляных дистиллятов большим количеством концентрированной кислоты) или когда при производстве белых масел работают с дымящей кислотой, весьма заметным становится протекание реакций сульфирования, в результате чего образуется значительное количество нефтяных сульфокислот. Одновременно интенсивно происходят побочные реакции, главным образом окисление объем этих реакций увеличивается в зависимости от содержания серного ангидрида в кислоте иногда можно подавлять эти реакции, поддерживая низкую температуру. [c.571]


    В настоящее время имеется около 2000 ГОСТов на химическую продукцию, по которым выпускается около 8% общего ее объема. Наиболее полно в ГОСТах отражена продукция основной химической промышленности, па которую имеется 130 ГОСТов, на красители— ПО, на органические полупродукты — 85, на краски и эмали — 60. Степень охвата стандартами основных видов продукции по объему выпуска составляет в нефтехимической и нефтеперерабатывающей промышленности — 95,0—98,0%, в производстве минеральных удобрений 90,0%, серной кислоты и соды 100,0%, реактивов и особо чистых веществ 85,0°/о, лакокрасочных материалов 65,0% Наиболее низок уровень стандартизации в производстве пластических масс (26%), изделий из них (3—4%), а также в производстве резиновых и асбестовых технических изделий. [c.118]

    Качество контакта тем выше, чем больше в нем свободных сульфокислот и чем меньше минерального масла и свободной серной кислоты. В производстве катализаторов и адсорбентов применяют соляровые или газойлевые контакты с молекулярным весом 330 (НЧК, нейтрализованный черный контакт), а та,кже такие поверхностно-активные вещества, как ОП-7, ОП-10 и др. Все они служат для уменьшения возникающего в процессе сушки шариков внутри-капиллярного давления и снижения процента растрескивания шариков. Органические вещества (минеральные масла и нейтрализованные контакты) выгорают в процессе прокаливания катализаторов и адсорбентов. [c.31]

    Абсорбция серной кислотой в производстве олеума . [c.18]

    Абсорбция изобутилена водными растворами серной кислоты для производства третичного бутанола и для полимеризации ди-изо- и три-изобутилена . [c.18]

    ХТС производства серной кислоты, ХТС производства этилена, ХТС производства синтетического каучука [c.335]

    Значительные количества серной кислоты используются также при производстве ряда органических продуктов, в частности спиртов, фенолов, красителей, неорганических пигментов, текстильных волокон, взрывчатых веществ, нефтепродуктов, целлюлозы и бумаги, моющих средств, неорганических продуктов, в том числе квасцов и плавиковой кислоты, а также для выщелачивания руд, травления металлов и в свинцовых аккумуляторах. Использование кислоты по некоторым из этих направлений уменьшается, по другим — увеличивается, но общее ее потребление растет очень медленно, исключая производство удобрений. [c.241]

    Применение. Высокая активность серной кислоты в сочетании со сравнительно небольшой стоимостью производства предопределили громадные масштабы н чрезвычайное разнообразие ее применения. Трудно найти такую отрасль народного хозяйства, в которой не потреблялась бы в тех или иных количествах серная кислота или произведенные из нее продукты. [c.114]

    Крупнейшим потребителем серной кислоты является производство минеральных удобрений суперфосфата, сульфата аммония и др. Многие кислоты (например, фосфорная, уксусная, соляная) и соли производятся в значительной части при помощи ссрной кислоты. [c.114]

    На рис. 49 представлена упрощенная схема современного производства серной кислоты на базе колчедана по системе двойного контактирования и двойной абсорбции (ДК—ДА). Причем, на схеме изображены лишь основные аппараты по газовому тракту, без печного отделения, без холодильников, насосов, сборников кислоты и коммуникаций к ним. В каждой из башен системы циркулирует кислота, производится питание кислотой и выдача ее по схеме, изображенной на рис. 50. Кратность циркуляции составляет в среднем 30, т. е. лишь тридцатая часть кислоты подается в виде питающей и выводится из цикла. [c.133]

    До недавнего времени по состоянию очистки отходящих газов от азотной кислоты и оксидов азота, а также диоксида серы и тумана серной кислоты процессы производства нитратов целлюлозы и других нитроэфиров находились на уровне экологически весьма опасных производств. Отечественные заводы, производящие указанные вещества, имеют свои производства по регенерации отработанных кислот, работа которых сопровождается дополнительными мощными кислотными газовыми выбросами. Заводы отрасли выбрасывают в окружающую среду десятки тысяч тонн азотной и серной кислот. [c.327]

    Независимые химические фирмы имеют и эксплуатируют заводы по производству только кислоты. В основном это заводы производительностью 500—1500 т свежей серной кислоты в сутки. Однако несколько таких заводов установлено прямо на нефтеперерабатывающих предприятиях или в непосредственной близости от них и большинство принадлежит владельцам нефтеперерабатывающего предприятия. Их суточная производительность составляет от 50 до 600 т кислоты. [c.255]

    В некоторых патентах предлагается повышать эффективность производства серной кислоты. В одном из них сказано, что важное преимущество обеспечивается благодаря использованию тепла реакции для подогрева рециркулирующего газа перед заключительным превращением его в SO3 [38]. В 1972 г. описан [39] процесс производства серной кислоты под давлением. Сообщалось, что диоксид серы превращается в триоксид серы на 99,85% н что капиталовложения в данном случае на 10% ниже по сравнению с обычными заводами по производству кислоты. [c.257]

    Например, на азотных заводах производство карбамида компонуется в половине модульной ячейки, серной кислоты — в одной, аммиака — в двух, нитрофоски — в трех ячейках. На хлорных заводах многие из производств могут быть запроектированы в одной ячейке (например, хлора, этилена, поливинилхлорида и пр.) некоторые производства могут занимать полторы ячейки (производство ацетилена) и т. д. (рис. 56). [c.78]

    В 1746 году был разработан камерный метод производства, в котором сера в смеси с нитратом калия сжигалась в свинцовых камерах, причем оксид серы (VI) и оксиды азота растворялись в воде на дне камеры. В последующем в камеры стали вводить пар, и процесс производства превратился в непрерывный. В начале XIX века серу сжигали в печах, а оксиды азота получали отдельно разложением нитрата калия серной кислотой. В начале XX века в установку была включена специальная башня для улавливания оксидов азота, что повысило интенсивность камерного процесса. В последующем свинцовые камеры были заменены башнями с кислотоупорной насадкой. Тем самым камерный метод производства серной кислоты, сохранив принцип окисления оксида серы (IV) в оксид серы (IV), трансформировался в башенный метод, существующий в настоящее время. С 1837 г. в качестве сырья вместо серы стал использоваться железный колчедан. [c.152]

    Контактное производство серной кислоты — это крупномасштабное непрерывное, механизированное производство. В настоящее время проводится комплексная автоматизации контактных цехов. Расходные коэффициенты при производстве серной кислоты из колчедана на 1 т моногидрата N2804 составляют примерно условного (45%5) колчедана 0,82 т, электроэнергии 82 кВт-ч, воды 50 м . Себестоимость кислоты составляет 14—16 руб. за 1 т, в том числе стоимость колчедана составляет в среднем почти 50% от всей стоимости кислоты. Уровень механизации таков, что зарплата основных рабочих составляет лишь около 5% себестоимости кислоты. Важнейшие тенденции развития производства серной кислоты типичны для многих химических производств. 1. Увеличение мощности аппаратуры при одновременной комплексной автоматизации производства. 2. Интенсификация процессов путем применения реакторов кипящего слоя (печи и контактные аппараты КС) и активных катализаторов, а также производства и переработки концентрированного диоксида с использованием кислорода. 3. Разработка энерготехнологических систем с максимальным использованием теплоты экзотермических реакций, в том числе циклических и систем под давлением. 4. Увеличение степеней превращения на всех стадиях производства для снижения расходных коэффициентов по сырью н уменьшению вредных выбросов. 5. Использование сернистых соединений (5, 50о, 80з, НгЗ) из технологических и отходящих газов, а также жидких отходов других производств. 6. Обезвреживание отходящих газов и сточных вод. [c.138]

    КОНТАКТ ПЕТРОВА представляет собой густую прозрачную жидкость, от темно-желтого до бурого цвета с синим отливом. К- П. содержит около 40% нафтеновых сульфокислот, 15% вазелинового масла, небольшое количество свободной серной кислоты и воды. Подобно мылам К. П. проявляет поверхностноактивные свойства, но в отличие от них смачив. зет и эмульгирует даже в кислой среде, не требуя нейтрализации. К- П., эмульгируя жиры, увеличивает поверхность соприкосновения с омыляющей жидкостью, ускоряя тем самым реакцию. К. П. впервые получен в России в 1912 г. Г. С. Петровым и применен как эмульгатор в нефтепромышленности. К- П. образуется в результате действия серной кислоты, серного ангидрида или олеума на высококипящие фракции нефти при очистке нефтепродуктов (керосина, газойля, солярового масла и др.), содержится также в кислых гудронах, образующихся при сернокислотной очистке нефтепродуктов. К. П. широко применяется в различных отраслях промышленности для расщепления жиров, в качестве синтетических моющих средств, антикоррозионных веществ, пластификаторов для цемента и бетона, как промывные жидкости при бурении, в текстильной промышленности при крашении и обработке тканей, в производстве фенолформальдегидных смол, клеев и др. [c.134]

    Серная кислота представляет собой прозрачную маслянистую жидкость, бесцветную или желтовато-бурого оттенка (если в ней присутствуют примеси). В производстве используется контактная серная кислота, улучшенная или аккумуляторная (ГОСТ 667—73), содержащая 92,5—94 % Н2804. Такая кислота не замерзает при температуре —30 °С. Концентрированная серная кислота опасна, так как при попадании на кожу вызывает быстрое разрушение тканей и тяжелые ожоги. При повышенных температурах разбавленные растворы серной кислоты (осадительная и пластификационная ванны) вызывают кожные заболевания. Поражение глаз серной кислотой может привести к потере зрения. Работники отделения формования волокна в связи с этим часто болеют конъюктивитом глаз. Поэтому работы с серной кислотой и ее растворами на складе кислоты, отделении формования, кислотной станции и станции кристаллизации должны проводиться в специальной одежде, резиновых перчатках и защитных очках. [c.245]

    За последние годы в процессы производства серной кислоты внесены существенные улучшения. Широко применяется обжиг колчедана в кипящем слое и сжигание элементарной серы в циклонной печи, значительно увеличивается использование тепла, выделяющегося при обжиге сырья и на других стадиях производства серной кислоты. Непрерывно повышается производительность башенных сернокислотных систем в результате поддержания оптимального технологического режима, разработанного на основе глубоких теоретических исследований интенсивность башенных систем достигает 250 кг1м в сутки. Освоен контактно-башенный процесс производства серной кислоты, при котором расход азотной кислоты составляет 6—7 кг на 1 г Н2504. [c.15]

    Нёбмотря на то, что имеется стремление получать некото лв хийщчеСкйе продукты, не примёняя серную кислоту (как, например, соляную, уксусную и фосфорную кислоты, причем последнюю — методом возгонки фосфора и послед> ющего его окисления и т. д.). или заменять серную кислоту другими кислотами (как, например, азотной и фосфорной кислотами в производстве удобрений), все же роль серной кислоты в промышленности не уменьшается, и масштабы ее производства продолжают расти. [c.5]

    Из общего количества серы, выработанной на коксохимических предприятиях СССР в 1963 г., 79,6 /о было произведено в УССР. Серная кислота полностью вырабатывалась на коксохимических предприятиях УССР. Доля серной кислоты коксохимического производства в общем производстве кислоты по СССР невелика, однако потребность в серной кислоте коксохимических предприятий УССР для производства сульфата аммония покрывалась кислотой своего производства в 1955 г. на 9,8%, в 1960 г. на 42,0% и в 1963 г. на 52,7%. [c.167]

    Пропилеи при очистке смесей отработанных газов сравнительно легко поглощается 80—90%-ной серной кислотой. При этом образуется изопропилсульфат, который затем переходит в изопропиловый спирт. Это привело к созданию первого нефтехимического продукта. В конце 20-х годов американская фирма Standard Oil o. ввела в действие первую установку по производству изопропилового спирта. С этого времени постоянно рос интерес к пропилену [5—31, [c.8]

    Блестящее решение проблемы сокращения расходов серной кислоты и рационального использования ее в отработанном виде заключается в сочетании производства синтетического этилового спирта с каким-либо другим химическим производством. В частности, при организации в промышленных масштабах синтеза этилового спирта из этилена коксового газа совершенно не нужно стремиться к получению высококонцептрировапной серной кислоты после гидролиза, поскольку в комплекс химической переработки продуктов коксования каменного угля входит также производство синтетического аммиака, и поэтому гидролиз этилсерной кислоты можно проводить смесью паров воды и аммиака, в результате чего образуется водный раствор сульфата аммония. В производстве этилового спирта из этилена газов крекинга и пиролиза нефти параллельно можно получать изопропиловый, бутиловый и амиловый спирты. В этом случае 80—85 %-ную серную кислоту после гидролиза (в производстве этилового спирта) без предварительного концентрирования можно использовать в производстве изопропилового и дру1 их высших спиртов. [c.24]

    В производстве серной кислоты. Расщепление серной кислоты и сульфокислот с целью получения сернистого ангидрида для производства серной кислоты. Одновременно используют тепло от сгорания органической части кислого гудрона. Такое расщепление указанных продуктов можно осуществлять в чистом виде и в снеси с отработанной кислотой с установок алкилиршания. В настоящее время на одном из заводов кислый, гудрон после очистки жидких парафинов олеумом в смеси с отработанной кислотой с установок алкилнрования направлявт на производство серной кислоты путем расщепления. В результате расщепления кислого гудрона ари 800-900 С получают газ следующего состава (в %) 502 6,2 О2 10,5 СО2 6,8 [15]. [c.223]

    Сернокислотная очистка заключается в том, что продукт смешивают с небольшим количеством 90—93%-нон серной кислоты при обычной температуре. В результате химических реакций получается очищенный продукт и так называемый кислый гудрон, в который и переходят нежелательные примеси. Кислый гудрон, представляющий собой отход, может быть использован для производства серной кислоты. Сернокислотная очистка громоздка, требует большого количества реагентов, образуются трудноиспользуемые отбросы и т. п. [c.70]

    Оксиды азота N0 +N025 f N20з поглощаются серной кислотой в последующих трех-четырех башнях по реакции, обратной уравнению (а). Для этого в башни подают охлажденную серную кислоту с малым содержанием нитрозы, вытекающую из первых башен. При абсорбции оксидов получается нитрозилсерная кислота. Таким образом, оксиды азота совершают кругооборот и теоретически не должны расходоваться. На практике же из-за неполноты абсорбции имеются потери оксидов азота. Расход оксидов азота в пересчете на НЫОз составляет 10—20 кг на тонну моногидрата Н25О4. Нитрозным способом получают загрязненную примесями и разбавленную 75—77%-ную серную кислоту, которая используется в основном для производства минеральных удобрений. [c.116]

    Здесь следует дополнительно рассмотреть преимущества, даваемые сернокислотным заводом. Если такой завод оказывался экономически целесообразным как поставщик свежей серной кислоты и как регенератор отработанной кислоты, то его рентабельность может стать еще больше, если завод будет спроектирован как запасной> по производству серы. Сероводород вместо превращения в серу можно превратить в свежую серную кислоту. Сероводород является идеальным топливом на установках регенерации отработанной кислоты и в полной мере может исключить необходимость в дополнительном топливе, подаваемом в камеру сгорания. Из 1 т сероводорода получается почти 1 т серы, т. е. из 1 т сероводорода можно получить до 3 т серной кислоты. Таким образом, сернокислотный завод, расположенный на территории нефтеперерабатывающего предприятия, может обеспечйвать установки алкилирования более дешевым катализатором, а также продавать серную кислоту в качестве побочного продукта. [c.256]

    Контакт представляет собой продукт, в котором содержатся сульфокислоты, серная кислота, масло и вода. Контакт получают сульфированием керосина, газойля или солярового дистиллята путем отмывки образовавшихся сульфокислот водным раствором спирта или водой. Контакт применяется в промышленности для расш,епления жиров, в текстильном деле и других производствах. [c.770]

    Выделению церезина из тяжелых парафинистых дистиллятов и петролатума посвящено исследование Фрейнда и Батори [202]. Обработкой петролатума 250% карбамида в присутствии ацетона получено 30% церезина (на петролатум). Температура плавления церезина 71—72° С, содержание масла в нем менее 1%. При очистке церезина серной кислотой с последующей доочисткой отбеливающей землей получен продукт белого цвета. В работе Батори [13] показано, что для получения церезина из петролатума может быть применен водный раствор карбамида. На основе указанных исследований разработана технологическая схема производства безмасляного церезина, положенная в основу промышленной установки в г. Алмашфюзите [13, 169]. [c.129]


Смотреть страницы где упоминается термин Серная кислота кислота, производство: [c.286]    [c.431]    [c.29]    [c.846]    [c.90]    [c.486]    [c.264]    [c.263]    [c.327]    [c.67]   
Технология минеральных удобрений и кислот (1971) -- [ c.0 ]

Технология минеральных удобрений и кислот Издание 2 (1979) -- [ c.0 ]

Технология серной кислоты (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Серная кислота производство



© 2025 chem21.info Реклама на сайте