Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия электронная УФ и видимой

    Спектроскопия в видимой и ультрафиолетовой области — ценнейший источник сведений об электронных состояниях, энергетике и структурных свойствах молекул. [c.151]

    Как было установлено [1-4], линейные нейтральные молекулы Сп при п > 2 наблюдаются в насыщенных парах над графитовым материалом при 2500 К. Это было показано методами ИК- и УФ-спектроскопии в видимой части спектра, а также при исследовании спектров электронного парамагнитного резонанса. [c.18]


    Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61 11.27]. [c.324]

    Спектроскопия в видимой и ультрафиолетовой областях (электронные спектры)............................................271 [c.318]

    Для энергетических уровней, соответствующих электронно-возбужденным состояниям многоатомных частиц, никаких простых количественных соотношений не существует. Некоторые качественные положения будут рассмотрены в 10.2, посвященном спектроскопии в видимой и ультрафиолетовой области спектра. [c.98]

    Электронная спек-троскопия, как уже указывалось, это спектроскопия в видимой и ультрафиолетовой области спектра. Спектры испускания в этой области можно получить, нагревая вещество до высоких температур, при которых за счет термического возбуждения оказываются в достаточной мере заселенными электронно-возбужденные состояния частиц. При переходе частиц с более высокого в более низкое по энергии возбужденное или основное состояние испускаются кванты видимого или ультрафиолетового излучения. Поскольку при высоких температурах большинство молекул разлагается, спектры испускания исследуются преимущественно для некоторых простых достаточно прочных многоатомных частиц и атомов. Рассмотрим несколько подробнее вопрос о спектрах испускания атомов на примере атомов водорода. [c.150]

    Колебательная инфракрасная спектроскопия (ИК-спектроскопия) наряду с электронной спектроскопией в видимой и ультрафиолетовой области — один из важных источников информации о строении молекул. Для получения инфракрасных спектров поглощения используют специальные приборы — инфракрасные спектрометры. Принцип действия их сходен с принципом действия спектрофотометров. Однако для этой области спектра используются специфические источники излучения, специфические методы регистрации излучения и специальные материалы для призм и кювет. [c.155]

    Электронная спектроскопия, т. е. УФ-спектроскопия и спектроскопия в видимой области, применяется для идентификации и установления структуры соединений, анализа их смесей и кинетических исследований. [c.501]


    Таким образом, вопрос о слабых связях крайне сложен и далек от своего разрешения. Результаты, полученные химическими методами, ненадежны по ряду причин, как-то низкая концентрация слабых связей, физическое состояние полимера, в котором эти связи реагируют, и т. д. В некоторых исследованиях для построения более полной картины структуры молекулы полисахарида применялись такие физические методы, как рентгеновская кристаллография, электронная микроскопия и инфракрасная спектроскопия. По-видимому, эти физические методы явятся главным средством, применение которого позволит в конце концов однозначно установить структуру полисахаридов. [c.111]

    Если мы непосредственно рассчитаем энергии возбужденных состояний, то обнаружим, что разности энергий орбиталей не равны энергии возбуждения и что необходимо явно учесть изменение в отталкивании электронов в основном и возбужденном состояниях. Это означает, что возбуждение с ВЗМО на НСМО не обязательно приводит к низшему по энергии возбуждению. Следовательно, мы не можем только из свойств основного состояния установить даже порядок возбужденных состояний. Не можем мы, за исключением лишь приближенных подходов, сказать и о разностях в энергиях орбиталей по данным спектроскопии в видимой и ультрафиолетовой областях. [c.40]

    ИК-спектроскопия, занимающаяся исследованием органических соединений, изучает Лишь область от 500 до 5000 см при энергии падающего излучения в несколько десятых электрон-вольта (эВ). Применяемые для исследования органических соединений УФ-спектрометры обычно исследуют область от 200 до 400 нм, а участок спектра от 400 до 1000 нм является предметом изучения спектроскопии в видимой области. [c.83]

    Спектры ЯМР. Химические сдвиги протонов в спектрах ЯМР различных соединений зависят от электронной плотности на атомах, с которыми они связаны. Для бензоидных систем наблюдается довольно хорошая корреляция между я-электронной плотностью, рассчитанной для какого-либо атома, и величиной химического сдвига протона, связанного с этим атомом Попытки провести подобное сопоставление экспериментально найденных значений химических сдвигов протонов при С-2, С-б и С-8 пурина с электронными плотностями на этих атомах углерода были значительно менее успешны Такой результат становится, однако, понятным, если учесть, что в данном случае на величине химического сдвига должен сильно сказываться эффект поля соседних гетероатомов, обладающих высоким частичным отрицательным зарядом, а также то обстоятельство, что влияние магнитной анизотропии цикла различно для протонов, занимающих разное положение в цикле. Если, используя вычисленные величины зарядов на атомах, провести расчеты значений химических сдвигов, учитывая все указанные эффекты, то удается правильно предсказать порядок возрастания величин химического сдвига в пурине б(С-8) < б(С-2) <б(С-6) . Тем не менее в качестве метода исследования распределения электронной плотности в молекулах таких сложных соединений, как основания нуклеиновых кислот, ЯМР-спектроскопия, по-видимому, малоэффективна. [c.157]

    Роль железа может состоять в сохранении восстановительного эквивалента или в передаче его между молибденом и флавином. Последнее предположение подтверждается данными ЭПР и электронной спектроскопии в видимой области в условиях опытов, проводимых методом остановленной струи. Эти экспери- [c.277]

    Рассмотренные в разделе методы электронной спектроскопии в видимой и УФ областях являются основными источниками экспериментальных данных об энергетических состояниях молекул, связанных с электронным возбуждением. Интерпретация электронных спектров молекул основывается на использовании представлений приближенных методов квантовой химии. С другой стороны, получаемые из спектров данные могут служить критерием пригодности и ограничений тех или иных приближений в описании электронных состояний и переходов, стимулирующим развитие и уточнение теоретических представлений. [c.351]

    В настоящее время для изучения разрушения используются инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, хроматография, ядерный магнитный резонанс, рентгеновская дифракция в малых и больших углах, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография, фотолиз и др. [c.141]

    Для анализа красителей и пигментов использовали традиционные химические приемы, например восстановление, гидролиз и пиролиз, а также более современные методы, включающие электрофорез, колоночную, бумажную, тонкослойную и газовую хроматографии, ИК- и ПМР- спектроскопию, электронную спектроскопию в УФ- и видимой областях. Методика анализов описана в [1,2], но иногда ее разрабатывали специально. Например, в случае газовой хроматографии были определены оптимальные условия идентификации ароматических аминов. С этой целью около 300 аминов хроматографировали с некоторыми стандартами при определенной температуре и находили их относительное время удерживания. [c.350]


    В течение последних десяти лет наши знания о комплексах переходных металлов заметно выросли. Экспериментальные данные, полученные с помощью спектроскопии в видимой и инфракрасной областях спектра, а также методом электронного парамагнитного резонанса, требовали проверки старых и создания новых теорий. В теоретическом отношении для объяснения экспериментальных данных была развита теория, явившаяся комбинацией теорий кристаллического поля и молекулярных орбиталей. Новая теория, называемая иногда теорией поля лигандов, в настоящее время общепринята и усовершенствована до такой степени, что позволяет проводить с очевидным успехом количественные расчеты разнообразных измеримых величин [1, 2]. [c.7]

    Для многих молекул, например для большинства комплексных соединений, электронные переходы можно изучать в растворах при помощи абсорбционной спектроскопии в видимой и ультрафиолетовой областях. Основу таких измерений составляет закон поглощения света. Уменьшение потока излучения / (/ — поток излучения [c.81]

    Существование в системе различного типа ионных пар доказано данными электронной спектроскопии в видимой и ультрафиолетовой частях спектра и данными ИК-спектроскопии. По наличию батохромного сдвига полосы поглощения, обусловленной контактной ионной парой в присутствии сильно сольватирующего растворителя, можно обнаружить факт сольватации ионной пары, и рассчитать соответствующую константу равновесия [45]. Доказано (см. гл. И1, 3), что способность растворителя к образованию в растворе сольватированных ионных пар зависит от диэлектрической проницаемости среды, стерических факторов, основности растворителя и т. д. [45, 46]. При отсутствии стерических эффектов способность эфиров к сольватации ионов щелочных металлов удовлетворительно коррелирует с основностью растворителя, однако в общем случае установить строгие закономерности влияния среды пока не представляется возможным. Определенные перспективы в отношении выяснения строения сольватно-разделенных ионных пар и причин изменения их реакционной способности по сравнению с контактными ионными парами открываются при использовании метода ЭПР [47—50]. [c.387]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]

    Из приведенного выше краткого обсуждения ясно, что при изучении природных пигментов поглощение света имеет фундаментальное значение. Спектроскопия электронного поглощения, с помощью которой регистрируют поглощение УФ-и видимого света, является основным спектроскопическим методом, применяющимся как для выявления свойств пигментов, так и для их количественного анализа. Однако специфические свойства пигментов в отношении поглощения света позволяют исследовать их и другими методами, главным образом резонансной рамановской спектроскопией и методом кругового ди-хипизма. Так же как и при изучении других органических мо- [c.24]

    Обнаружение функциональных груни в молекуле ранее неизвестного соединения также не представляет в настоящее время иринцини-альных трудностей. Значительно сложнее, однако, получить информацию о строении углеродного скелета. Для этого следует провести химическую деструкцию соедииеиия и идентифицировать образующиеся осколки. Так, озонирование и последующее разложение образующихся озонидов позволяет определить положение кратной связи у большого числа алкенов. В качестве других примеров подобного рода следует упомянуть химическую деградацию альдоз (см. раздел. 3.1.1) или деструкцию алкалоидов (см. раздел 2.3.4). Однако химические методы зачастую требуют очень много времени и на их осуществление необходимы относительно большие количества вещества. В связи с интенсивным развитием приборной техники за последние 20 лет получил широкое распространение целый ряд спектральных методов оиределения строения органических соединений, такие как инфракрасная спектроскопия (ИК), раман-снектроскония, электронная спектроскопия (УФ- и видимая области), снектроскония ядерного магнитного резонанса (ЯМР), спектроскопия электронного парамагнитного резонанса (ЭПР), масс-сиектрометрия (МС), рентгенография, электронография и т.д. Эти методы часто в значительно более короткие сроки позволяют получить информацию о структуре и пространственном строении молекулы. Их распространение зачастую сдерживается лишь весьма высокой стоимостью приборов. В рамках настоящего учебника будут обсуждены основы важнейших из этих методов, и на некоторых примерах будет продемонстрирована получаемая с их помощью информация. Более глубоко с этим вопросом можно познакомиться в специальной литературе. [c.36]

    Идентификацию преобладающих пигментов проводили методами оптической спектроскопии в видимой области, масс-спектро-метрип низкого разрешения и сохроматографией со стандартными образцами пигментов. Спектры поглощения каротиноидов были получены на спектрофотометре Spe ord UV-VIS (ГДР) в гексане, бензоле, хлороформе и этаноле (кювета с толщиной слоя 1 см, условия съемки обычные). Масс-спектры каротиноидов были сняты на масс-спектрометре МХ-1310 с использованием системы прямого ввода образца с ионизацией электронным ударом. Температура ионизационной камеры 250 °С, температура камеры испарения образца 190—200 °С, энергия ионизирующих электронов 60 и 20 эВ. [c.134]

    Ф. X. последних десятилетий характеризуется след, чертами. В результате развития квантовой химии мн. проблемы хим. строения в-в и механизма р-ций решаются на основании теор. расчетов. Наряду с этим широко используются физ. методы исследования — рентгеноструктурный авализ, дифракция электронов, спектроскопия в видимой, УФ и ИК областях, ЯМР, ЭПР, ядерный гамма-резонанс (эффект Мессбауэра), методы, основанные на примен. стабильных и радиоа . изотопов, и др. Приложение Ф. х. к исследованию превращений орг. в-в привело к выделению новой отрасли знания — физической орг. химии, центральной задачей к-рой является выяснение связи между строением в-в и их реакц. способностью. Ф. х. получает все возрастающее значение для биологии и медицины, она является теор. основой хим. технологии. [c.621]

    Кроме ИК-спектроскопии и спектроскопии КР существуют и другие спектроскопические методы, которые являются важным средством изучения систем с Н-связями. К таким методам относится в первую очередь спектроскопия в видимой и ультрафиолетовой области. Развитие исследований в этом направлении было стимулировано появлением цитированной выше работы Нагакура и Баба [1481], которые обнаружили влияние Н-связи на электронные спектры молекул. В последнее время проявляется большой интерес к применению протонного магнитного резонанса. В настоящей главе обсуждаются, кроме того, флуоресценция, фототропизм и измерения квадрупольного взаимодействия. Применения протонного магнитного резонанса, рентгенографии и нейтронографии для определения структуры кристаллов рассматриваются в гл. 9., [c.126]

    До недавнего времени основным методом в изучении структуры нефтепорфиринов являлась электронная спектроскопия в видимой и ближней ультрафиолетовой областях [12, 27, 49], основанная на изучении характера расположения и интенсивности максимумов поглощения в определенных (соответствующих) областях спектра. [c.411]

    Число известных в настоящее время структур и химических форм, образующихся при хемосорбции на поверхности твердых тел, довольно значительно. Этому мы обязаны в основном применению к изучению двумерных поверхностныхсоединенийдифракции медленных электронов, спектроскопии в видимой и инфракрасной части спектра, электронного парамагнитного резонанса и других современных методов исследования. Часть одних обнаруженных форм имеет близкие аналоги среди неорганических и органических молекул и кристаллов, часть — таких аналогов не имеет. В табл. 1.4 приведены некоторые из этих форм, представляющие интерес для катализа. [c.53]

    Спектроскопия в видимой и ультрафиолетовой областях (электронные neKfpH) (238). Спектроскопия в инфракрасной области (240). Спектроскопия ядерного магнитного резонанса (246) [c.269]

    Решение ряда принципиальных теоретических проблем органической химии связано с исследованием строения и свойств ароматических соединений. Здесь в первую очередь следует выделить проблему строения бензола. Всестороннему исследованию связи между строением и свойствами ароматических соединений способствовало широкое применение методов физико-химического эксперимента электронной спектроскопии в видимой и в ультрафиолетовой области, потенциометрического титрования, дейтерийобмена, рентгено-и электронографии, дипольных моментов, ядерного магнитного и электронного парамагнитного резонанса и др. [c.407]

    Для современного состояния спектральных методов характерно существенное расширение диапазона энергий используемого излучения. Так, наряду со спектроскопией в видимой и близких к ней областях, возникли рентгеновская и фотоэлектронная спектроскопия. Оба эти раздела до сих пор не обсуждались в книгах по применению физических методов в неорганической химии. Статья Боннелля должна быть полезна в качестве введения в рентгеновскую спектроскопию. Следует, однако, иметь в виду, что она не охватывает всех вопросов, связанных с этой интересной и исключительно важной для неорганической химии областью. Тем не менее, ее можно рекомендовать, так как она позволяет читателю, заинтересовавшемуся предметом, познакомиться с более специальными работами, например с книгой Баринского и Нефедова [9], посвященной определению эффективных зарядов атомов в неорганических соединениях по рентгеновским спектрам, и с новым направлением, пока еще не отраженным в монографической литературе, — определением положения внутренних энергетических уровней (молекулярных орбиталей) молекул. Метод фотоэлектронной спектроскопии, созданный академиком Терениным и независимо автором соответствующей главы Тернером, также весьма перспективен для неорганических веществ. Этот метод позволяет судить об энергиях высших заполненных молекулярных орбиталей, так что в настоящее время, комбинируя результаты исследования электронных спектров в видимой и ультрафиолетовой областях, фотоэлектронных спектров и рентгеновских спектров, можно на основании опытных данных в благоприятных случаях построить полную картину электронных уровней системы (их последовательности по энергиям), а иногда и выяснить вопрос о том, из каких атомных орбиталей и в каких соотношениях образуются соответствующие молекулярные орбитали. Тем самым схемы молекулярных орбиталей, которые до сих пор строились только на основании теоретического рассмотрения и казались многим химикам искусственным и сомнительным описанием молекул, становятся непосредственным следствием эксперимента. Правда, до последнего времени метод фотоэлектронной спектроскопии применялся только к сравнительно простым неорганическим молекулам, но можно надеяться на расширение круга объектов при дальнейшем совершенствовании методики и теории. [c.8]

    Принятый в органической масс-спектроскопии постулат о том, что в молекулярном ионе положительный заряд локализуется, как правило, на каком-либо атоме или группировке, имеющей р-или я-электроны, видимо, достаточно близок к истине, поскольку распад такого иона протекает с расщеплением прежде всего связей, соседних с предполагаемым местом локализации заряда. Это обстоятельство позволяет обобщить все имеющиеся факты и рассматривать основные закономерности фрагментации соединений, содержащих обобщенную гетероатомную функциональную группу, связанную с алифатическим, алициклическим или ароматическим (гетероароматическим) радикалом. Естественно, что перед этим необходимо рассмотреть закономерности распада самих углеводородов, не содержащих каких-либо функциональных групп. Прежде чем приступить к дальнейшему изложению материала, следует подчеркнуть, что в большинстве случаев отсутствуют какие-либо доказательства того, что образующиеся при распаде в масс-спектрометре фрагменты с определенной массой и элементным составом имеют действительно ту структуру, которую им приписывают на предлагаемых многочисленных схемах фрагментации, т. е. изображение процессов диссоциативной ионизации в терминах и символах структурной органической химии, строго говоря, условно, поскольку в возбужденном ионе вполне вероятно и в ряде случаев даже доказано протекание глубоких процессов перестройки структуры и некоторого перемешивания (англ. рандомизация или скрем-блинг) атомов водорода и углерода. В результате практически все предлагаемые механизмы и схемы распада имеют отчасти спекулятивный характер. Несмотря на это они [c.43]

    Изучение изменений электропроводности и работы выхода при X. на полупроводниках (Og на ZnO), а также электронного парамагнитного резонанса, показало наличие электронных переходов и образование заряженных форм(0 ,0 ,0 ). В энергию активации X. при этом входит энергия переноса электрона. Активными центрами на многих окислах и солях служат поверхностные координационно-ненасыщенные ионы металла. X. на них протекает с образованием коордп-иационной связи, как в комплексных соединениях, причем хемосорбнрующаяся молекула играет роль лиганда и размещается в анионной вакансии на поверхности. Энергия активации такой X. близка к нулю. Изменения химич. связи в хемосорбированных молекулах обнаруживаются методами инфракрасной, ультрафиолетовой и видимой спектроскопии, электронного и ядерного магнитного резонанса. [c.314]

    Спектрофотометрия (спектроскопия в видимой и УФ-областях спектра) основана на измерении интенсивности поглощения того или иного соединения. Органические вещества определяют по собственной окраске или по поглощению света продуктами их аналитических реакций. Электронные спектры, как правило, не являются характеристичными, и часто полосы поглощения соединений разных классов лежат в одной области. При анализе объекта, содержащего только одно соединение, или при определении вещества, обладающего весьма отличными от других характеристиками, спектрофотометрия очень удобна вследствие ее простоты и высокой чувствительности. Однако при исследовании смесей веществ нехарактеристичность электронных спектров осложняет применение метода. Очевидно, что эти трудности гораздо больше при определении веществ по пх собственной окраске. Можно го- [c.243]

    Возможны два класса конфигурационных изомеров — диастереомеры и оптические изомеры. Диастереомеры имеют различные физические и химические свойства и, по крайней мере теоретически, могут быть разделены путем фракционированной кристаллизации или хроматографии или обнаружены в смеси физическими методами (например, спектроскопия в ультрафиолетовой или видимой области, ЯМР на Н, рентгеноэлектронная спектроскопия, электронно-эмиссионная спектроскопия). Они представляют различные геометрические формы одной и той же молекулы и могут существовать в виде нескольких изомеров. Оптические изомеры отличаются только тем, что они являются несовмещае-мыми зеркальными изображениями одной и той же молекулы их предельное число равно двум. Обычно их называют энантиомера-ми или энантиомерными формами, а иногда катоптромерами. [c.63]


Смотреть страницы где упоминается термин Спектроскопия электронная УФ и видимой: [c.347]    [c.373]    [c.621]    [c.114]    [c.152]    [c.514]    [c.347]    [c.373]    [c.415]    [c.143]    [c.138]   
Введение в электронную теорию органических реакций (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Видимость

Спектроскопия электронная

УФ- и видимая спектроскопия



© 2025 chem21.info Реклама на сайте