Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность типа

    Мост переменного тока для измерения электропроводности, типа Р-38, или специально собранная установка с звуковым генератором. [c.104]

    Для изучения свойств адсорбционных систем используют различные физические и физико-химические методы. Например, изменения коллективных электронных свойств в результате взаимодействия адсорбент — адсорбат можно проследить по изменениям электропроводности, типа проводимости, работы выхода электрона, магнитных свойств, эффекта Холла, термоэлектродвижущей силы. Полученные этими методами данные существенно содействовали пониманию роли электронных факторов в гетерогенном катализе (см. гл. 7). [c.42]


    Фосфиды d-элементов (обычно типа МР, MPj, М3Р) имеют серый или черный цвет, металлический блеск и электропроводны. Фосфиды этого типа химически малоактивны. [c.367]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру (рис. 163) типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду Аз — 8Ь — В1 различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,037 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют. [c.380]

    Благодаря описанному движению протонов увеличивается электропроводность раствора, потому что протоны имеют очень малый радиус и проходят не весь путь до катода, а лишь расстояния между молекулами воды. Этот тип проводимости можно назвать эстафетным, или цепным. [c.433]

    Катализ первого класса, сокращенно называемый электронным катализом , осуществляется на твердых телах — проводниках электрического тока (металлах и полупроводниках). Эти тела обладают рядом общих физико-химических свойств, связанных с наличием в них подвижных электронов. Для тел-проводников характерна электропроводность, окраска (т. е. заметное поглощение света в видимой области спектра), термоэлектронная эмиссия и внешний фотоэффект. К этому классу относятся каталитические реакции окисления, восстановления, гидрирования, дегидрирования, объединяемые в тип гемолитических. Все они сопровождаются разделением электронов в электронных парах молекул. Общий механизм действия катализатора сводится при этом к облегчению электронных переходов в реагирующих молекулах за счет собственных электронов катализатора. [c.13]

    Катализ второго класса — ионный — протекает ца твердых телах, не имеющих свободных носителей тока в объеме, т. е. на изоляторах. Электропроводность этих тел, заметная при высоких температурах, — ионная, аналогичная электропроводности электролитов. Катализаторы этого типа, как правило, не окрашены реакции происходят без разделения электронных пар и объединяются в тип гетеролитических. Сюда относятся реакции изомеризации, присоединения (гидратации, аминирования), замещения гидролиза), дезаминирования. Указанные два класса каталитических реакций не включают в себя, однако, всех возможных механизмов катализа. [c.13]


    До сравнительно недавнего времени носитель рассматривали как инертную составляющую катализатора. Обычно как доказательство инертности носителей приводится отсутствие у них каталитической активности. Однако, как указывалось несколько выше, и у других типов сложных катализаторов один из компонентов может не обладать каталитической активностью. Шваб [87] показал, что при варьировании носителей для одного и того же активного компонента изменяется не только удельная каталитическая активность последнего, но и электрические свойства получаемого катализатора (электропроводность). Следовательно, влияние носителя может иметь электронную природу, что должно также вытекать из теории явлений в пограничных слоях металлов и полупроводников. [c.46]

    Электропроводность. В связи с широким применением электродегидраторов для разрушения эмульсий типа В/Н в процессах обессоливания и обезвоживания нефти особое значение имеет электропроводность нефтяных эмульсий. [c.30]

    Зависимость корреляционной связи между электропроводностью и содержанием хлорных солей от типа нефти является одним из основных недостатков физических методов. Их преимуществом, по сравнению с химическими, является меньщая продолжительность процесса измерения. Они более удобны также для создания автоматических поточных анализаторов солесодержания в нефти. Особенно это относится к методу измерения проводимости разбавленной нефтяной среды, который положен в основу серии автоматических анализаторов типа ИОН . [c.171]

    В зависимости от типа ячейки реактивная составляющая электропроводности прп работе в высокочастотном режиме является функцией емкости С или индуктивности Ь  [c.113]

    Емкостные ячейки применяют для анализа растворов с низкой электропроводностью, индуктивные — с высокой, В высокочастотных измерениях используют схемы, включающие в качестве источника тока высокочастотные ламповые генераторы (частота тока 0,1—40 МГц в зависимости от типа схемы). Измеряемым сигналом может служить электропроводность (или сопротивление) всей цепи, либо связанный с ними параметр, например электрический ток, В качестве регистрирующего устройства используют микроамперметры или калиброванные конденсаторы. Схема установки для высокочастотного титрования изображена на рис. 2.8. [c.113]

    Механизм явления, определяющего величину заряда статического электричества, возникающего в потоке жидкости, сложный. Величина накапливаемого заряда определяется многими факторами, в том числе электропроводностью и вязкостью жидкости, скоростью потока, наличием примесей. Тип разряда (искра или корона) определяется максимальной напряженностью и степенью неоднородности электрического поля. Напряженность поля, при которой начинается разряд, для воздуха при атмосферном давлении обычно составляет [c.182]

    В реальных условиях эксплуатации скважин двухфазная среда углеводород — электролит находится в виде эмульсии типа вода в масле или масло в воде. В слабо-обводненных скважинах встречается обычно эмульсия первого типа, в сильнообводненных скважинах — второго. Тип эмульсии определяют измерением ее удельной электропроводности. Эмульсия В/М имеет очень низкую электропроводность, поэтому, если электропроводность раствора настолько мала, что ее не удается измерить, эмульсию относят к типу вода в масле. Независимо от типа эмульсии коррозионным агентом всегда является водная фаза. Величина водонефтяного отношения для конкретного месторождения, при которой система нефть — вода становится неустойчивой, может быть использована в качестве специфического параметра для характеристики и -прогнозирования коррозии на нефтепромыслах [12]. [c.13]

    С другой стороны, топлива с большой электропроводностью могут вызвать нарушения в работе некоторых уровнемеров (емкостных) в самолетных баках. Принято, что топливо электропроводностью не более 300 пСм не вызывает нарушений в работе уровнемеров. Однако уже сейчас накоплен опыт лабораторных и летных испытаний, свидетельствующий о том, что топлива электропроводностью 1000 пСм если и влияют на показания уровнемеров, то в пределах допустимых ошибок. Тем не менее во многих технических условиях на реактивные топлива указаны границы электропроводности топлив (50—300 пСм). Чтобы обеспечить такую электропроводность топлив типа керосина необходимо добавить 0,000075% (0,75 ч. на 1 млн) присадки А5А-3, для топлива типа широкой фракции (топливо ЛР-4) —0,00005% (0,5 ч. на 1 млн). Электропроводность топлив с присадкой А5А-3 зависит от температуры (табл. 60) при уменьшении температуры топлива от 20 до —20 °С она снижается более чем в 2 раза. [c.237]

    Было замечено, что наибольшее повышение электропроводности углеводородного топлива достигается при одновременном введении в него хромовых солей СЖК и присадки полимерного типа. Это свидетельствует о наличии синергизма мел ду указанными добавками. [c.58]


    Тип боковых цепей, радикалов, прочность их связей и отношение неупорядоченной части к упорядоченной в направлении Ьа обусловливает склонность углерода к химическим реакциям, а размер и упорядоченность кристаллитов углерода перпендикулярно к этому направлению (по Ьс) определяет его физические свойства (адсорбционную способность, энергетическую неоднородность поверхности, внутреннюю поверхность, пористость, тепло- и электропроводность и др.). По мере протекания химических реакций, сопровождающихся увеличением упорядочения по Ьа, непрерывно изменяются физико-химические свойства углерода, которые, в свою очередь, влияют на склонность и характер деструктивных процессов, протекающих на поверхностных слоях углерода. [c.53]

    Электронндуктивные испытатели электропроводности типа ИЗ и ФИЭТ имеют диапазон измерения электропроводности (0,02— 60)-10" См/м, рабочую частоту питающего тока от 40 до 5000 кГц. Приборами типа ИЭ можно определять как абсолютную, так и относительную электропроводность поверхностного слоя немагнитных металлов глубиной не более 0,8—1,5 мм. В этих приборах предусмотрена возможность устранения влияния зазора между датчиком и поверхностью металла, благодаря чему лакокрасочные и другие пленки толщиной до 0,2 мм не влияют на результаты измерений. [c.118]

    Для измерений к ячейке подключали мост электропроводности типа 3126В (производство LKB, Швеция), работающий на частоте 2 кгц. Чтобы получить четкую точку баланса на применяемом детекторе (использовался электронно-лучевой осциллоскоп), для большинства мембран с невысоким сопротивлением применяли значительную компенсирующую емкость (до 0,01 мкф). [c.195]

    Донорно-акцепторная связь наблюдается между элементами различных групп периодической системы. Она характеризуется тем, что атомы примесей некоторых элементов отдают по одному электрону в кристаллическую решетку основного элемента. Такие атомы называются донорными. Примесные атомы, которые захватьшают по одному электрону из основного элемента, называются акцепторными. Первые поставляют электроны в зону свободных уровней энергии, вторые создают свободные уровни. Первые создают в веществе электронную электропроводность типа л (negative—отрицательная), вторые — дырочную электропроводность типа р (positive — положительная). [c.33]

    МоЗг может иметь электропроводность типа р или п. Установлено, что энергия возбуждения носителя заряда [16, 17] равна 0,55 0,14 0,12 и 0,05 эв. Электропроводность и коэффициент Холла у разных образцов МоЗг может сильно колебаться [18, 21]. Показано [17], что электропроводность различных образцов природного молибденита (вдольосновной плоскости кристалла) колеблется от 4 до 0,009 олг -сж , а коэффициент Холла от 35 до 3000 см /кулон. Вдоль основной плоскости кристалла подвижность зарядов носит активный характер и при комнатной температуре составляет примерно 100 см в сек . Подвижность изменяется в зависимости от температуры [c.98]

    В окислительно-восстановительных реакциях происходят электронные переходы между катализатором и реагирующими веществами. Катализаторами этих реакций являются металлы и полупроводники — твердые вещества, обладающие свободными или легковозбудимьши электронами. При трактовке взаимодействия реагирующих веществ с катализатором окислительно-восстановительного типа принимают во внимание либо, так же как и для гетеролитических реакций, только локальные свойства контакта — электронную стуктуру атомов или ионов на поверхности, либо учитывают (на основе зонной теории) только общие уровни энергии электронов всего твердого катализатора. В последнем случае каталитическую активность твердого катализатора связывают с полупроводниковыми свойствами — работой выхода электронов, электропроводностью, типом проводимости, шириной запрещенной зоны считают, что химические особенности катализатора определяются в основном положением уровня Ферми. Однако предсказания электронной теории не всегда оправдываются. Это наблюдается, например, при исследовании сплавов металлов VHI и IB групп, а также таких полупроводниковых катализаторов, как закись никеля с добавками лития, двуокись титана с добавками вольфрама, твердые растворы MgO — NiO. Наиболее вероятная причина наблюдаемого явления состоит в том, что энергия взаимодействия адсорбированной частицы с катализатором определяется не только смещением уровня Ферми, но и изменением энергии локального взаимодействия. Поэтому многие исследователи приходят к выводу о том, что, хотя в ряде случаев коллективные электронные свойства полупроводников играют большую роль, часто окис-лительно-восстановительный катализ происходит в результате локального взаимодействия реагирующих молекул с поверхностными атомами или ионами. Важные доводы в пользу решающей роли локальных свойств твердого вещества в его каталитической активности получены при сопоставлении процессов гомогенного и гетерогенного катализа. [c.12]

    Рассмотрены существующие представления о взаимосвязи между каталитической активностью твердых тел и их электронными свойствами. Сделан вывод, что на основании простого сопоставления изменений макроскопических физических характеристик (электропроводности, типа проводимости, работы выхода, характера заполнения й-зоны и т. д.) с каталитическими свойствами невозможно добиться существенных результатов в области предсказания каталитической активности. Волее перспективным представляется автору другой путь — объяснение специфики катализа с точки зрения квантовомеханической теории химической связи, в частности на основе теории Кристаллического поля и теории поля лигандов. Подчеркнуто, что необходимым условием для решения проблемы предвидения катализаторов является изучение внутренней кибернетики каталитических процессов, т. е. комплекса функций катализатора инициирования, повторяемости этапов, сопряжения стадий, об спечения избирательности и т. д. Таблиц 4. Иллюстраций 7. Библ. 76 назв. [c.497]

    Таким образом, дискуссия идет не о возможности взаимного влияния сульфидов, как таковой, а об удельном весе их влияния друг на друга через раствор и через контакт . По-видимому, первый вид взаимного влияния сульфидов в условиях реальной пульпы превалирует, но нельзя свести на нет роль второго вида взаимодействия разноименных минералов. С целью экспериментальной проверки характера и силы влияния разнородных сульфидных минералов на их растворение выбрано три типичных представителя (пирит, халькопирит и сфалерит), отличающихся по электропроводности, типу проводимости и величине электродных потенциалов. Лмический состав исследуемых минералов приведен в табл. 5. [c.83]

    При любой концентрации электролита, отличной от нуля, в растворе появляются силы, тормозящте движение иопов и, следовательно, уменьшающие его молярную электропроводность на величины Я,-, каждая из которых отвечает определенному типу сил взаимодействия. На этом основании вместо уравнения (5.12) можно наиисать [c.121]

    Саратовский завод Нефтемаш выпускает плунжерные дозировочные электропроводные насосы типа ДГ и ДК. [c.122]

    При непрерывном изменении давления, температуры или состава фаз изучаемое свойство системы, например электропроводность, удельный объем и т. д., тоже изменяется непрерывно. Если же одна из фаз исчезает или появляется новая, то изучаемое свойство системы изменяется скачкообразно оно описывается уже новым общим уравнением, составленным на основании другой системы уравнений типа (XIII, I). [c.391]

    Можно предположить, что произведение подвижности, а следовательно, и Е квивалентной электропроводности на вязкость не зависит от типа растворителя и является величиной постоянной (при условии, что и радиус иона остается постоянным]  [c.441]

    Экспериментально установлено, что кривая зависимости удельиой электропроводности от температуры проходит через максимум, который определяется концентрацией и типом электролита чем выше концентрация и заряд катиона, тем ири более низких температурах появляется максимум. Для одио-одноза )ядных электролитов при концентрации 0,1—0,8 г-эт л максимум ле >кит в области высоких температур (250—300°), для бинарных электролитов положение максимума отвечает температуре 100—115° и только для трехзарядных катионов максимум обнаруживается в пределах 60—80 . [c.281]

    Несьолько лет назад нами проводились иследования по изучению основных свойств эмульсии серная ки лота — углеводороды и выяснению их влияния на ре цию алкилирования изопарафинов олефинами. Опыты проводили на пилотной установхе в стеклянном толстостеннсм реакторе, позволявшем вести визуальное наблюдение за образованием и отстоем эмульсии. В дальнейшем результаты исследования проверяли на одной из промышленных установок сернокислотного алкилирования. Для работы использовали как чистые углеводороды, так и промышленные фракции. Тип эмульсии ( кислота в углеводородах или углеводороды в кислоте ) определяли измерением ее электропроводности. [c.74]

    В соответствии с геометрическим строением элементов твердой фазы выделяются корпускулярные, губчатые, сетчатые, пластинчатые, волокнистые п другие типы структур, в пределах которых также существует множество разновидностей. К корпускулярным структурам, например, относят тела, в которых поры образованы промежутками (пустотами) между компактными частицами, составляющими скелет тела, а поры губчатого строения представляют собой каналы и иолостп в сп.тошном твердом теле. Возможны смешанные структуры, в которых содержится несколько типов элементов. По принципу дополнительности аналогичная к.тассп-фикация справедлива и для описания пространства пор. Принцип дополнительности играет основную роль прп выборе моделей для описания физико-химических явлений и процессов в пористых средах. Например, при описании таких явлений, как фильтрация, диффузия, капиллярная конденсация, капиллярное всасывание, высыхание, электропроводность и т. п., используются модели, описывающие строение пространства пор, тогда как для решения задач прочности, деформации, ползучести, коррозии, отвердевания и т. п. 1юп0льзуются в основном модели строения твердого скелета. [c.127]

    Г. Дальтониды и бертоллиды. Часто, особенно в металлических системах, твердые фазы переменного состава образуются не на основе чистых компонентов, а на основе химических соединений, плавящихся конгруэнтно или инконгруэнтно. Существуют твердые растворы с неограниченной и ограниченной растворимостью химического соединения и компонентов системы в твердом состоянии. Наиболее распространены твердые растворы, образованные из химических соединений с ограниченной растворимостью. В системах такого типа твердые растворы образуются на основе действительных химических соединений, называемых дальтонидами. Состав дальтонидов удовлетворяет строго стехиометрическим соотношениям компонентов, подчиняющимся закону Дальтона. Дальтониду на диаграмме плавкости (рис. 151) соответствует рациональный максимум и сингулярная (особая) точка как на линии ликвидуса, так и на линии солидуса (фигуративная точка С). Для дальтонидов характерно также наличие сингулярных точек, соответствующих химическому соединению А Вп и на изотермах состав — свойство (электропроводность, твердость, температурный коэффициент электрического сопротивления). Примерами систем с образованием твердых растворов такого типа могут служить системы Mg—Ар, Мр—Аи, Аи—7п. [c.415]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    В результате взаимодействия BF3 и ROH образуются комплексы, в которых соотношение исходных компонентов достигает 1 1 и 1 2. Комплексы частично диссоциируют на Н+ и (ROBF3)-, в силу чего они обладают сильными кислотными свойствами и находят применение в качестве катализаторов при алкилировании бензола олефинами. Комплексы типа BF3-2ROH менее электропроводны и стабильны. [c.73]

    Электропроводность воды чрезвычайно мала. Кристаллы воды образуют решетку молекулярного типа. Давление пара при различных температурах см. табл. IV.2 Приложения. Сравнительно высокая температура кипения воды объясняется особенностями ее структуры в жидком состоянии, сильным межмолекуляриым взаимодействием, вызванным преимущественно водородными связями. Плотность большинстна растворителей с повышением температуры уменьшается, тогда как плотность воды при повышении темпера-ож0 дд увеличивается, достигает максимальной величины при 4°С (1,000 г/см ) и уменьшается прн дальпеп-и повышении температуры. Значения [c.170]

    Из всех перечисленных выше методов определения электропроводности наиболее точным и удобным является метод, осуществляем ыГ[ с помощью транзисторного прибора фирмы Майгак (АЗТЛ D 2624). В настоящее время в ЛФ СКБ АНН разрабатывается прибор аналогичного типа для проведения испытаний в полевых условиях. [c.133]

    Кроме эквивалентной электропроводности в электрохимии используется иногда также мольная электропроводность, когда раствор содержит один моль растворенного вещества. Для одно-одновалент-ных электролитов мольная электропроводность fx равна эквивалентной электропроводности для электролитов типа H2SO4 и a lj р. = 2А,, для AI I3 i = 3X и т. п. [c.256]

    Продукт, полученный после обжига, состоит из кокса-наполнп-теля и кокса, образовавшегося при коксовании связующего. Поскольку температура прокаливания (1100—1300 °С) и обессеривания (1450 °С) нефтяных коксов обычно другая, чем при обжиге заготовок, возникают различия в физико-химических свойствах (механическая прочность, реакционная способность, пористость, электропроводность и др.) кокса-наполнителя и кокса, образовавшегося из связующего. Наиболее однородной и, следовательно, лучшей по качеству электродная продукция будет при использо-ватт наполнителя и связующего, близких по степени анизометрни структуры частиц и при максимальном приближении условий прокаливания наполнителя и обл<ига зеленых заготовок (наполнитель, смешанный с пеком в необходимом количестве). В принципе такие условия могут быть достигнуты при следующих комбинациях компонентов зеленых заготовок нефтяной кокснефтяной пек пековый кокс+каменноугольный пек нефтяной кокс+каменноугольный пек пековый кокс + нефтяной пек. Для выбора типа пеков и коксов, позволяющих получать зеленые заготовки и далее из них электродные изделия (заготовки) с требуемыми качествами, необходимы дополнительные исследования. [c.95]

    Для того чтобы различать, какая из жидкостей эмульсии диспергирована, а какая является дисперсионной средой, принято полярную жидкость условно называть водой , а неполярную— маслом . В соответствии с этим эмульсин делят на два типа прямые — масло в воде (м/в) п обратные — вода в масле (в/м). Тип эмульсии определяют по свойствам диспсрсноииой среды. Например, прямые эмульсин (м/в) смешиваются с водой (с иоляриыми жидкостями), имеют большую электропроводность, плохо смачивают гидрофобную поверхность. Противоположными свойствами обладают обратные эмульсии (в/м). [c.186]

    Проводимость битумов этих же типов была измерена непосредственно при напряженности поля 20 ООО В/см. При низких температурах, когда вязкость высока, удельная электропроводность составляет всего 10- Ом- -см-1 и менее. Она быстро возрастает с ростом температуры вследствие большей подвижности частиц при пониженной вязкости. Максимальная измеренная удельная электропроводность, равная 50 и 41Ом -см была у мексиканского остаточного и светлоокрашенного битума при 90 °С. Для сравнения можно отметить, что удельная электропроводность ультрачистой воды равна 5-10 Ом -см- [46]. [c.42]


Смотреть страницы где упоминается термин Электропроводность типа: [c.210]    [c.241]    [c.135]    [c.135]    [c.378]    [c.643]    [c.16]    [c.105]    [c.172]   
Общая химия (1974) -- [ c.569 ]




ПОИСК





Смотрите так же термины и статьи:

Электропроводность дырочная полупроводников типа



© 2024 chem21.info Реклама на сайте