Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы выделения из природных

    Свойства лигнинов определяются видом растительного сырья, а для выделенных препаратов лигнина - и методом выделения. Природный лигнин неоднороден по химическому строению, химическим и физическим свойствам и очень чувствителен даже к мягким химическим обработкам. В результате препараты лигнина, полученные различными методами, существенно отличаются по своим свойствам. [c.411]


    Флавоноиды выделяют из растительного сырья в несколько стадий с использованием различных хроматографических методов. Методы выделения природных флавоноидов приведены в табл. 40.1. Методы разделения синтетических смесей указаны в табл. 40.2. [c.114]

    Бурно развиваются новейшие физические и химические методы выделения природных соединений и устанавливается их строение. Ученые подбираются к синтезу тончайших и сложнейших структур белковых тел и носителей наследственности — нуклеиновых кислот. Отталкиваясь от созданного природой, химики сделали то, что ей самой без вмешательства человека оказалось не под силу. Так, начав с получения соединений, подобных натуральному каучуку, пришли к синтетическим полимерам, по своим свойствам намного превосходящим природные соединения. В поисках путей синтеза алкалоида хинина ученые давно решили задачу борьбы с малярией, обнаружив гораздо более эффективные препараты. На границе неорганической и органической химии выросла химия элементорганических соединений. Для фтор- и крем-нийорганических соединений давно нашли широкое промышленное применение, совершив тем самым переворот в отдельных областях технологии. [c.6]

    В настоящее время постоянно возрастает роль природного и попутного газов как сырья для нефтехимических производств. В связи с этим автор останавливается на методах выделения бензиновых фракций из попутного газа нефтедобычи. [c.6]

    Настоящая монография, частично построенная на материале исследовательских работ Института органической химии АН СССР, в основном посвящена описанию методов облагораживания нефтепродуктов и искусственного их получения и лишь в малой степени касается состава и строения, а также методов выделения и очистки отдельных фракций природных нефтей. Поступить так нас побудило также и то обстоятельство, что последние вопросы прекрасно изложены в ряде руководств ( Химия нефти С. С. Наметкина, Химический состав нефтеп> [c.3]

    Разработан мембранный метод выделения и определения нептуния в природных объектах [112[. Концентрирование нептуния проводят с помощью тефлоновой мембраны (с1 ор = 0,05 мкм), импрегнированной три-226 [c.226]

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]


    Из вышеизложенного следуют принципы практического решения задачи получения нефтяных пеков. Первый принцип основан на использовании нативных ВМС нефти, природных битумов и асфальтов в качестве пеков того или иного назначения. Так. 65...90%-ные концентраты нефтяных асфальтенов - асфальтиты имеют температуру размягчения выше 120 С и коксуемость около 40...45%, что предполагает возможность их использования в качестве спекающих добавок в производстве металлургического кокса, связующих материалов в производстве брикетированных углей, коксов и другого твёрдого топлива, сырья для получения новых углеродных материалов [30,34,116.125,201..,208]. Из известных методов выделения или концентрирования ВМС нефти [4.5.53] для получения асфальтитов в промышленном масштабе наиболее эффективны процессы сольвентного фракционирования. Высокое содержание серы, сравнительно низкая ароматичность и коксуемость концентратов нативных нефтяных асфальтенов препятствуют использованию их в качестве пеков в ряде важных направлений. Эти недостатки в принципе устраняются их химико-технологической переработкой (гидрообессеривание. гидрокрекинг, деструктивная поликонденсация и другие). [c.125]

    Промышленные методы выделения тяжелой воды из природной основаны на различии физико-химических свойств Н2О и Д2О. [c.127]

    В качестве примера использования газо-адсорбционной хроматографии для выделения веществ в препаративных целях можно привести фронтально-хроматографический метод очистки природного метана. Природный газ, содержащий примерно 96—98% метана и 2—4% воздуха и других углеводородов, пропускают через колонку, заполненную углем марки СКТ. Более тяжелые, чем метан, углеводороды задерживаются на угле, а метан и воздух проходят колонку не адсорбируясь. На выходе из колонки метан конденсируется в ловушке, охлаждаемой жидким азотом. Таким образом получают метан 99,9% чистоты. [c.66]

    Большое значение хроматографических методов для фармации связано с тем, что при производстве лекарств во многих случаях требуется предварительное выделение природных или синтетических продуктов в чистом [c.347]

    Большое практическое значение имеет разработка методов выделения чистых веществ из природного сырья, из технических продуктов или промышленных отходов, а также испытание веществ на чистоту. [c.55]

    Аминокислотный состав белков. — Анализ гидролизата белков, содержащего до двадцати различных аминокислот (см. табл. 39), является чрезвычайно сложной задачей. Риттенберг (1940) разработал метод изотопного разбавления, согласно которому радиоактивную кислоту определенной удельной активности, например меченую глутаминовую кислоту, добавляют в известном количестве к анализируемой смеси, после чего выделяют глутаминовую кислоту обычным образом. Так как химические свойства природной и меченой кислоты одинаковы, то выделяемое вещество является смесью добавленной аминокислоты и первоначально присутствовавшей в пробе. Количество кислоты в гидролизате вычисляют по изотопному составу выделенной кислоты. Если добавляется рацемическая меченая кислота, то аминокислоты гидролизата перед выделением рацемизуют или же из выделенного рацемата отделяют чистую -форму. Точность анализа не зависит от метода выделения, выхода кислоты или концентрации ее в гидролизате. [c.655]

    Распространенность в природе некоторых органических соединений, методы их получения, состав, строение, свойства и применение такого рода соединений (углеводородов, их хлорпроизводных, спиртов, органических кислот) были уже рассмотрены в гл. 7 и 8. Обсуждение этих вопросов будет продолжено в последующих разделах, причем особое внимание будет обращено на природные соединения, в частности на ценные вещества, получаемые из растений, а также на синтетические вещества, используемые человеком. Ряд важных разделов органической химии не будет затронут совсем сюда относятся методы выделения и очистки природных соединений, методы анализа и установления строения соединений, методы синтеза, применяемые в органической химии (в большем объеме, чем они были изложены в гл. 7 и 8). [c.355]

    Молекулярную перегонку можно применять во всех случаях, когда обычные методы перегонки сопровождаются термическим разложением вещества. Особое значение этот метод имеет для выделения природных соединений, главным образом жирорастворимых витаминов (А, О, Е), [c.278]

    Человек постепенно проникал в тайну состава и строения всех природных тел, находил способы разложения их на простые и составные части и совершенствовал методы выделения химических элементов в чистом виде. Только после этого началось изучение их свойств и распространенности на Земле и в других космических телах, что привело к возлюжности постановки вопроса о происхождении химических элементов. [c.5]


    В гл. III описан метод выделения углеводородов из природного газа с помош,ью вихревого эффекта. [c.341]

    Биохимия - фундаментальная наука, изучающая химические процессы в живых системах. Она возникла в 80-е годы XIX в., когда из органической химии выделились химия природных соединений и физиологическая химия. Задачей первой являлось выделение природных биологически активных соединений и изучение их структуры второй - изучение физиологического действия таких соединений и их превращений в живой системе. Именно физиологическая химия явилась предшественницей биологической химии. 20-30-е годы XX в. стали временем становления биохимии как науки. Биохимия вначале делилась на статическую (изучение структуры) и динамическую (исследование процессов превращения веществ). В начале 60-х годов статическая биохимия легла в основу биоорганической химии. Возникает и бионеорганическая химия. В настоящее время эти науки развивают задачи и методы статической биохимии. Собственно биохимией стала динамическая биохимия. Поскольку в организме все реакции катализируются ферментами (энзимами), то биохимию часто отождествляют с энзимологией. [c.3]

    Молекулы белков очень сложны и обладают уникальными свойствами, поэтому нет универсальных методов выделения и очистки белков каждый белок требует индивидуального подхода и специальных методов. Подходящей процедурой будет та, которая позволяет получить максимальное количество белка в наиболее чистом виде и с сохранением природных свойств (как принято говорить - в нативном состоянии). При выделении ферментов очень важно сохранить их активность. [c.24]

    Выделение лигнина из древесины проводят с различными целями для получения препаратов лигнина и их последующего исследования для количественного определения лигнина в древесине и другом растительном сырье прямыми методами. При делигнификации сырья с целью получения технической целлюлозы и других волокнистых полуфабрикатов можно из отработанных варочных растворов выделить технические лигнины. В зависимости от цели подбирают соответствующие методы выделения. При получении препарата лигнина для исследования метод выделения должен обеспечить минимальное изменение самого лигнина. Выделить же природный лигнин из древесины в неизмененном состоянии практически невозможно. При количественном определении лигнина метод выделения должен обеспечить выход препарата лигнина, более или менее соответствующий его количеству в древесине. При делигнификации древесины в производстве целлюлозы основная задача заключается в получении целлюлозы с большим выходом и определенными показателями качества, в том числе с малым содержанием остаточного лигнина. В этом случае глубокие химические изменения, происходящие при его удалении, неизбежны. Технические лигнины, выделенные из отработанных варочных растворов, значительно изменены по сравнению с природным лигнином. [c.366]

    Все методы выделения лигнина можно подразделить на две группы методы, основанные на удалении полисахаридов, с получением лигнина в виде нерастворимого остатка методы, основанные на переводе лигнина в раствор с последующим осаждением (получение препаратов растворимых лигнинов). Нерастворимые препараты лигнина, имеющие подобно природному лигнину сетчатую структуру, более или менее сохраняют морфологическое строение клеточной стенки, но, естественно, более рыхлое. Растворимые лигнины после осаждения, очистки и сушки имеют вид порошков. [c.367]

    Размягчение лигнина, как и у всех полимеров, происходит в определенном интервале температур. Температуры размягчения (температуры стеклования) лигнинов в зависимости от древесной породы и метода выделения колеблются в пределах от 130 до 190°С для сухих образцов со структурой, близкой к природному лигнину, т.е. не подвергнутых окислению, сульфированию и т.п. На эту величину оказывает сильное влияние молекулярная масса препаратов лигнина. У еловых диоксанлигнинов температура размягчения снижается со 176°С при = 85000 до 127°С при [c.422]

    Таким образом, эта глава будет начинаться с широкого рассмотрения методов выделения и разделения смесей нуклеозидов (в основном из природных источников). Общие методы синтеза нуклеозидов будут рассмотрены достаточно подробно, вслед за чем будут описаны синтезы некоторых специфичных типов нуклеозидов, например, С-нуклеозидов, циклонуклеозидов и т. д. Будут лишь перечислены физические методы, используемые для определения структуры нуклеозидов, хотя основные литературные ссылки будут приведены. Будут рассмотрены лишь те химические реакции, которые представляют особый интерес для химика, работающего в области нуклеиновых кислот. Помимо того, общие реакции углеводного остатка и гетероциклов можно найти в главах, относящихся к этим вопросам. [c.70]

    Поскольку как критерии обнаружения (цвет, антибиотическая активность и т. д.), так и методы выделения тесно связаны с общими типами структур выделяемых соединений, крайне мало вероятно, чтобы известные на сегодняшний день классы природных соединений, получаемые такими ограниченными, высокоселективными и зачастую произвольными способами, представляли бы весь спектр биосинтетической активности живых организмов. Не исключено открытие совершенно новых классов природных соединений, хотя, судя по масштабам исследований в этой области в течений [c.344]

    До настоящего времени изучение природных соединений было чрезвычайно успешным, и все же те сведения, которыми мы располагаем, неизбежно фрагментарны, поскольку методы обнаружения и выделения природных соединений носят более или менее случайный характер. Следовательно, доступная сейчас информация скорее всего не отражает истинного положения ни в качественном разнообразии структур, ни в количественном (относительное содержание индивидуальных метаболитов и промежуточных веществ на каждой стадии роста организма) отношении. Очевидно, необходим более систематический поиск новых соединений. Один из возможных подходов (см. разд. 28.1.7.1) заключается в применении простой экспериментальной методики, которая основана на включении меченных радиоактивными изотопами первичных предшественников во вторичные метаболиты образование последних может контролироваться обычными методами ауторадиографии. Это позволило бы исследовать весь спектр метаболической активности индивидуальных организмов как в качественном, так и в количественном отношении. Однако сейчас все еще господствует случайный подход, когда для изучения выбирают только несколько основных соединений со специфическими химическими или биологическими свойствами. [c.391]

    Белковые вещества весьма чувствительны к повышению температуры и действию многих химических реагентов (органические растворители, кислоты, щелочи). Поэтому обычные методы органической химии, применяемые для вьщеления того или иного вещества из смеси (нагревание, перегонка, возгонка, кристаллизация и др.), в данном случае неприемлемы. Белки в этих условиях подвергаются денатурации, т.е. теряют некоторые существенные природные (нативные) свойства, в частности растворимость, биологическую активность. Разработаны эффективные методы выделения белков в мягких условиях, при низкой температуре (не выше 4°С), с применением щадящих нативную структуру химических реагентов. [c.23]

    За последние годы алкоголиз, особенно этанолиз, становится важным аналитическим методом в определении близости выделенных природных или синтетических продуктов лигнину. [c.506]

    Задача настоящей главы — дать обзор методов и приемов синтеза и расщепления, которые могут оказаться полезными при решении различных проблем химии природных соединений. Рассмотрены методы выделения и очистки, а также критерии гомогенности. Затем следует сводка аналитических методов определения состава и наиболее важных функциональных групп. Заключения о структуре природных соединений основываются обычно на сравнении идентичности продуктов их расщепления (или синтеза с их участием) с заведомыми образцами. Поэтому в главу включен раздел, в котором рассматриваются методы доказательства идентичности соединений. [c.15]

    Первый этап развития Р., начавшийся в 1898, когда Пьер и Мария Кюри открыли и выделили из природных материалов первые радиоактивные элементы — полоний, а вслед за ним и радий, носил аналитич. и препаративный характер. Это объяснялось необходимостью разработки методов обнаружения естественных радиоэлементов — их выделения и концентрирования до удобного в использовании вида. Следующий этан характеризовался научением и установлением закономерностей химич. поведения естественных (короткоживущих) радиоактивных элементов. В связи с этим особое внимание обращалось на те элементы, к-рые могли обнаруживаться только но их радиоактивности и к-рые присутствовали в исследуемых системах в ничтожных количествах. Работами К. Фаянса, Ф. Панета, В. Г. Хлопина, О. Гана и др. были установлены основные законы распределения радиоактивных микрокомпопентов между жидкой и твердой фазами ири сокристаллизации, адсорбции, электролизе и т. д. в практически важных для Р. системах. Проведение подобных исследований стимулировало разработку методов выделения природных радиоэлементов. В частности, теоретич. работы Хлоиина по распределению радиоактивиых изотопов между твердой и жидкой фазами, проведенные в СССР, [c.245]

    Последние два десятилетия в литературе начали появляться отдель-нь е публикации, посвященные исследованию химической природы неизмененных смол, содержащихся в нефтях, однако работы, посвященные разработке методов выделения п количественной оценки содержания асфальтенов и смол в природных асфальтах, в тяжелых остатках нефтеперерабатывающих заводов и в технических битумах, по-прежиему являются главным направлением исследования смолисто-асфальтеновых веществ. [c.439]

    Последние десятилетия в литературе крайне редко встречаются публикации по исследованию химической природы неизменонных смол, содержащихся в нефтях, тогда как работы, посвященные разработке методов выделения и колпчестиепиой оценки содержания асфальтенов и смол в природных асфальтах, в тяжелых остатках нефтеперерабатывающих заводов и в технических битумах, публикуются довольно часто. [c.298]

    Препаративная хроматография развивается в основном как тонкий лабораторный метод выделения индивидуальных соединений из смесей, например из продуктов синтеза, и как метод последующей глубокой очистки. Однако в последние годы наблюдается тенденция развития препаративной хроматографии как метода получения веществ высокой чистоты в промышленном масштабе. Ее целесообразно применять в тех многочисленных случаях, когда выделение и очистка более распространенными способами — кристаллизацией, ректификацией и др. — не эффективны. Значение препаративной хроматографии с каждым годом растет в связи с бурным развитием химии чистых и особо чистых материалов. Препаративная хроматография позволяет получить в товарных количествах высокочистые газы из природных газовых смесей или производственных продуктов, разделять азеотропные смеси, не поддающиеся разделению ректификацией, получить реактивы высокой чистоты в качестве эталонов. [c.213]

    Описаны различные методы выделения хитина с помощью разбавленных кислот и щелочей, ферментативного разрущения белков с последующей очисткой образцов КМПО4 и ЫаНЗОз При сплавлении хитина с едким кали или при обработке его концентрированными растворами щелочей происходит отщепление ацетильной группы с образованием хитозана, имеющего свободную аминную группу у второго углеродного атома Интерес к хитозану и продуктам его химических превращений как к объектам исследования обусловлен уникальными свойствами - неток-сичностью, способностью к биодеструкхщи, характерной для природных полимеров, и стремлением к более полному и рациональному использованию возобновляемых ресурсов. [c.497]

    Совершенно ясно, что трудности, с которыми сталкивается экспериментатор при работе с гетерополисахаридами, очень велики. Они начинаются при разрешении вопросов о выделении, 1шдивидуализации и очистке гетерополисахаридов, так как ввиду сложности их состава наличие нри.месей. может привести к роковым ошибка.м, влияющим на весь дальнейший ход исследования. В связи с этим так часты противоречивые результаты, с которы.ми можно встретиться н литературе. Противоречия, естественно, объясняются различными методами очистки природных гетерополпсахаридов. Еще большие, для сегодняшнего дня часто не разрешимые, трудности представляет собою установление строения гетерополпсахаридов ввиду пх структурной сложности. Подход к решению этого вопроса в общих чертах напоминает подход к решению вопроса о строении пептидов и белка с топ разницей,, что химия самих мономеров— моносахаридов — сложнее, че,м химия аминокислот. [c.162]

    Методы выделения, очистки и аналитические характеристики пептидов описаны подробно в разд. 3.3. Изучение связи между строением и биологической функцией пептидов ведет к познаванию молекулярного механизма их действия. При этом главное внимание обращается на выяснение активного центра и определение аминокислотной последовательности, которая ответственна за рецепторное связывание, транспорт и иммунологическое поведение. Большой практический интерес имеет также модификация природных пептидов для пролонгирования их действия и расширения практического применения. Такого рода исследования можно проводить только тогда, когда соответствующий природный пептид имеется в достаточном количестве. Необходимые для изучения пептиды можно получать путем частичного ферментативного расщепления экзопептидазами или эндопептидазами или же с помощью специфических химических методов расщепления (бромцианом или Ы-бромсукцинимидом) можно также использовать замещение, элиминирование или превращение функциональных групп соответствующих пептидов. Возможности модификации природных пептидов ограничены тем, что часто исследователь располагает лишь нанограммо-выми количествами этих веществ. [c.90]

    Природа реакции самцов на эти вещества обычно весьма характерна и специфична, так как она связана с половым поведением. Это означает, что мы располагаем очень чувствительным методом биологического анализа, который делает возможным (хотя, несомненно, это очень трудно) выделение природного полового аттрактанта в чистом виде и установление его химической природы. Объем такой работы можно оценить на примере группы немецких ученых, которые под руководством доктора Бутенандта собрали и выделили в чистом виде половой аттрактант самки тутового шелкопряда Bombyx mori). Чтобы оценить необыкновенное терпение и настойчивость, необходимые для подобных исследований, не обязательно подробно описывать все стадии этого процесса. Достаточно приводимого ниже краткого описания проделанной работы. [c.48]

    Получение медно-аммиачного лигнина. Медно-аммиачный лигнин (лигнин Фрейденберга) получают попеременной обработкой древесной муки кипящим 1...2%-м раствором Нз804 и холодным медноаммиачным реактивом - раствором [Си(МНз)4](ОН)2. Кислота катализирует гидролиз связей лигнина с гемицеллюлозами, а медно-аммиачный реактив растворяет полисахариды. В остатке получается медно-аммиачный лигнин светлого цвета, нерастворимый вследствие сохранения сетчатой структуры природного лигнина. Выход препарата около 80% по отношению к лигнину Класона в случае хвойной древесины и 55% - в случае лиственной. Кислотная обработка вызывает реакции конденсации, но изменения при этом менее глубокие, чем при получении кислотных лигнинов с концентрированными кислотами. Раньше препараты медно-аммиачного лигнина часто использовали для изучения строения лигнина, но позднее интерес к ним понизился вследствие разработки менее трудоемких методов выделения растворимых препаратов лигнина, по химическому строению более близких к природному. [c.368]

    Природный лигнин в древесине либо бесцветен, либо очень слабо окрашен, что свидетельствует о незначительном содержании в нем хромофорных групп, в процессах выделения лигнина из древесины в нем накапливаются хромофоры (сопряженные с бензольным кольцом двойные связи и карбонильные группы и др.) и может происходить образование хромофоров, поглощающих в видимой области, таких как хинонные структуры различного типа. Поэтому цвет препаратов лигнина зависит от метода выделения и может быть обусловлен как изменениями в самом лигнине, так и наличием окрашенных примесей нелигнинной природы. Так, нативный лигнин Браунса и ЛМР имеют светло-кремовый цвет, а кислотные лигнины - темно-коричный. [c.411]

    Изучение и получение витаминов — природных незаменимых пищевых веществ— имеет важное значение. На основе предложенной химической классификации витаминов детально изложены и обобщены вопросы химии витаминов в ее современном состоянии, методы выделения из природных источников, различные методы синтеза. Рассмотрена зависимость биологической активности от структуры витаминов, коферментов и их химических модификаций. Детально излои ена химия провитаминов и рассмотрены пути их превращения в витамины. Даны представления о биологических свойствах витаминов, их превращении в коферменты, о биокаталитических функциях коферментов в обмене веществ животного организма, о роли витаминов в питании и путях их применения в пищевой промышленности, а также в животноводстве, о значении витаминов и коферментов в профилактике и лечении различных заболеваний. [c.2]

    Основным методом получения коферментов НАД и НАДФ до последнего времени был метод выделения из природных источников, в качестве которых могут служить дрожжи п животные ткани. Содержание НАД в свежих дрожжах составляет около 0,5 г в 1 кг [221], в них очень мало НАДФ. Сердечная мышца кролика содержит около 0,4 г НАД в 1 кг [16]. Содержание НАДФ в печени, мышцах, эритроцитах составляет от 0,04 до 0,08г в 1 кг [222]. [c.313]

    Детальный обзор биологических свойств, методов выделения из природных веществ и распространения птериновых витаминов дан в опубликованных работах [210—212]. [c.485]

    Низкое содержание рения в природных образцах, сложный состав анализируемых материалов и недостаточно высокая избирательность некоторых методов определения рения вызывает необходимость предварительного выделения и концентрирования рения. В аналитической практике для этих целей используют как выделение рення, так и отделение основы и примесей от рения. Большинство методов выделения рения основано на различии поведения ионов семивалентного реиия и примесей. В ряде методов выделения используются более низкие валентные состояния рения. [c.238]

    Далеко не все методы выделения рения и отделеппя от сопутствующих элементов, описанные в гл. IV, используются при анализе природных и промышленных материалов. Внедрение их в практику затрудняется вследствие отсутствия данных, учитывающих влияние на полноту извлечения рения природы и концентраций сопутствующих элементов. [c.239]

    Едва ли необходимо убеждать читателя в том, что в наше время практически ни один эксперимент в органической химии или биохимии не обходится без применения спектроскопических методов. Они широко используются для идентификации продуктов химических и ферментативных реакций или более сложных биологических процессов, обнаружения промежуточных соединений (и тем самым для получения ценной информации о механизмах превращений), исследова- ния кинетики и стереохимии химических реакций, пространственной структуры и динамики молекул и надмолекулярных систем, выяснения строения вновь выделенных природных соединений и для многих других целей. [c.5]


Смотреть страницы где упоминается термин Методы выделения из природных: [c.202]    [c.22]    [c.161]    [c.259]    [c.327]    [c.18]   
Аналитическая химия технеция, прометия, астатина и франция (1966) -- [ c.0 ]

Аналитическая химия технеция, прометия, астатина и франция (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Выделения методы



© 2025 chem21.info Реклама на сайте