Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реагенты органические распределение

    Ос = [См] о/ [См] — коэффициент распределения (отношение распределения, коэффициент экстракции)—отношение общей аналитической концентрации вещества в органической фазе к его общей аналитической концентрации в водной фазе в условиях равновесия. Поскольку общая аналитическая концентрация является суммой различных ионных форм, соотношение между которыми в водной фазе зависит от pH и концентрации комплексующих реагентов, коэффициент распределения не является постоянной величиной, а зависит от условий эксперимента и константы распределения. [c.202]


    Константа К только слабо зависит от диэлектрических свойств разбавителя. Нами исследовано влияние изменения концентрации этих двух реагентов на распределение азотной кислоты между водными растворами и органическими — молекулярными или мицеллярными. [c.210]

    Метод распределения. Константу диссоциации /Сдисс реагента можно определить методом экстракции, изучая его распределение между водой и органическим растворителем при различных значениях рн. Рассмотрим пример определения /Сд сс реагента, нейтральные молекулы которого способны присоединять протоны. [c.95]

    Первоначально в качестве экстрагента использовался диэтиловый эфир. Однако его летучесть и огнеопасность заставили искать другие реактивы. Из кислородсодержащих органических растворителей (спиртов, сложных эфиров, кетонов) наилучшим оказался бутилаце-тат. Если при экстракции галлия из солянокислого раствора диэтиловым эфиром коэффициент распределения (при кислотности 5,5 н.) равен максимально 75, то при экстракции бутилацетатом (кислотность 6 н.) он превышает 400. Коэффициент разделения галлия и алюминия при экстракции этим реагентом практически не зависит от соотношения их концентраций в растворе и составляет 2-10 [901. Еще больший коэффициент распределения галлия получен при экстракции метилизобутилкетоном ( 2800). Однако этот растворитель недостаточно селективен — экстрагирует не только трехвалентное, но и двухвалентное железо, а также медь, цинк, ванадий и другие металлы [75]. [c.253]

    Выбор органического экстрагента определяется не только коэффициентами распределения и разделения, но и рядом других факторов. К последним относится химическая и радиационная устойчивость реагента, легкость и быстрота реэкстракции продуктов извлечения, удельный вес органической фазы по сравнению с водной, величина взаимной растворимости экстрагента и воды, величина поверхностного натяжения, вязкость, воспламеняемость, токсичность и стоимость. [c.305]

    Переход продуктов деления в органическую фазу снижается при введении комплексообразующих реагентов оксалатов, фосфатов и др. Присутствие фосфата в концентрации 0,1 моль/л снижает коэффициент распределения циркония почти в сто раз, фторосиликата (0,1 М) — в десять раз, сульфата (0,1 М) — в щесть раз [31]. При этом извлечение плутония также ухудшается. Так, при содержании в растворе 40% фосфорной кислоты коэффициент распределения Ри(1У) в отсутствие высаливателей снижается более чем на один порядок, а коэффициент распределения урана снижается примерно в полтора раза [247]. [c.323]


    Разработан способ модифицирования ППУ органическими реагентами, включающий предварительное пластифицирование таблеток ППУ и последующую их обработку небольшим объемом раствора реагента в ацетоне. Таблетки замачивают в пластификаторе - три-и-октиламине (TOA) в течение суток, избыток TOA удаляют высушиванием между листами фильтровальной бумаги. Затем на таблетку наносят 0,2-0,3 мл раствора иммобилизуемого реагента в ацетоне. После испарения ацетона таблетки можно использовать. Способ обеспечивает прочное удерживание реагентов и их равномерное распределение в таблетке. С применением ППУ и указанной методики модификации были разработаны тест-методы определения никеля и хрома(УГ) с использованием первого варианта, без модификации, определяют кобальт(П), железо(Ш), титан(1У), поверх- [c.222]

    Распределение электронной плотности в реагирующей молекуле часто определяет тип реагента, с которым основное органическое вещество (субстрат) будет реагировать Так, в бромистом этиле углеродный атом, связанный с атомом брома и имеющий низкую электронную плотность (см разд. 3 этой главы), будет легко подвергаться атаке частицами, несущими отрицательный заряд (N0 , НО ), или молекулами, в которых имеются центры с высокой электронной плотностью ( КНд, МКд) [c.64]

    Самым простым случаем экстракции следует считать физическое распределение. При этом экстракция происходит за счет действия ван-дер-ваальсовых сил или слабого донорно-акцепторного взаимодействия, а диссоциация извлекаемого вещества в водной фазе невелика или подавлена введением специальных реагентов. Физическое распределение наиболее характерно для нейтральных органических растворителей, но более избирательным этот процесс является для неорганических соединений. Лишь немногие из них, в основном с ковалентным характером связи (простые вещества, оксиды, галогениды некоторых элементов и т. д.), способны извлекаться в органическую фазу такими растворителями, как бензол, октан, тетрахлорметан и т. д. Это позволяет с высокой селективностью отделить перечисленные вещества от всех других. В то же время следует отметить, что в той или иной степени физическое распределение сопровождает извлечение и другими группами экстрагентов. [c.55]

    Скорость получения полимера межфазной поликонденсацией в неперемешивае-мой системе зависит от природы использованного для органической фазы растворителя, концентрации реагентов, коэффициентов распределения исходных веществ в фазах, величины поверхности раздела, скорости удаления пленки, которую, ко- [c.209]

    С учетом особенностей состава и распределения органических отложений в скважинах разработаны и испытаны на промыслах высокоэффективные технологии их удаления с использованием химических реагентов в сочетании с те-пл ом. Показано, что в зависимости от состава отложений следует использовать композиции реагентов с различным соотношением парафиновых углеводородов и раствор ителей-диспергаторов асфальтенов. Теплоносители рекомендуется закачивать при повышении содержания высокомолекулярных парафинов в составе отложений определенной величины. При высоком содержании парафинов необходимо подофевать лишь верхнюю часть отложений на поверхности колонны труб, а при более низком - и средний интервал АСПО п>тем снижения динамического уровня жидкости в скважине. В случае отложений органических веществ в призабойной зоне скважин рекомендованы технологии с закачкой химических реагентов в определенные интервалы перфорации с тем, чтобы обеспечить удаление АСПО путем продолжительного выноса их потоком жидкости из пласта. Испытания показали, что при внедрении предлагаемых технологий межочистной период на скважинах при добыче девонских нефтей увеличивается от 40 до 75 %. [c.185]

    За формирование аналитического сигнала ответственными являются d— -d переходы, переходы, с переносом заряда d—>-л, я— d и л—-переходы.ii— - -Переходы характер- ны для аква-ионов и некоторых комплексов соединений d-эле-JweHTOB с неполностью заполненными d-орбиталями, когда возможность осуществления переходов возникает вследствие нарушения симметрии распределения электронной плотности и расщепления основного электронного состояния иона металла в поле лиганда. Переходы с переносом заряда возможны при наличии в молекуле или сложном ионе доноров и акцепторов электронов, когда имеет место электронный переход с орбитали, локализованной на атоме акцептора, на орбитали, локализованные на атоме донора или, реже, наоборот, что, например, объясняет интенсивную окраску тиоцианата железа (1П), гетерополисоединений, сложных ионов типа М.ПО4 , Сг04 , комплексов -элементов с бесцветными органическими реагентами, например, никеля с диметилглиоксимом, железа с 1,10-фенантроли-ном и молекул органических соединений, когда в них одновременно входят электронодонорные и электроноакцепторные заместители. [c.55]


    Структурные теории на основе сведений об энергиях разрыва химических связей, о распределении электронной плотности по связям, о статическом нли динамическом сопряжении и. молекуле могут лишь весьма приближенно определить направление и, тем более, скорость реакций. Без кинетического анализа хода химического взаимодейств Ия реагентов, как это показал Н, Н. Семенов, невозмоч<нп установить, к реакциям каких частиц (ионы, молекулы, к0мплс1ксы, радикалы) относятся установленные в органической химии правила реакционной способности [18, с. 65—66]. Так, например, реакция свободного радикала Н с пропаном протекает в направлениях I и II  [c.101]

    Определяют интервал pH максимальной экстракции соединения. Обычно при экстракции комплексного соединения реагент, имеющий собственное поглощение, также переходит в слой органического растворителя и мешает выявлению поглощения комплексного соединения. Поэтому определяют различие в зависимости коэффициентов распределения реагента и исследуемого соединения от pH (см. рис. 17). Для этого изучают зависимость А (или О) экстрактов от pH водной фазы, сравнивают зависимость Лдрг = / (pH), полученную для комплекса, с аналогичной кривой для реагента п выбирают значение pH, при котором наблюдается полная экстракция комплекса и минимальная реагента. [c.46]

    Зависимость О от pH можно получить, определяя сиектрофотоме-трическп равновесные концентрации реагентов в водной и органической фазах. При этом концентрация в органической фазе определяется по градуировочному графику, построенному по эталонным растворам, приготовленным растворением точной навески реагента в органическом растворителе. В водной фазе поглощение испытуемого и эталонных растворов, приготовленных также по точной навеске, целесообразнее всего измерять при X, соответствующей изобестической точке (см. стр. ООО), так как прн этой длине волны поглощение водных растворов реагентов не зависит от pH. Если измерить поглощение реагента в органической фазе невозможно, то, определив концентрацию его в водной фазе, вычисляют концентрацию реагента в органической фазе по разности между общей исходной концентрацией и найденной в одной фазе. Если коэффициент распределения мал, практически весь реагент находится в водггай фазе, то для определения его концентрации в органической фазе после разделения фаз реагент ре-экстрагируют в водную фазу и в ней определяют его концентрацию. В этом случае концентрация реагента в водной фазе определяется по разности. [c.97]

    Для определения циркония применяется ряд органических реагентов арсеназо (П1) (80), ксиленоловый оранжевый [81] и о, о - диоксиазосоединения [82]. Из последней группы соединений представляет интерес пикрамин-эпсилон. Прн использовании отдельных реагентов можно применить дифференциальный спектрофотометрический метод, позволяющий определять цирконий и гафний [83] в их смеси. Для определения циркония известен также ряд ме- 2 Распределение гидроксокомплек-тодов спектрофотометрического сов циркония [c.223]

    Характер распределения МЭСП со стороны неподеленной электронной пары атома азота в моле1 ах редокс-реагентов ДФА ряда и изменение его под действием разнотипных замещающих групп могут быть использованы для предварительной оценки реакционной способности этого ряда органических реагентов в аналитических реакциях Результаты расчета позволяют предположить, что с электростатической точки зрения подход реагента-окислителя наиболее благоприятен к молекулам реагентов, имеющих электронодонорные заместители в кольце и особенно в N-положении, т е реакционная способность таких реагентов в электрофильных реакциях должна быть выше, чем у соединений, имеющих элек-тронно-акцешорные группы [c.209]

    Экспериментальные данные незначительно отличаются отряда, полученного на основании расчета МЭСП Имеющиеся расхождения могут быть связаны с проявлением стерических эффектов в случае орто-заме-щенных ДФА Возрастание числа конформеров при введении заместителей в молекулу ДФА и наличие свободного вращения ароматических колец вокруг связей -N в молекулах реагентов ДФА ряда могут привести к некоторому изменению распределения МЭСП по сравнению с рассчитанным дпя одной конформации Тем не менее, проведенный расчет позволяет четко выявить тенденции изменения МЭСП при введении в ароматические кольца молекулы ДФА замещающих групп различной природы и констатировать решающее влияние эффекта поля на реакционную способность органических реагентов дифениламинового ряда Расчет распределения МЭСП оказывается полезным при полуколичественном объяснении экспериментальных данных, характеризующих процесс окисления изучаемых аминов и имеет большую прогностическую ценность в определении аналитических свойств этой группы фотометрических реагентов [c.213]

    Как выяснилось в результате изучения прочности образуемых этими соединениями ассоциатов с водой, она возрастает в той же последовательности. Более того, между этими величинами — прочностью водородной связи типа Р = О...Н—О—Н и коэффициентом распределения при экстракции уранилнитрата—существует пропорциональная зависимость (рис. 59). Если же по оси абсцисс отложить логарифм энергии Н-связи, а по оси ординат логарифм коэффициента распределения при экстракции уранилнитрата реагентами указанных классов при условии концентрации органической фазы 0,5 М в U, содержания уранилнитрата в исходной водной фазе 0,2 М (данные по Кр взяты из [148]), то получается зависимость, близкай к прямой линии (рис. 60). [c.125]

    При шменеыии pH раствора в результате кислотноосновных реакций хелатооб-разующей группы и других кислотных групп, содержащихся в реагенте, последний может приобретать положительный или отрицательный заряд. При этом резко повышается растворимость в воде и существенно понижается — в органических растворителях. В качестве примера можно привести ки-слотно-основные равновесия дпя 8-оксихинолина и его распределение в системе хлороформ — вода и бензол — вода от pH (рис. 6.5) [c.168]

    В двухфазных системах вода — органический растворитель липофиль- ые связывающие катио лиганды смещают равновесное распределение солей в сторону органической фазы. Это явление лежит в основе жидкость-жидко-стного меокфазного катализа, обеспечивающего перенос водорастворимого реагента (соли) через границу раздела фаз в органическую фазу, где осуществляется гомогенная реакция, скорость которой может быть намного выше скорости соответствующей гетерогенной реакции. Обсуждение межфазного катализа не входит в тему этой книги читатель может подробнее ознакомиться с межфазным катализом в хороших обзорах [656—658]. [c.338]

    Увеличение скорости взаимодействия находящихся в водной фазе анионов СеНбУ с органическим неэлектролитом 2,4-(Ы02)2СбНзР, распределенным между водной и мицеллярной фазами, в присутствии катионных амфифилов типа ЦТА-бромида можно объяснить одними только электростатическими фак- торами. Амфифилы, заряд которых по знаку противоположен заряду реагирующего иона, ускоряют взаимодействие последнего с нейтральным соединением и, наоборот, амфифилы замедляют реакции одноименно заряженных ионов с нейтральными веществами. Каталитический эффект возрастает при росте относительной концентрации нейтрального реагента в мицеллах, т. е. при повышении его липофильности. В работе [289] обобщены предсказываемые теорией каталитические эффекты катионных и анионных мицелл в реакциях между органическими соединениями с зарядами различных типов. [c.371]

    В пастояш ее время наибольшее распространение получили экстракционные методы, основанные па извлечении рения в виде анионов (перренат-, гексахлороренат- или оксопентахлороренат-понов). Лишь в небольшом числе изученных соединений рений входит в состав катионной части, а противоионодг является галоге-нид-ион (соединения с диоксимами). По-видимому, в использовании экстракции ассоциатов комплексных ионов реиия с органическими реагентами и органическими противоионами имеются еще большие возможности. В случае экстракционного извлечения по данному механизму значение коэффициента распределения зависит от констант равновесия (ассоциации в водной среде, распределения) и соответствующих коэффициентов активности [139, 2GG, 320, 434, 5611. [c.196]

    При экстракции хлороформом отмечалось образование второй органической фазы. При экстракции из 1—7 М НС1 0,05 М раствором диметилцетилбензиламмония смесью дихлорэтана и октанола коэффициент распределения рения уменьшается от 260 до 115. Методами электропроводности, УФ-спектроскопии и элементным анализом показано, что состав экстрагируемых соединений отвечает формулам (R4N)2Re ir и (R4N+)2ReBre, где R4N+ — катион реагента. [c.206]

    Дитизон (дифенилтиокарбазон, азокраситель) является одним из наиболее чувствительных органических реактивов, используемых при экстракционно-фотометрическом определении малых количеств серебра. Экстракцию проводят четыреххлористым углеродом, хлороформом и некоторыми другими неполярными растворителями. Растворы дитизона в СС14 и СНС1з интенсивно окрашены в зеленый цвет. В табл. 26 приведены значения констант распределения и растворимости [127]. При pH -<7 реагент практически не растворяется в воде. [c.107]

    Это удобное уравнение, но константа к не является истинной константой скорости, поэтому ее изменение при изменении температуры не дает истинного значения температурного коэффициента. Так как реакция между реагентами протекает в одной фазе (без- различно в водной или органической), следует учитывать коэффициент распределения для одного из реагентов. Реакция происходит не между молекулами толуола и азотной кислоты, а между толуолом и некоторым нитруюш,им агентол (таким, как ион нитрония). Для того чтобы отражать действительно протекающую реакцию, константа к в рассматриваемом уравнении должна включать в себя константу диссоциации азотной кислоты. [c.370]

    Методом ГХ—МС с использованием ЭУ (70 эВ) и ХИ (газ реагент СН4) было исследовано органическое вещество, выде ленное экстракцией (н гексан) из горючих сланцев предгорий Альп (возраст 100—150 млн лет) [387] Масс спектры ЭУ содержали большое число пиков осколочных ионов, масс спек тры ХИ — интенсивные пики квазимолекулярных ионов а так же осколочных ионов, дающих необходимую структурную ин формацию В экстрактах были обнаружены н-алканы с макси мумом распределения в области ie, изопреноидные алканы с максимумом распределения соответствующим пристану, и ароматические углеводороды содержание которых было менее [c.162]

    Полнота извлечения комплексного соединения галлия с красителем IV толуолом сильно зависит от избытка реагента и от кислотности среды. Максимальная окраска толуольного экстракта наблюдается при экстракции из растворов НС1 и 50-кратном молярном избытке реагента. При однократной экстракции равным объемом толуола галлий извлекается на 90% (коэффициент распределения равен 9). Замена толуола смесью толуола и бутилацетата (4 1) или толуола и эфира (3 1) не улучшает экстракцию. Для полного извлечения галлия толуолом в виде окрашенного соединения с красителем IV необходима двукратная экстракция. Однако для спектрофотометрическогс определения можно проводить однократную экстракцию, если строго выдерживать объемы органической и водной фаз, время экстракции и строить калибровочную кривую в аналогичных условиях. [c.131]

    Пиримидиноны и конденсированные с тнофеновым, бензольным и пиридиновым кольцами нх аналоги представляют интерес для теоретической органической химии в связи с нх существованием в различных таутомерных формах [1]. Анноны этих соединений, имеющие в положении 2 н(нлн) 4 различные гетероатомы, образуют единую сопряженную систему, распределение электронов в которых зависит от природы заместителей и конденсированного кольца. В связи с этим они способны проявлять двойственную (множественную) реакционную способность при взаимодействии с электрофильными реагентами. [c.442]

    Селективность реакции можно повысить, изменив условия проведения реакции (pH) или маскируя мешающие ионы. Маскированием называют уменьшение концентрации в растворе мешающего иона ниже предела его обнаружения с используемым реагентом. Часто мешающие ионы связывают в комплекс, устойчирость которого больше, чем устойчивость комплекса с реагентом. Например, обнаружить ион Со + с помощью МН48СЫ можно в присутствии ионов Ре " , связав ионы Ре " в бесцветный комплекс РеРз (lg Рз= 11,86), который прочнее комплекса [Ре(8СЫ)б] (lgP6 = 3,23). Ионы Со + с Р не взаимодействуют. Поэтому красная окраска [Ре(8СМ)б] не возникает и в растворе обнаруживают синий комплекс [Со (8СЫ)4] Если невозможно провести маскирование мешающих ионов в растворе комплексообразо-ванием или изменением степени окисления, прибегают к удалению их из раствора методами осаждения, экстракции органическими растворителями, хроматографии, т. е. избирательным распределением мешающих и определяемых ионов между разными несмешивающимися фазами. [c.111]


Смотреть страницы где упоминается термин Реагенты органические распределение: [c.110]    [c.113]    [c.124]    [c.202]    [c.169]    [c.413]    [c.482]    [c.35]    [c.320]    [c.42]    [c.87]    [c.28]    [c.154]    [c.146]    [c.217]    [c.262]    [c.166]    [c.88]   
Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.114 , c.116 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние константы диссоциации КНА и константы распределения Рнд органического реагента

Н. М. Кузьм и н. Распределение хелатообразующего реагента между органическим растворителем и водой

Органические реагенты

Равновесия распределения органических реагентов и их комплексов



© 2025 chem21.info Реклама на сайте