Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уплотнения эффект,

    Работа бесконтактных уплотнений динамического действия связана с давлением в системе, создаваемым винтовой поверхностью вращающегося вала, и вихревым эффектом, возникающим при взаимодействии потока жидкости с неподвижной поверхностью втулки. [c.244]

    Когда скорость ожижающего агента приближается к скорости начала псевдоожижения, обычно происходит некоторое расширение слоя еще до того, как перепад давления достигнет величины, равной весу твердых частиц, приходящихся на единицу площади поперечного сечения слоя. Этот эффект особенно заметен, если слой вначале сильно уплотнен. Кроме того, из-за неравномерной упаковки частиц в исходном слое переход от восходящего участка кривой псевдоожижения к горизонтальному происходит обычно плавно. [c.40]


    Кроме того, как отмечено [101], при работе реактора благодаря неизбежно возникающим пульсациям потока и вибрациям происходит передвижка зерна слоя и возникают местные уплотнения и сквозные свищи, через которые устремляется поток. Наличие мелких зерен слоя в 4—5 раз меньших размера зерен основной части слоя, а также пыли, как попадающей с выходящими газами, так и образующейся в результате истирания зерен слоя, усугубляет этот эффект. Мелкие зерна и пыль полностью не выносятся из слоя, значительная часть их оседает в застойных зонах, увеличивая макронеоднородность слоя и в несколько раз повышая его сопротивление. К этому следует добавить резкое возрастание проницаемости слоя у стенок канала на расстояниях, соизмеримых с размером зерна. [c.271]

    Как мы уже отмечали, ориентирующее влияние ионов на молекулы воды очень велико. Поэтому оно, по-видимому, распространяется за пределы первой гидратной сферы, т. е. между упомянутым слоем и молекулами воды, характеризующимися собственной (неискаженной) структурой растворителя, располагается промежуточная сфера возбуж-Д( нных молекул воды. Все три структурные зоны растворителя находятся в равновесии между собой. Таким образом, эффект внедрения иона в растворитель можно расчленить на две составляющие — непосредственное связывание ионом молекул растворителя и его воздействие на первичную структуру последнего. Благодаря уплотнению молекул растворителя вокруг иона процесс сольватации обыч-го сопровождается сжатием раствора. [c.171]

    В дизельном топливе, содержащем нестабильные фракции вторичного происхождения, при действии растворенного кислорода в условиях хранения и эксплуатации накапливаются низкомолекулярные продукты окисления (гидропероксиды, карбоновые кислоты, альдегиды и т. д.), вступающие в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, часть которых медленно коагулирует в нерастворимые соединения. Катализаторами реакций уплотнения являются кислотные продукты, поэтому введение в топливо веществ основного характера (третичных аминов), нейтрализующих кислоты и способных эффективно ингибировать радикально-цепное окисление, оказывает стабилизирующий эффект [11, 43, 46]. Анализ результатов [83-86, 99] свидетельствует, что этим требованиям отвечает основание Манниха ионола (Агидол-3). [c.183]


    Есть основание полагать, что влияние выходного угла на к. п. д. ступени сказывается в основном в связи со степенью реактивности. Увеличение угла Ра вызывает уменьшение степени реакции и увеличение роли диффузорного эффекта в неподвижных элементах в процессе создания статического напора. При одинаковом к. п. д. колеса к. п. д. ступени, видимо, будет тем выше, чем меньше уровень скоростей за колесом и чем лучше выполнены диффузорные аппараты за колесом. Поэтому задача создания высокоэкономичной ступени с колесом малой реактивности сводится в общем случае к разработке высокоэффективного диффузора. Актуальность такой задачи несомненна, ибо для ряда случаев колеса малой реактивности обладают большими преимуществами. Особенно это относится к колесам Ра = 90°. Как уже указывалось, теоретическая характеристика таких колес представляет собой горизонтальную прямую. Это значит, что при малых потерях эти колеса способны обеспечить весьма большие коэффициенты расхода и широкую зону устойчивой работы. К преимуществам колес малой реактивности следует отнести также значительно меньшие удельные потери на перетекание через уплотнения на всасывании и на трение дисков. Это обстоятельство особенно важно при работе на малых расходах, когда потери двух упомянутых групп (на перетекание и на трение дисков) соизмеримы с потерями в диффузорах. [c.104]

    Из уравнения (8. 47) следует, что центробежная сила может быть использована как уплотняющий фактор. Для этого при конструировании устройства следует располагать диски таким образом, чтобы на периферии зазора давление жидкости было выше, чем в центральной части при этом уплотняющий эффект, получаемый от центробежной силы, пропорционален разности квадратов радиусов. На первый взгляд может показаться, что в случае уплотнения для машины высокого давления выгодно применять диски большого диаметра. Однако, как видно нз уравнений (8. 53) и (8. 54), мощность, теряемая на трение в зазоре, и выделяемое при этом тепло пропорциональны разности четвертых степеней радиусов. Следовательно, чрезмерное увеличение диаметров уплотняющих дисков нецелесообразно. [c.274]

    Исключительного эффекта в процессе аэрирования уплотненного порошкообразного материала можно добиться путем возбуждения в нем волны разрушения [33]. Примером практического использования этого эффекта может служить способ ликвидации завалов в трубах пневмотранспортных установок [34] и способ рыхления порошков в железнодорожных вагонах-цистернах [35]. Поясним суть эффекта на примере. [c.25]

    Перепад давления может также оказывать влияние в многосекционных устройствах если одна секция находится под более высоким давлением, чем другая, то пластины под низким давлением сжимаются иод действием неуравновешенной нагрузки, что уменьшает надежность уплотнения секции высокого давления. Этот эффект может проявляться в большей мере в секциях низкого давления, чем в секциях высокого давления, однако хорошо рассчитанные поддерживающие пластины позволяют избежать таких проблем. [c.302]

    Чтобы устранить нежелательный температурный эффект уплотнения полициклических углеводородных систем или, но крайней мере, свести его к минимуму, нами была использована следующая методика выделения из сырых нефтей высокомолекулярных углеводородов и разделения их на основные структурные группы. Особое внимание обращалось на строгий контроль и стандартизацию температурного режима отгонки бензино-газойлевой части (от п. к. до 350° С) от сырых нефтей, высокомолекулярная часть которых подлежала дальнейшему химическому исследованию, — температура внешнего обогрева (бани) не превышала 200—260° С. Во всех случаях перегонка нефти велась в стеклянной посуде, бензиновую фракцию (от н. к. до 200° С) отгоняли при обогреве на водяной бане сначала при атмосферном давлении, а после отбора наиболее легколетучей части — в вакууме. Лигроино-газойлевую часть нефти 190—350° С) отгоняли в вакууме (3—10 мм рт. ст.), колбу обогревали на масляной бане, температура масла в которой никогда не превышала 260° С. [c.203]

    Так же как и при термическом крекинге, теплота реакции каталитического крекинга расценивается как итоговый тепловой эффект совокупности протекающих реакций разложения и уплотнения. Поскольку при различной глубине процесса относительная роль [c.170]

    В процессе хранения товарных нефтепродуктов скорость автоокисления углеводородов вначале возрастает, а после насыщения нефтепродуктов кислородными соединениями, часть которых проявляет ингибирующий эффект, падает до нуля. Когда количество образующихся кислородных соединений соответствует их расходу на образование продуктов уплотнения, выпадающих из раствора в виде второй фазы, достигается подвижное равновесие. В дистиллятах и топливах, освобожденных от кислород-ныi соединений (например, очищенных гидрогенизацией), процесс автоокисления развивается вначале с большей интенсивностью. [c.207]


    Тепловой эффект реакции крекинга. При термическом крекинге одновременно протекают реакции те])мического распада и реакции уплотнения. Первые из этих реакций идут с поглощением теплоты, вторые — с выделением теплоты. [c.183]

    Эффект уплотнения зависит и от продолжительности его действия. Влияние уплотнения проявляется только в течение первой минуты формирования покрытия. В последующее время это влияние становится малым. [c.127]

    Суммарный эндотермический эффект свидетельствует о превалировании реакций деструкции над реакциями уплотнения при термических процессах. [c.182]

    Максимальный эндотермический эффект достигается при первичном расщеплении исходного сырья, когда отсутствуют реакции уплотнения. Этот эффект существенно снижается с повышением давления i процессе вследствие экзотермичности вторичных реакций, которым благоприятствует высокое давление. [c.182]

    Как и при термическом крекинге, теплота каталитического крекинга расценивается как итоговый тепловой эффект совокупности реакций разложения и уплотнения. Цеолитсодержащему катализатору больше присущи реакции изомеризации, протекающие с выделением тепла и в меньшей мере свойственные катализаторам старого типа. Кроме того, цеолитовые катализаторы значительно активнее и селективнее. [c.53]

    Говоря о теплофизических свойствах подлежащих плавлению полимеров, следует иметь в виду, что перед плавлением гранулированный полимер предварительно спрессовывают в твердый блок. Такой уплотненный материал при моделировании можно считать сплошной средой. И только в некоторых процессах (таких, как спекание) необходимо принимать во внимание пористую структуру. Для большинства процессов переработки полимеров условия плавления таковы, что можно пользоваться сведениями о значениях к, р, Ср и к, приведенными в разд. 5.5, учитывая при этом, что теплофизические свойства зависят от эффектов структурирования, сопровождающих процесс переработки полимеров. [c.257]

    Причинами уменьшения скин-эффекта могут быть естественная очистка ПЗП от закупоривающих материалов уплотнение или примене- [c.106]

    При температуре выше 300° контактная очистка глинами сопровождается крекингом — разложением церезина и превращением его в парафин, разложением нафтеновых кислот до образования ОО2, дегидрогенизацией смол с последующим их уплотнением в асфальтены, уплотнением ароматических углеводородов в смолы, отрывом и разложением алкановых цепей, дегидрогенизацией цикланов и переходом последних в ароматические углеводороды и т. п. Таким образом, в области температур, лежащих выше 300°, отбеливающие глины не только извлекают смолы путем адсорбции (физический процесс), но также каталитически усиливают их разложение (химические реакции). Адсорбционное извлечение и каталитическое разложение дают в сумме высокий эффект обессмоливания масел. [c.333]

    Как показано в работе [147], контракция системы при механических воздействиях происходит полнее и в значительной степени зависит от частоты и времени приложения вибрационных воздействий. Максимальное уплотнение и соответственно наибольший эффект увеличения прочности в этих опытах получен в результате воздействий ультразвука. Другие механические воздействия (встряхивание, перемешивание, вибрация с частотой 50 и 200 гц), особенно приложенные в конце первой стадии, дали значительное увеличение прочности цементного камня. [c.195]

    Первый потенциал ионизации возрастает от ванадия к ниобию незначительно (на 0,14 В), а от ниобия к танталу более резко (на 1,0 В). Это объясняется заметным уплотнением электронной оболочки тантала за счет ярко выраженного эффекта проникновения б -электронов под экран 4/ -электронов. Однако вторые потенциалы ионизации в этом ряду монотонно уменьшаются, что можно объяснить относительным уменьшением прочности связи оставшегося неспаренного я-электрона с ядром. В целом оказывается, что сумма первых двух потенциалов ионизации у ванадия заметно больше (21,87 В), чем у ниобия и тантала (20,36 20,58 В соответственно), а у последних эти характеристики практически совпадают. Сравнивая последующие потенциалы ионизации, отметим, что 1 , /4, /5 уменьшаются в ряду V — N1) — Та. Это приводит к уменьшению в этом же направлении суммы пяти потенциалов ионизации. Последнее обстоятельство и объясняет, с одной стороны, увеличение стабильности высшей степени окисления при переходе от ванадия к танталу, а с другой. стороны, нарастание металлических 426 [c.426]

    Совершенствование конструкционных материалов, применяемых в подшипниковых узлах и гидравлических уплотнениях, вместе с развитием вентильной полупроводниковой техники, позволяет в настоящее время создавать мощные гидродинамические кавитационные аппараты с регулируемой скоростью вращения рабочих органов, что является важнейшим фактором целенаправленного использования эффектов кавитации. [c.103]

    Наибольший эффект от уплотнения сетки может быть достигнут в прерывистом пласте, в котором содержатся литологически изолированные линзы. [c.46]

    Объемный эффект. Связан с заметным ростом объема нефти при смешивании ее с углекислотой. Увеличение объема нефти при растворении в ней СО2 способствует более эффективному первичному вытеснению, а также доотмыву остаточной нефти. Хотя точное вычисление прироста нефтеотдачи невозможно, эффект растет с ростом количества растворенного в нефти СО2. Объемный эффект будет сказываться при большой кратности объемов фильтруемой через зоны остаточной нефти углекислого газа в чистом виде или растворенном в воде состоянии. Величина прироста нефтеотдачи зависит от степени растворимости углекислого газа в водной и углеводородной среде. Одновременно с ростом объема раствора углекислоты в нефти происходит его уплотнение, что объясняется снижением суммарного объема составляющих (нефти и СО2) при их взаимном растворении. Это увеличение плотности также способствует более равномерному вытеснению нефти вследствие уменьшения разности плотностей нефти и воды. [c.150]

    Следует отметить, что эти данные имеют некоторую условность. Они были получены на порошкообразном коксе узкого гранулометрического состава, при давлении 36 кГ см и без учета сопротивления на контакте металл—кокс. С увеличением внешнего давления на порошковый кокс происходит сближение его частиц между собой, что приводит к.повышению электропроводности всей массы. При выборе стандартных условий для определения электропроводности кокса были получены следующие данные. После естественного уплотнения порошкового кокса, насыпанного в матрицу прибора, увеличение давления на пуансон от 0,05 до 30—40 кГ1см приводило к снижению удельного электросопротивления в 15—20 раз (рис. 83). Давление 36 кГ смР-было принято за стандартное. Дальнейшее повышение давления давало относительно меньший эффект. При давлениях 200 и 500 кГ1см удельное электросопротивление снижалось в 2 и 3 раза соответственно по сравнению с определенным в стандартных условиях. Такая зависимость согласуется -со степенью уплотнения вещества кокса под давлением, т. е. с объемной плотностью его. [c.210]

    Катализаторами многих реакций уплотнения являются кислотные соединения. Не исключено, что они инициируют и процессы радикально-цепного окисления. Поэтому введенные в топливо агенты, нейтрализующие кислоты, оказывают стабилизирующий эффект. На практике в качестве таких агентов используют алкиламины. Широкое применение получил ди-метилалкил(С4 С2о)амин, входящий в состав многих товарных присадок. Такие соединения в зарубежной литературе названы несколько неопределенно — стабилизаторами [43]. [c.29]

    Для проведения реакций с большим тепловым эффектом используют аппараты с внутренними теплообменными элементами большой поверхности. Примером может служить реактор с пучком двойных теплообменных труб для алкилирования углеводородов, в частности для получения изооктана из изобутана и бутилена. В реакторе циркулирует эмульсия смеси углеводородов с серной кислотой. Реактор (рис. 4.6) имеет вертикальный цилиндрический корпус 6, рассчитанный на давление 1 МПа, внутри которого для отвода теплоты реакции расположен пучок 8 двойных теплообменных труб (трубок Фильда), окруженный кожухом 7, играющим роль направляющего диффузора. В нижней суженной части кя куха помещено колесо 11 осевого насоса (винтовая мешалка), обеспечивающее циркуляцию жидкости, перемешивание и обтекание теплообменной поверхности. Вал колеса выведен наружу через двойное торцовое уплотнение, привод расположен внизу. Вращение жидкости предотвращается продольными ребрами. Для подвода хладагента в верхней части расположены две распределительные камеры с трубными решетками 2 и 4. Верхние концы наружных теплообменных труб, заглушенных снизу, ра.звальцо-ваны в трубной решетке 4, верхние концы внутренних труб закреплены в решетке 2. Нижняя решетка 9 служит для крепления шпильками нижних концов теплообменных труб, чтобы обеспечить жесткость трубного пучка. Концы внутренних труб снабж ны продольными ребрами. [c.250]

    Прп разборке корпуса насоса первоначально снимают патрубок со стороны нагнетания при этом необходима закрепить диафрагмы во избежание их падения. Затем молено снять рабочее колесо, дистанционную втулку и диафрагму. Разборку проводят последовательно до первого рабочего колеса. Если рабочие колеса и дистанционные втулки прикипели к валу, их смачивают керосином или другой жидкостью, растворяющей накипь. Если это не дало эффекта, допускается съем деталей с применением подогрева их паяльной лампой или газовой горелкой до 100—110°С. Необходимо избегать нагрев вала. При разборке следует замерять зазоры в проточной части н мел<сту-пснчатых уплотнениях. Результаты измерений заносят в формуляр (см. рис. 6.11). [c.331]

    Изучение термической стойкости гибридных структур углеводородов С32, содержащих в молекуле бензольное, нафталиновое, циклогексановое и декалиновое ядра, показало, что они мало отличаются от парафинового углеводорода 11-ундецилгенэйкозана. У всех эндотермический эффект (разложение) появляется в интервале температур 385—400° С и экзотермический эффект (процессы уплотнения) — в интервале 405—470° С. При наличии в молекуле углеводорода олефиновой связи эндотермические эффекты на термограмме меняются местами экзотермический эффект (полимеризация) появляется при 370° С. Это может служить качественным показателем наличия олефинов в углеводородных смесях. [c.183]

    В центрифугах непрерывного действия суспензию п-ксилола подводят к одному краю фильтрующего ротора она движется вдоль его образующей, освобождаясь от жидкой фазы (при необходимости осадок промывается), и выгружается. В процессе центробежной фильтрации протекает образование осадка, его уплотнение и механическая сушка. Указывается [56], что при центрифугировании среднедисперсных систем невысокой вязкости (что характерно для суспензий и-ксилола) первый и второй периоды центробежной фильтрации протекают быстрее, чем третий. Установлено, что применительно к третьему периоду, характеризующемуся малой скоростью процесса, повышение фактора разделения не дает значительного эффекта. Поэтому для разделения суспензий п-ксилола со средним размером кристаллов 0,1—0,3 мм рекомендуется невысокая величина фактора разделения [56]. [c.110]

    При 200—250 °С наблюдается расслаивание надмолекулярной структуры, что обусловливает появление высокопластичного состояния у асфальтенов. Это приводит к внутриблочной дезориентации слоев, выражающейся в перемещении дифракционных рефлексов в область некогерентного рассеивания при теплавом воздействии электронного пучка. Экзотермический эффект, характерный для спиртобензольной фракции смол при 225—295 °С, связан с уплотнением продуктов термических превращений и образованием надмолекулярных структур. Этот эффект совпадает с температурным интервалом квазиобратимого перехода при термических превращениях асфальтенов. При повышении температуры до 300 начинается выделение низкомолекулярной смолистой фракции, молекулы которой не удаляются при исчерпывающей экстракции гептаном эта фракция составляет 10 —15 %. [c.159]

    Механизм действия моющих присадок многообразен и зависит от их свойств в объеме масла и на поверхности металла. Важными составляющими действия моющих присадок в объеме масла являются пептизация (диспергирование продуктов уплотнения), солюбилизация (поглощение углеродистых образований мицеллами присадок) и стабилизация суспензии твердых частиц (предотвращение их слипания и осал<дения). К поиерхпостному действию присадок относят понижение адгезионного взаимодействия частиц нагаров с металлическими поверхностями, некоторые электрические и другие эффекты. Эффективность щзисадок повышается при способности их тормозить процессы окисления углеводородов масел и нейтрализовать образующиеся кислоты. Существенны также концентрация присадок и состав масел. [c.307]

    Константа имеет несколько интерпретаций. При значении 2,5 она удовлетворительно отвечает экспериментальным данным в том случае, если каили не слипаются и не взаимодействуют с непрерывной фазой. Робинсон (1949, 1957) рассматривал ав как коэффициент трения, поскольку для твердых дисперсий ее точное значение зависело от формы частиц и неровностей поверхности. Согласно Мунею (1951) и Марону с сотрудниками (1951, 1953), определяет эффект уплотнения, который возрастает, когда вместе располагаются частицы более чем одного размера. В простейшем примере, когда имеются частицы только двух размеров, Fфp является функцией отношения их размеров. По мнению Ванда (1948), фр представляет собой константу гидродинамического взаимодействия. Свини и Геклер (1954) нашли, что Fфp изменяется от 1,00 до 1,47, причем с уменьшением размера частиц Уфр возрастает. Саундерс (1961) также наблюдал, что в [c.265]

    Эффект искажения формы экструдата является серьезным препят-ствием для высокоскоростной переработки полимеров. Для осуществления процессов переработки полимеров при напряжениях сдвига выше 10" МПа необходимы дальнейшие прикладные и фундаментальные исследования. В качестве примера можно назвать работу Торделла по экструзии тефлона, дробление поверхности экструдата которого происходит при очень низких скоростях сдвига, применяемых в промышленности [51]. Тефлон в виде уплотненного порошка экструдировали при высоких давлениях, используя очень сильную зависимость температуры плавления от давления. Вследствие этого уплотненный порошок плавился при прохождении через головку, и получаемый экструдат имел гладкую поверхность. [c.478]

    Первый потенциал ионизации в ряду V—Nb—Та возрастает от ванадия к ниобию незначительно (на 0,14 В), а от ниобия к танталу более резко (на 1,0 В). Это объясняется заметным уплотнением электронной оболочки тантала за счет ярко выраженного эффекта проникновения 6з-электронов под экран из 4/"-электронов. Однако вторые потенциалы ионизации в этом ряду монотонно уменьшаются, что можно объяснить относительным уменьшением прочности связи оставшегося неспаренного s-электропа с ядром. В целом оказывается, что сумма первых двух потенциалов ионизации у ванадия заметно больше (21,87 В), чем у ниобия и тантала (20,36 20,58 В соответственно), а у последних эти характеристики практически совпадают. Сравнивая последующие потенциалы ионизации, отметим, что /,, /4, уменьшаются в ряду V—Nb—Та. Это приводит и к уменьшению в этом же направлении суммы пяти потенциалов ионизации. Последнее обстоятельство и объясняет, с одной стороны, увеличение стабильности высшей степени окисления при переходе от ванадия к танталу, а с другой стороны, нарастание металлических свойств В степени окисления +5 в том же направлении, что вообще характерно для многих -элементов. Последнее обстоятельство подтверждается и изменеиием электроотрицательности, которая несколько уменьшается при переходе от ванадия к ниобию и танталу. [c.300]


Смотреть страницы где упоминается термин Уплотнения эффект,: [c.60]    [c.509]    [c.109]    [c.87]    [c.160]    [c.177]    [c.52]    [c.75]    [c.16]    [c.18]    [c.79]    [c.224]    [c.186]    [c.127]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Уплотнение



© 2025 chem21.info Реклама на сайте