Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природный газ, образование сероводорода

    Зарубежные специалисты считают [45], что более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит в результате появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствует неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетания аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов. Участие в процессе коррозии микроорганизмов снимает известные ограничения условий его протекания по [c.54]


    Меркаптаны (тиолы) RSH — аналоги спиртов, в которых кислород замещен атомом серы. В связи с тем, что энергия диссоциации связей S—Н меньше, чем связей О—Н, меркаптаны химически более активны, чем спирты. Это сероорганические соединения с резким неприятным запахом, не растворимые в воде, но хорошо растворимые в органических растворителях. Резкий запах меркаптанов используется в случае применения их в качестве одорантов природного газа при испытании на плотность газовых сетей и систем. При контакте с металлами меркаптаны реагируют с ними с образованием меркаптидов металлов — протекает так называемая меркаптановая коррозия. При нагревании до 300 °С меркаптаны разлагаются с образованием сероводорода и сульфидов. [c.38]

    Термическое разложение с образованием сероводорода может происходить в подогревателе установки сероочистки. Степень разложения зависит не только от типа сернистого соединения, но также от времени пребывания в подогревателе. Проведенные нами опытно-промышленные испытания очистки одорированного природного газа показали, что от 15 до 25% дозируемого этилмеркаптана превращается в сероводород прежде, чем газ попадает в реактор. При этом следует отметить, что точка дозирования этилмеркаптана находилась после теплообменников всего в нескольких метрах от входа в реактор. Следовательно, время пребывания одоранта в горячем потоке газа было ничтожно мало. [c.138]

    В природной обстановке разложение содержащих серу органических соединений сопровождается выделением свободного сероводорода лишь некоторая часть исходной серы выделяется в форме меркаптанов. Образование сероводорода происходит также и под влиянием специфических анаэробных бактерий, восстанавливающих окисленные соединения серы (соли серной, сернистой и серноватистой кислот) за счет энергии, добываемой ими путем окисления некоторых органических веществ. [c.391]

    Биологическое разложение, в частности жизнедеятельность почвенных бактерий, ведет к образованию больших количеств сероводорода, аммиака, углеводородов, оксидов азота ( NaO, N0, NOj) и углерода (СО, СОг). Во всех этих случаях результаты деятельности природных источников намного превышают результаты рукотворной деятельности. Исключением в этой области является эмиссия СО (около 220-10 кг ежегодно), которая обусловлена практически полностью выхлопными газами и намного превосходит количества, созданные природными источниками, например, лесными пожарами [612, 688]. [c.20]

    О 9-58. Для очистки коксового и генераторного газов, а также природных горючих газов от вредной примеси — сероводорода и утилизации содержащейся в них серы газовая смесь пропускается через природный гидроксид железа — болотную руду. Получающийся при этом сульфид железа (П1) на влажном воздухе окисляется о образованием вновь гидроксида железа и элементарной серы. Запишите все эти превращения уравнениями реакций. [c.67]


    Сера. Природные соединения серы, ее свойства. Сероводород, получение и свойства. Сернистый газ. Его образование при горении серы и при обжиге железного колчедана. Сернистая кислота. Окисление сернистого газа в серный ангидрид. Контактный способ получения серной кислоты. Свойства серной кислоты и ее практическое значение. Соли серной кислоты. [c.198]

    Очистка от серы природного газа. При помощи молекулярных сит можно полностью очистить природный газ от сероводорода и меркаптанов. Этот адсорбент можно многократно полностью регенерировать без образования каких-либо вредных отложений или снижения адсорбционной емкости в результате других нежелательных явлений. Однако для экономичности этого процесса потребуется разработать новые циклы регенерации. Основным условием экономичности эксплуатации было в данном случае предельное снижение расхода продувочного газа, поскольку его приходится в последующем сжигать на факеле или использовать в качестве топлива. Последнее объясняется тем, что сернистые соединения из продувочного газа невозможно выделить простой конденсацией, как из воды в адсорбционных системах осушки природного газа. [c.84]

    По второму механизму железо, содержащееся в различных количествах в природных катализаторах, превращается из инертной или безвредной формы в активный каталитический яд. Считают, что железо присутствует в кристаллической решетке монтмориллонита не в виде свободной окиси железа,, а в форме, изоморфной с окисью алюминия. Образование сульфида железа создает движущую силу, необходимую для вытеснения железа из решетки. Этот взгляд подтверждается общеизвестным наблюдением, что природные катализаторы крекинга чернеют под действием сероводорода [50]. Присутствие водяного пара или предварительная гидратация предотвращает подобное образование сульфида железа правда, механизм этого защитного действия полностью не выяснен. Следует отметить, что в противоположность сравнительно серостойким свежим синтетическим катализаторам работавшие синтетические алюмосиликатные катализаторы, содержащие железо, подвержены отравлению серой. [c.174]

Рис. 4.4. Влияние избытка воздуха на образование серного ангидрида ири сжигании природного газа с добавкой сероводорода в количестве 5,5% ио массе. Рис. 4.4. Влияние избытка воздуха на <a href="/info/833892">образование серного ангидрида</a> ири <a href="/info/336207">сжигании природного газа</a> с добавкой сероводорода в количестве 5,5% ио массе.
    Диоксид серы (сернистый ангидрид) является одним из активных сернистых соединений, В составе природных и нефтяных газов отсутствует, однако все процессы получения серы из сероводорода сопровождаются образованием SO2. Содержится в составе всех хвостовых газов установок получения серы. [c.29]

    Большинство установок для сероочистки природного газа рассчитано на переработку 150—300 тыс. м /сут. Они работают при давлении газопровода (17—49) X X 10 Па (17—50 кгс/см ) и обеспечивают степень очистки до остаточного содержания сероводорода и меркаптанов 2-10 г./м и ниже. Из цеолитов общего назначения наилучшими адсорбционными и эксплуатационными свойствами обладают цеолиты типа СаА. Цеолиты NaA отличаются низкой кинетикой поглощения и десорбции сернистых соединений. Цеолиты NaX катализируют реакцию окисления сероводорода с образованием элементарной серы, дезактивирующей адсорбент [41]. Однако это отрицательное свойство цеолитов NaX не исключает возможность их применения для сероочистки газов. [c.416]

    С помош,ью модели с найденными параметрами можно рассчитывать термодинамические свойства и фазовые равновесия различных бинарных и многокомпонентных систем, образованных гомологами алканов, алканолов, сероводородом, водой. Предсказание фазовых равновесий в широком интервале давлений для таких систем, которые входят как составляюш,ие в природный газ и нефть, представляет большой интерес. Число рассмотренных систем может быть увеличено. Опыт расчетов показывает, что модель позволяет успешно предсказывать термодинамические характеристики жидкости и насыщенного пара во многих системах, содержащих как неполярные, так и полярные компоненты. [c.322]

    В присутствии сероводорода происходит восстановление Fe(IH) до Fe(H) и образование окрашенного комплекса с 1,10-фенантролином. Метод позволяет определять 2,5—100 мкг 30 в почвах, природных водах и биологических материалах после переведения sor в H S [707]. [c.121]

    Сероводород в природных водах является продуктом восстановительных процессов, деятельности микроорганизмов, разложения органических веществ. В растворе сульфиды находятся в форме свободного сероводорода, гидросульфид- и сульфид-ионов. Последние присутствуют в заметных количествах только при pH > 10. Для определения растворимых сульфидов в подземных и поверхностных водах в концентрациях 0,1—2 мг л применяют колориметрический метод с образованием сульфида свинца. При более высоких содержаниях используют метод иодометрического титрования. [c.178]


    Из-за резкого запаха меркаптаны (этилмеркаптан) используют в качестве одорантов природного газа при испытании на плотность газовых сетей и систем. При нагревании до 300 °С меркаптаны разлагаются с образованием сульфидов и сероводорода. [c.289]

    Наличие сероводорода в синтез-газе влечет за собой появление в метаноле-сырце органических соединений серы, которые ускоряют развитие карбонильной коррозии. Оксид азота (II), который может получаться при определенных условиях на стадии конверсии природного газа, является катализатором образования некоторых сложных органических соединений. [c.98]

    В случае присутствия в природном газе значительного количества сернистых соединений применяется трехступенчатая схема очистки, поскольку сернистые соединения или сероводород, образованный при их гидрировании, будут удаляться на I ступени, не мешая гидрированию менее реакционноспособной серы. [c.137]

    Сероводород возникает как результат действия элементар-ной серы на природные сопутствующие каучуку вещества . Действительно, сильно основные амины легко присоединяют сероводород, образуя полисульфиды по типу реакции образования желтого сернистого аммония. [c.146]

    Плотность гидратов различных газов составляет (в кг/м ) метана—917, этана — 960, пропана — 880, изобутана — 925, диоксида углерода—1100, сероводорода — 1050, азота — 1000. По плотностям отдельных компонентов можно рассчитать плотность гидрата природного газа. Условия образования гидратов природных газов разной плотности при ориентировочных расчетах можно определять по рис. 2.3. Для более точных расчетов следует применять методики, приведенные в работах 1, 8]. [c.21]

    Есть еще один путь высокотемпературного природного образования сероводорода. При температурах 150—200°С углеводороды, сохранившиеся в уже сформировавшихся породах, могут вступать в реакцию (окисляться) с такими мягкими окислителями, как сульфаты, привносимыми горячими парами-растворами (гидротермами), по следующей схеме [18]  [c.40]

    Круговорот серы в природе. Из всех многообразных типов неорганических соединений серы, которые можно получить в лаборатории, лишь немногие способны к сколько-нибудь продолжительному существованию в природных условиях. Наряду с громадными количествами сульфатов и сульфидов только в сравнительно редких случаях встречаются залежи самородной серы и лишь как случайные и временные образования — сероводород и сернистый газ. Таким образом, неорганическая химия серы в земной коре и на ее поверхности имеет в настоящее время дело почти исключительно с тремя типами соединений Н2504, НгЗ (включая их соли) и отчасти свободной 3. [c.343]

    Изучение изотопного состава серы в газах и нефтях, проведенное Р. Г. Панкиной, показало, что основная причина образования сероводорода — бактериальное восстановление сульфатов. В целом отмечается общая закономерность для природных газов с увеличением геологического возраста уменьшается доля тяжелого изотопа серы. Н. А. Еременко, В. Л. Мехтиева, Р. Г. Панкина доказали возможность образования сероводорода при микробиологическом восстановлении сульфатов со значительными колебаниями отношения изотопов В во- [c.265]

    Основная область научных исследований — нефтехимия. Исследовал состав нефтей Грузии, количественное распределение 5- и 6-членных нафтенов в бензино-лигроиновых фракциях по скважинам и по горизонтам. Выявил возможность изомеризации алкилцик-лоиентаиов в циклогексановые углеводороды в природных условиях. Объяснил механизм образования сероводорода в нефтях, нефтяных водах и газах. Исследовал каталитические превращения алке-нов, циклоалкенов, циклоалканов и алкилароматических углеводородов на природных и синтетических алюмосиликатах. Предложил метод гидрирования жиров на разработанном им катализаторе. Создал новые цеолитные катализаторы для одностадийного гидрирования фенола в циклогексанон и [c.23]

    Выделение и определение иония в природных образованиях Рона производила с индикатором UXi. Освобождение от - и р-излучателей осуществлялось двумя операциями. RaD, RaE и Ро осаждались сероводородом из нейтральной среды с предварительным добавлением соли свинца. Для отделения иония от радия и свинца Рона пользовалась разной растворимостью их сульфатов в ледяной воде. Для отделения иония от RdA Рона выжидала десятикратный период его полураспада. Очищенный таким образом препарат иония Рона наносила на алюминиевую фольгу и измеряла его а-активность на электроскопе. [c.195]

    Источники газообразных углеводородов — в первую очередь, природные и нефтяные попутные газы, а также некоторые синтетические газы, полученные при переработке горючих ископаемых (например, термическая и термокаталитическая переработка нефти и нефтепродуктов, термическое разложение — газификация — твердого и жидкого топлив, а также коксование твердого топлива — коксовый газ). В отличие от природных, синтетические газы наряду с алканами содержат также и ненасыщенные углеводороды, значительные количества водорода и др. Природные газы содержат в основном метан и менее 20 % в сумме этана, пропана и бутана, примеси легкокипящих жидких углеводородов — пентана, гексаиа и др. Кроме того, присутствуют малые количества оксида углерода (IV), азота, сероводорода и благородных газов. Многие горючие природные газы, залегающие на глубине не более 1,5 км, состоят почти из одного метана. С увеличением глубины отбора содержание гомологов метана обычно растет. Образование горючих природных газов — в основном результат катагенетического преобразования органических веществ осадочных горных пород. Залежи горючих газов формируются в природных ловушках на путях его миграции. Миграция происходит при статической или динамической нагрузке пород, выжимающих газ, а также свободной диффузии газа из областей высокого давления в зоны меньшего давления. Подземными природными резервуарами для 85 % общего числа газовых и газоконденсатных залежей являются песчаные, песча-но-алевритные и алевритные породы, нередко переслоенные глинами. В остальных 15 % случаев коллекторами газа служат карбонатные породы. Все газовые и газонефтяные месторождения приурочены к тому или иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Все больше открывается газовых месторождений в зоне шельфа и в мелководных бассейнах, например Северное море. Наиболее крупные газовые месторождения СССР—Уренгойское и Заполярное — приурочены к меловым отложениям Западно-Сибирского бассейна. [c.194]

    Бода, молекулы которой включают тяжелые изотопы водорода и кислорода, обобщенно называется тяжелой водой. Однако под тяжелой водой прежде всего имеют в виду дейтериевую воду ВгО . В природной воде 99,73% приходится на обычную воду НгО . Из тяжелых разновидностей в природной воде больше других содержится НгО (0,2 мол. доли, %), НгО (0,04 мол. доли, %) и НВО (0,03 мол. доли, %). Содержание остальных разновидностей тяжелой воды, в том числе и тритиевой ТгО, составляет не более мол. доли, %. Химическое строение молекул тяжелой воды такое же, как у обычной, с очень малыми различиями в длинах связей и углах между ними. Однако частоты колебаний в молекулЕ1Х с тяжелыми изотопами заметно ниже, а энтропия выше, чем в протиевой воде. Химические связи В—О и Т—О прочнее связи Н—О, числовые значения изменения энергии Гиббса реакций образования В2О и ТгО более отрицательны, чем для Н2О (-190,10, -191,48 и -185,56 кДж/моль соответственна). Следовательно, прочность молекул в ряду НгО, В2О, Т2О растет. Для конденсированного состояния разновидностей тяжелой воды также характерна водородная связь. Лучше других исследованы свойства дейтериевой воды В2О, которую обычно и называют тяжелой водой. По сравнению с НгО она характеризуется большими значениями плотности, теплоемкости, вязкости, температур плавления и кипения. Растворимость большинства веществ в тяжелой воде значительно меньше, чем в протиевой. Более прочные связи В—О приводят к определенным различиям в кинетических характеристиках реакций, протекающих в тяжелой воде. В частности, протолитические реакции и биохимические процессы в ней значительно замедлены. Вследствие этого тяжелая вода является биологическим ядом. Получают тяжелую воду многоступенчатым электролизом воды, окислением обогащенного дейтерием протия, изотопным обменом между молекулами воды и сероводорода с последующей ректификацией обогащенной дейтерием воды. [c.301]

    При моноэтаноламиновой очистке природного газа происходит наводороживание стали в растворах МЭА, содержащих и не содержащих сероводород. Наводороживанию стали при коррозии в МЭА способствует образование комплексного соединения железа с МЭА и связанное с этим разблагороживание равновесного потенциала стали. В растворах МЭА склонность углеродистых и низколегированных сталей к коррозионному растрескиванию проявляется лишь при превышении определенного уровня напряжений. Присутствие сероводорода в растворе снижает температурный предел, вьш1е которого проявляется склонность стали к коррозионному растрескиванию. [c.34]

    В книге приводятся основные положения оценки качества газа, транспортируемого по магистральным газопроводам и дана характеристика состава природных газов, поступаюпщх в газопроводы Средняя Азия — Центр, Бухара — Урал, Мессояха — Норильск, Вуктыл — Ухта — Торжок — Ленинград и др., приведены требования, предъявляемые к газу при его транспорте и потреблении, по содержанию влаги, точке росы по углеводородам, содержанию сероводорода, механическим примесям, кислорода, двуокиси углерода, азота, общей органической и меркаптановой серы. Приводится топливная характеристика природных газов месторождений Советского Союза (теплота сгорания и число Воббе). Отмечается значение числа Воббе как основного показателя качества газа, используемого в бытовых горелочных устройствах, определяющего режим горения, взаимозамещаемость поставляемого газа переменного состава для обеспечения наиболее полного сгорания с минимальным образованием продуктов сгорания, важного фактора, учитывающего взаимосвязь теплоты сгорания и плотности газа. Даются пределы возможных колебаний числа Воббе. Приводятся данные о числе Воббе для газов, транспортируемых по магистральным газопроводам. Приведены основные положения цри оценке состава природных газов по месторождениям и районам добычи, показатели качества газа, используемого различными потребителями (коммунально-бытовыми, промышленностью для энергетических и технологических целей и др.). [c.3]

    Для определения малых количеств HjS (10 мг л) в полевых условиях разработан метод визуального колориметрирования детекторных трубок [1012]. Известные цветные реакции сульфид-ионов (образование метиленового голубого [839], взаимодействие с нитропруссидом натрия [599]) применены для автоматического определения сероводорода и сульфидов в природных, водах. При колориметрировании метиленового голубого используют растворы с содержанием HjS не выше 50 мкг-ат/л. Для анализа применяют анализатор Te lmi on с пробоотборпым и дозирующим устройствами, приспособлением для разбавления пробы и [c.178]

    Геохимические свойства меди таковы, что в биосфере она в растворенном виде попадает в природные воды и в благоприятных условиях осаждается и находится в некоторых осадочных породах в повышенной концентрации, а также образует значительные месторождения. В осадочных породах медь может сосредоточиваться в процессе их образования в восстановительны условиях, когда в водоемах находится в растворимом виде сероводород, благоприятствующий осаждению сульфидов меди МеДь отмечается в песчаных породах, где ее соединения могут играть роль цемента в песчаниках. При седиментации медь осаждается преимущественно в черных глинах и сланцах, богатых органическим веществом. В осадочных породах совместис с другими халькофильными металлами медь образует довольнс распространенные стратиформные свинцово-цинковые месторождения. [c.208]

    Принимая во внимание, что большинство высокосернистых нефтей с 1язано с известняками, а несернистые нефти Кавказа — с песками и глинистыми породами, А. С. Великовский и другие [100] предполагают, что осернение нефтей связано с их коР1тактом с известняками. Основным источником образования в нефтях серы являются сульфаты. Восстановительным действием органического материала (углеводородов нефти) на природные сульфаты и объясняют образование серы и сероводорода в нефтях. [c.144]

    Присутствие азота в природном газе понил<ает температуру образования гидратов, а наличие сероводорода и диоксида у углерода повышает температуру гидратообразования природно- [c.22]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Б настоящее время одной из основных задач органической химии является создание новых методов синтеза и изучение способов рационального использования химического сырья. На выбор способов получения синтетических веществ сильно влияет доступность исходного сырья. Известно, что для органического синтеза одним из универсальных и доступных видов сырья является ацетилен. Поэтому целью настоящего исследования является поиск новых возможностей синтеза гетероциклических соединений на базе ацетилена и его производных. Данная работа посвящена синтезу и превращениям таких винилацетиленовых спиртов, изомеризация и гидратация которых приведет к получению новых ранее неизвестных замещенных дивинилкетонов. Показано, что под влиянием воды, сероводорода и первичных аминов эти дивинилкетоны гладко циклизуются с образованием ранее неизвестных шестичленных гетероциклических кетонов, которые были использованы для синтеза разнообразных биологически активных веществ. Среди этих соединений особый интерес представляют 4-пиперидсны, так как пиперидиновое кольцо содержат многие природные активные соединения и синтетические лекарственные препараты, которые нашли широкое применение в клинической практике. [c.153]


Смотреть страницы где упоминается термин Природный газ, образование сероводорода: [c.271]    [c.400]    [c.400]    [c.20]    [c.20]    [c.26]    [c.108]    [c.62]    [c.358]    [c.310]    [c.581]    [c.365]   
Состав масляных фракций нефти и их анализ (1954) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Сероводород образования



© 2025 chem21.info Реклама на сайте