Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое распыление

    Испаряемость и степень распыления топлива в определенных условиях могут оказывать большее влияние на запуск двигателя , чем его химический состав. Испаряемость характеризуется фракционным составом топлива, т. е. температурой выкипания 10% его. Чем ниже эта температура, тем легче запуск двигателя. Так, авиационный бензин с температурой выкипания 10% 7ГС обеспечивает легкий запуск двигателя при температурах до —60° С, а при использовании керосина с температурой выкипания 10% 175°С запуск двигателя уже при температуре —40° С затруднителен. [c.79]


    Возникновение колебаний при неустойчивом горении, помимо физикомеханических факторов, объясняется наличием периода индукции, т. е. промежутка времени между изменением величины подачи топлива и последующим изменением давления в камере сгорания в результате сгорания топлива. Величина периода индукции зависит от физических процессов (распыление, смешение, испарение) и химической реакции компонентов. При уменьшении периода индукции возможность возникновения неустойчивого режима горения уменьшается. [c.119]

    Регулирование температуры газообразного теплоносителя при сжигании природного газа не представляет технических трудностей. В химической и нефтехимической промышленности накоплен большой опыт в решении подобных задач. Для равномерного же распределения температуры теплоносителя по сечению сушильного барабана и стабильного ее изменения по длине сушилки, исключающих частые перегревы и очаговые разложения высушенного продукта, необходима надежная система автоматического регулирования температуры на входе в барабан в зависимости от количества подаваемой на распыление пульпы. [c.60]

    Сложность процесса горения обусловлена тем, что химические реакции протекают в условиях быстро изменяющихся температур и концентраций реагирующих веществ, причем температура и градиент концентраций изменяются также под влиянием одновременно протекающих физических процессов тепло-и массообмена и различных газодинамических возмущений. В тепловых двигателях, работающих на жидком топливе, процесс горения осложняется одновременно протекающими физическими процессами испарения капель распыленного топлива и смешения паров топлива с воздухом. [c.112]

    Теоретическое рассмотрение такого сложного процесса, основанное на изучении его детального механизма, кинетики химических реакций с учетом влияния различных факторов, осложняющих процесс (испарение, перенос тепла и реагирующих веществ), трудно осуществимо. Приходится прибегать к построению упрощенных моделей процесса горения. В теории горения широкое распространение получила упрощенная модель, основанная на представлении о том, что скорость химической реакции горения лимитируется медленно протекающими физическими процессами — испарения распыленного топлива, смесеобразования, теплообмена и т. п. ( физическая модель процесса горения) [144]. Данная модель предполагает, что химические закономерности горения могут быть сведены к физическим закономерностям. [c.112]


    Протекающий одновременно с окислением распыленного жидкого топлива процесс его испарения имеет подчиненное значение и, как правило, не оказывает существенного влияния на Гв и ti. Поэтому часто встречающийся подход к анализу значений Ti, при котором задержку самовоспламенения представляют состоящей из физической и химической составляющих, не всегда является правомочным. [c.134]

    Лежащее в основе современных теорий рабочего процесса представление о том, что распыленное жидкое топливо до испарения не подвергается каким-либо химическим превращениям, не согласуется с экспериментом, Н. Н. Семеновым еще в 1933 г. был сформулирован закон, согласно которому скорость химиче ского процесса зависит от предыстории реагирующих веществ изменяющей их реакционную способность. [c.137]

    Как отмечалось выше, в современной теории горения широкое распространение получила упрощенная физическая модель процесса, согласно которой скорость химических реакций горения лимитируется одновременно протекающими медленными физическими процессами — испарением распыленного топлива, смесеобразованием, теплообменом и др. Согласно этой модели химические факторы в процессе горения не играют существенной роли. [c.144]

    С увеличением периода задержки воспламенения (0г) возрастает количество топлива, введенного к моменту его воспламенения одновременно улучшается однородность топливо-воздушной смеси и углубляется ее химическая предпламенная подготовка к самовоспламенению взрывного типа, по внешнему проявлению сходному с детонацией в двигателях с воспламенением от искры. Продолжительность периода 0,- зависит от воспламеняемости топлива, оцениваемой цетановым числом, от температуры и давления сжатого воздуха в момент начала впрыска топлива, от степени распыления топлива, турбулизации заряда и наличия в камере сгорания нагретых поверхностей. [c.157]

    В общем случае кроме турбулентности газового потока в ГТД факторами, лимитирующими скорость и полноту сгорания топлива в камере сгорания, могут быть скорость химической реакции, скорость смешения паров топлива с воздухом и скорость испарения капель распыленного топлива. [c.167]

    Химически осажденные носители получают методами физиче- ского и химического соосаждения и формуют распылением и коагулированием. [c.26]

    Физические факторы (включая время, необходимое для нагрева и испарения жидкости). Эти факторы зависят от распыления, вязкости, испаряемости, турбулентности, температуры и давления. С того времени, когда было установлено, что полностью испарившиеся топлива не сгорают мгновенно даже при высоких температурах и давлениях [111, 314, 315], стало очевидным существенное влияние химических факторов. [c.437]

    Распыление масляной пленки на поверхности болотных вод является одним из методов борьбы с комарами и до некоторой степени практикуется [142—150]. Известно, что применяемые в садоводстве инсектицидные масла также действенно способствуют уничтожению складских насекомых красных паучков, клеш,ей, личинок моли, тлей и других вредных насекомых. Факторами, определяющими эффективность этих масел в уничтожении насекомых, являются их молекулярный вес и групповой химический состав. [c.568]

    Приготовление катализаторов. Так как существует определенная связь между активностью и поверхностью катализатора, способ его приготовления сильно влияет на его активность. Для получения высокой степени дисперсности недостаточно ограничиться механическим дроблением и распылением катализатора необходимо использовать химические или физические методы прокаливание, осаждение, выделение из сплавов или через коллоиды (в электрической дуге, коллоидной мельнице). [c.242]

    Наряду с полярными и неполярными растворителями в химических лабораториях используются кремнийорганические соединения, к которым относятся полимеры, мономеры, лаки. Наиболее целесообразно для их тушения использовать распыленную воду, порошки ПСБ и СИ-2. Минимальный расход порошка ПСБ должен быть 3,5... 4,0 кг-м а порошка СИ-2 — 20 кг м . [c.74]

    В основном смесеобразование осуществляют с помощью горелок, форсунок и регистров для подачи вторичного воздуха (первичным считается воздух, подаваемый в форсунку для распыления горючего). Смесеобразование в большинстве случаев завершается в рабочей камере печи или в камере горения после выхода горючего и воздуха из форсунки (горелки) и регистра или газовой смеси из горелки. Через форсунку и регистр в камеру горения выбрасывается смесь горючего и окислителя, которая загорается на некотором расстоянии от устья, в том месте, где создаются соответствующие условия для воспламенения — необходимое соотношение смеси горючего и окислителя для протекания химической реакции. Одним из основных элементов при распыливании жидких горючих материалов служит распылитель форсунки, назначением которого является разгон и размельчение жидкости путем создания разрывающейся на нити пленки жидкости нити затем распадаются на капли, движущиеся в заданном направлении. На разрыв жидкости, выбрасываемой из устья распылителя, влияют 1) начальное возмущение потока жидкости внутри распылителя, вызывающее турбулизацию жидкости 2) свойство печной среды, в которую выбрасывается поток 3) физические свойства собственно жидкости. [c.29]


    Соотношение скоростей физического и химического процессов в зависимости от температурного интервала имеет важное значение для практического использования самовоспламенения распыленных горючих материалов. [c.31]

    Фильтруемость различного сырья зависит от упаковки частиц твердого вещества на фильтре, определяющих пористость и проницаемость осадка. Улучшению структуры осадка на фильтре посвящен ряд работ [83, 84]. Принципиально новый метод — распыление расплавленного гача в охлаждающей среде воздуха или газа—позволяет получить крупку из твердых частиц правильной формы и заданных размеров. Для улучшения фильтрования к остаточному рафинату добавляли смесь петролатума, распыленного холодным растворителем. В этом случае гранулы петролатума (гача), увеличивая проницаемость осадка, играют роль ускорителя фильтрования. Осуществление такого процесса позволило бы уменьшить зависимость скорости фильтрования от химического состава перерабатываемого сырья. Процесс, однако, не получил широкого промышленного применения. [c.164]

    Аппараты с распылением целесообразно применять в тех случаях, когда не требуется высокая степень разделения и когда происходит химическое взаимодействие реагентов (хемосорбция). Кроме того, аппараты с распылением имеют малое гидравлическое сопротивление. [c.266]

    Прямое фракционирование сырой нефти приводит к образованию ряда дистиллятов с обычными пределами кипения, независимо от места ее добычи, хотя относительный выход тех или иных нефтепродуктов зависит от конкретного вида нефти. Эти нефтепродукты можно использовать для различных целей, в том числе для химической конверсии и газификации или подвергнуть дальнейшей обработке. Так, при отделении большинства легко-испаряющихся фракций (точка кипения ниже 35°С) при атмосферном давлении получают сжиженный нефтяной газ следующая, более тяжелая фракция (точка кипения 35—200°С) является основой производства бензина, однако и ее можно разделить на два вида лигроина, используемого в качестве сырья в химической промышленности и газификации. Керосин для авиационных турбин и бытовых фитильных горелок кипит при 150—ЗОО С температура кипения газойля для быстроходных дизелей и бытовых отопительных систем изменяется в диапазоне 175—ЗбО С. Любой продукт с более высокой точкой кипения после перегонки используется в качестве топлива для тихоходных судовых дизелей и горелок с распылением и как основа смазочных масел, а без перегонки — как остаточное топливо для промышленных целей и выработки энергии. В прил. 2 дана упрощенная технологическая схема типичного интегрального нефтеперерабатывающего завода, который включает установки перегонки, риформинга легких фракций нефти и крекинга, что способствует получению сырья для производства ЗПГ. [c.73]

    Туманом называется дисперсная система, содержаш ая взвешенные в газе мелкие капли жидкости. Размеры капель от 0,01 до 1 мкм в зависимости от условий образования тумана [23]. Причиной возникновения тумана во многих производствах является конденсация паров и распыление жидкости. В ряде производств химической промышленности осуществляется очистка газов от тумана серной, фосфорной и соляной кислот, органических продуктов и др. Однако улавливание, например, сернокислотного тумана — операция сложная. Частички его настолько малы, что очень плохо улавливаются в простых осадительных, инерционных и циклонных аппаратах, обычно применяемых для очистки газов от пыли и брызг. В то же время капли тумана трудно проникают через границу раздела фаз, поэтому они плохо поглощаются в таких промывных аппаратах, как башни с насадкой и камеры с разбрызгиванием жидкости. [c.182]

    НИИ в качестве дисперсионной среды метанола и этанола. В качестве дисперсной фазы применяют металлические порошки различной дисперсности, полученные методом распыления жидкого металла или размолом в шаровых и вибрационных мельницах. Легирование порошка позволяет менять физико-химические свойства покрытия. Значительное влияние оказывают также вешества, адсорбированные на поверхности порошка. [c.84]

    Ускорение этих процессов и повышение скорости поступления реагентов в зону химической реакции и интенсификация работы химического реактора может быть достигнуто путем перемешивания системы, ускоряющим диффузию компонентов и интенсификацией подачи компонентов за счет их распыления и увеличения скорости потока. [c.95]

    Химические реагенты для флотации и обогащения руд, химические растворы при бурении на нефть и газ, взрывчатые вещества при добыче руд, химические вещестпа против распыления угля и других полезных ископаемых, химические добавки (одоранты) к природному газу для бытовых целей Вспомогательные материалы для обработки энергетического оборудования Химические добавки для повышения октанового числа бензина [c.21]

    Внедрение в 50-х годах катионных эмульсий "- значительно повлияло на развитие битумной промышленности, сделав разрушение эмульсий практически независящим от погодных условий. Катионные битумные эмульсии обеспечивают большее сродство с большинством используемых в дорожном строительстве каменных материалов и четко более необратимый распад, чем ранее используемые анионные эмульсии . Однако после нанесения покрытия этими эмульсиями на начальной стадии фазообразования появлялся так называемый феномен хрупкости, объясняемый тем, что эмульсия после распада требует определенного периода выдержки для развития когезионной способности, необходимой для того, чтобы противостоять нагрузкам дорожного движения, дождю и морозу непосредственно после укладки. Исследовательские работы, предпринятые в связи с этим в конце 70-х годов, привели к созданию эмульсий с контролируемым распадом, принцип которых состоит в том, чтобы провоцировать распад эмульсий в собственной среде, а не при контакте с каменным материалом, как это было раньше. Большинство процессов, используемых для провоцирования внутреннего распада эмульсий, защищены патентами. Наиболее популярен процесс, заключающийся в распылении специально подобранного агента распада на пленку вяжущего во время его нанесения. При контакте вяжущего с зернами минерального материала образуется смесь эмульсия + каменный материал и эффект агента распада распространяется на всю массу эмульсии. При этом необходимо, чтобы распад происходил постепенно, т.е. нужен учет состава эмульсии и химической природы как агента распада, так и, в некоторой степени, поверхности используемого материала. Авторами предлагается несколько иной подход к проблеме регулирования распада эмульсии, а именно - изменение pH эмульсии в момент [c.130]

    На предприятиях химической промышленности подвергаются переработке значительные количества газов и их смесей. Проведение многих химических процессов в газовой фазе при давлении, отличном от атмосферного, часто приводит к увеличению их скорости и уменьшению необходимого объема реакционной аппаратуры. Сжатие газов используют для перемещения их ио трубопроводам и аппаратам, создания вакуума. Сжатые газы применяют для перемешивания, распыления жидкостей и т. п. Интервал давлений, применяемых в химических производствах, колеблется в широких пределах — от 10 до 10 н м (10 —10 ат). [c.152]

    Машин для нанесения пятнообразующих веществ в сухом состоянии существует немного, так как сам этот способ распространен далеко не широко- Тип такой машины разработан государственным институтом химической чистки и описан им в бюллетене 5 — 2 (см. ссылку 13). Эта машина состоит из двух отдельных камер, одна из которых предназначена для кондиционирования воздуха, а другая — для нанесения на ткань загрязнителя. В камере кондиционирования поддерживают температуру воздуха на высоте 100° по Фаренгейту 5 при его относительной влажности в 65%. Ткань, нарезанную на полосы шириной в 5 дюймов, и длиной в 16 футов сшитую в виде бесконечной ленты, выдерживают в камере кондиционирования в течение четырех часов. Сухое пятнообразующее вещество насыпают на лоток, находящийся во второй камере, в которой установлена воздуходувка. Вследствие действия последней атмосфера в камере насыщается пятнообразующим веш еством. Ткань проходит через эту атмосферу по щеткам, а также между отжимными валиками. Углерод осаждается на ткани и втирается в нее при помощи этих щеток и валиков. Длительность процесса нанесения загрязнителя равна 15 минутам, в течение которых лента делает 18 оборотов. Воздуходувку включают лишь на короткое время в самом начале процесса нанесения загрязнителя. Опыт показал, что описанный способ обладает двумя недостатками во-первых, он не обеспечивает требуемой однородности образчиков искусственных пятен во-вторых, он сам по себе неприятен, поскольку распыленные частицы углерода проникают в окружающую среду. [c.35]

    Помпей [92] предложил необычную методику, с помощью которой можно проводить реактивное распыление больщого числа различных материалов. К ним относятся соединения серы, селена, теллура, фосфора, мышьяка, сурьмы, висмута. Чтобы понять эту методику, необходимо сначала сказать несколько слов о технологии, названной химическим распылением . Это не совсем удачный термин, поскольку обозначаемый им процесс цц 1 меет, на самом деле, ничего общего с распылением. Чтобы проводить химическое распыление, соответствующий материал помещают в разряд низкого дазлеиия в атмосфере водорода Тогда ионы водорода вступают в реакцию с поверхностью эгого мь гериала и образуют водородное соединение. [c.442]

    В устройС1ве Помпея, изображенном на рис. 25, химическое распыление совершается во вспомогательной разрядной трубке. Но гидрид не разлагается здесь же, а поступает в основную разрядную камеру, где происходит реактивное распыление, во время которого он вступает в реакцию с материалом основной мишени. Главные преимущества такой методики по сравнению с реактивным распылением при непосредственно.м напуске в камеру гидридов из внешнего баллона состоят в том, что в данно.м случае можно гарантировать чистоту гидрида, и что гидрид приготавливается на месте по мере необходимости. Важно отметить, что гидриды всех перечисленных выше материалов крайне ядовиты, поэтому вполне очевидно преимущество приготовления лишь небольших количеств гидрида, большая часть которого полностью вступает в реакцию в основной камере. [c.443]

    Сплавы КСо лрупкие, так что из них легко изготовить тонкие порошки способом механического размола. Это и было более или менее успешно проделано для всех фаз КСОб с исполь- -зованием различных методов размола и различных мельниц [6, 10, 14, 18, 24, 31]. Коэрцитивная сила, которую можно получить с помощью измельчения образцов, ограничена явлением, наблюдавшимся ранее в других веществах Не возрастает до максимума с уменьшением размера частиц, а затем снова падает. Одновременно с этим становится все труднее и труднее ориентировать частицы в магнитном поле. Это явление приписывают прогрессирующему разрушению кристаллической решетки цри ее деформации в процессе размола, что приводит к локальному понижению анизотропии [6, 18, 19, 42]. Максимальное значение Не колебалось от 2000 до 6000 Э для большинства фаз КСов, причем коэрцитивность порошка и его способность к ориентации зависят как от метода размола [31], так и от вещества. Эти значения еще недостаточно велики для магнитов с особо выдаю- -щимися свойствами. Отжиг, производимый для снятия повреждений кристаллов, возникающих при пластической деформации, который так хорошо работает у ферритов [43], пока дал лишь незначительное улучшение магнитных свойств [6, 44]. Благоприятным оказалось измельчение веществ в более хрупком состоянии ниже комнатных температур, однако о таких работах встречается мало сообщений в литературе [42, 44]. Были предприняты попытки получить порошки несколькими альтернативными методами без чрезмерного дробления удалось получить порошки УСоб и (ММ)Со5 с заметно улучшенными свойствами методом химического распыления [6] и методом амальгамирования, в котором сочетаются плавление и распыление [45]. [c.191]

    Важным показателем в данной модели является распределение частиц микрогетерофазы по каплям факела распыла во-пер-вых, он указывает на собственно механизм гетерогенного надрыва шейки и, во-вторых, имеет существенное технологическое значение. К примеру, если ГА-техника, работающая в режиме распыления, используется в химическом синтезе, где один из реагентов — газ, то, очевидно, что площадь контакта реагентов [c.142]

    Для факельных трубопроводов, в том числе для факельного ствола, имеющих ограниченные диаметры, впрыск ингибитора в защищаемое пространство в виде мелкодисперсной распыленной жидкой фазы или паров не представляет большого труда. В качестве ингибитора применяют жидкие вещества, имеющие большую плотность, низкую температуру испарения, наибольшую теплоту парообразования, малую вязкость и малый коэффициент поверхностного натяжения н др. Наиболее эффективным и химически активным ингибитором большинства углеводородо-воздушных пламен является тетрафтордибромэтан (фреон 114Вч). [c.226]

    Любые гетерогенные процессы, например разложение или образование твердого химического соединения, растворение твердых тел, газов и жидкостей, испарение, возгонка и т. п., а также важные процессы гетерогенного катализа и электрохимические процессы, проходят через поверхности раздела твердое тело—газ, твердое тело—жидкость, твердое тело—твердое тело, жидкость— жидкость или жидкость—газ. Состояние вещества у поверхности раздела соприкасающихся фаз отличается от его состояния внутри этих фаз вследствие различия молекулярных полей в разных фазах. Это различие вызывает особые поверхностные явления на границе раздела фаз например на границе жидкости с газом или с другой жидкостью действует поверхностное натяжение. Поверхностное натяжение определяет ряд важных свойств, например шарообразную форму пузырьков газа или капель жидкос1и (в туманах, эмульсиях, при распылении расплавленных стекол, при образовании новых фаз и т. п.). [c.435]

    В данном случае необходимо выделить две группы достаточно характерных процессов на начальной стадии воспламенения протекают физические процессы, такие как распыление, теплонеренос, газификация, диффузия и смешение, на последующей стадии протекают химические процессы. [c.31]

    Серебро используется для изготовления зеркал оптических приборов. В настоящее время серебряные покрытия стараются заменять алюминиевыми (вакуумное распыленйе А1) или никелевыми (химическое никелирование, см. разд, 7.5.2). [c.590]

    Кремнийорганические покрытия можно нанести обычными методами окунанием, распылением, кистью, обливом и др. К основным недостаткам кремнин-органических покрытий относится необходимость их термической обработки для полного отверждения, обычно при 200—250 С в течение 5—10 ч, в зависимост от состава композиции. К недостаткам полиоргаиосилоксаио-пыл покрытий относятся также малая стойкость к абразивному воздействию среды и невысокая химическая стойкость в орг 1-нических растворителях и снльиоокислительных средах. [c.406]

    Развитие химической техники неразрывно связано с интенсификацией физических процессов, применяемых в химической технологии. Известно, что скорость ряда процессов возрастает с увеличением скорости движения и поверхности соприкосновения реагентов. Поэтому в последние годы в химической промышленности стали применять новые высокопроизводительные аппараты, в которых скорости тепло- и массообмена возрастают во много раз благодаря тонкому распылению жидкостей, интенсивному перемешиванию реагентов, проведению процессов в кипящем (псевдоожиженном) слое твердого сыпучего материала и т. д, В результате интенсификации технологических процессов, внедрения непрерывных методов производства, автоматизации и РчдЧ<еханизации значительно возросли производственные мощности, химической промышленности и неизмеримо повысился ее техни-Ч ческий уровень. В современных химических производствах используются низкие и высокие температуры (от —185° С при разделении газовых смесей методом глубокого охлаждения до -ЬЗООО°С в электрических печах при производстве карбида кальция), глубокий вакуум, высокие и сверхвысокие давления (от [c.17]

    От химического состава топлива зг висят также эффективность и полнота сгорания топлива для воздушно-реактивных двигателей. При сгорании аренов, в особенности бициклических (нафталиновых) углеводородов, образуются сажа и нагар, которые откладываются на стенках жаровых труб кам(ф сгорания и распылителей форсунок. Нагарообразование нарушает аэродинамику потока газов в камере сгорания, изменяет форму распыления струи топлива и форму факела. В конечном итоге происходит коробление и прогар стенок жаровых труб. Кроме того, при использовании ароматизированного топлива в газах сгорания появляются раскаленные частички углерода, увеличивается интенсивность излучения пламени, вследствие чего перегреваются стенки камеры сгорания. Нагарообразование растет также при повышении температуры конца кипения и плотности топлива, при у1,еличенном содержании сернистых соединений и смол. [c.343]

    Высокие температуры при термодеструкции в паровой фазе необходимы для быстрого завершения всех реакций в течение короткого времени пребывания сырья в реакционной камере и образования углерода. Высокие температуры создаются при прямом контакте продуктов сгорания (топливного газа или части сырья) со всей массой тонко распыленного сырья. Выход нефтяного технического углерода и его качество зависят от химического и фракционного состава углеводородного сырья, отношенпя количества активных составляющих дымовых газов к количеству получаемого углерода, от коэффициента избытка воздуха в процессе горения, условий ведения процесса испарения исходного сырья н его термодеструкцин. В связи с жесткими условиями в паровой фазе деструкция углеводородного сырья идет с образованием легких продуктов п продуктов глубоких стадий уплотнения (углерода). Выход углерода, несмотря па частичное его реагирование с активными составляющими дымовых газов, относительно высок [c.237]

    Полимерные пленки получают при испарении тонких слоев растворов полимеров, нанесенных на поверхность воды или стекла. Углеродные и кварцевые пленки получают распылением материалов в электрической дуге в специальных вакуумных установках. Пары углерода и кварца осаждают на чистые стеклянные пластинки, покрытые слоем полимера, на поверхность слюды илп монокристаллов хлорида натрия. Затем нленки отделяют от поверхности и переносят на поддержчгваю-щие сетки. Такие пленки в отличие от полимерных устойчивее к действию электронного луча и химически инертны. К недостаткам углеродных пленок следует отнести их гидрофобность. [c.124]

    Хотя внешнее воздействие полностью отсутствует, в самой системе вблизи поверхности происходят внутренние физико-химические процессы, что приводит к разрушению этой поверхности. В процессе участвуют гравитационные силы, которые преодолеваются внутренними силами. В результате капельки более тяжелой жидкости оказываются распыленными ( самопроизвольно ) в более легкой. Так, если чистый толуол осторожно привести в соприкосновение с водой, то не образуется никакой эмульсии. Однако нри исиользо-вании раствора толуола с 10% метанола начнут проявляться внутренние процессы. Через некоторое время органическая фаза станет мутнеть из-за образования эмульсии, тогда как слой воды останется прозрачным. Если же взять раствор толуола с 40 о метилового спирта, то, наоборот, помутнение начнется в воде, тогда как органические вещества сохранят прозрачность. [c.60]

    Горение - это процесс химического взаимодействия горючего и окислителя с образованием пламени, излучающего тепловую и световую энергии. В двигателях внугреннего сгорания химическая энергия топлива через процесс горения превращается в механическую энергию. Горение поддерживается физическими процессами испарения капель распыленного топлива, смешения паров с воздухом и их воспламенением или самовоспламенением. [c.38]


Смотреть страницы где упоминается термин Химическое распыление: [c.138]    [c.146]    [c.105]    [c.100]    [c.245]    [c.106]    [c.420]   
Технология тонких пленок Часть 1 (1977) -- [ c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Распыление



© 2025 chem21.info Реклама на сайте