Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-механические свойства методы повышения прочности

    Высокую прочность, эластичность, хорошее сопротивление раздиру, высокие динамические свойства этих вулканизатов сразу связали (Браун, 1955 г.) с ионным характером возникающих вулканизационных связей, так как сшивание по карбоксильным группам с образованием ковалентных связей приводит к получению вулканизатов с низкими физико-механическими свойствами, характерными для обычных ненаполненных вулканизатов каучуков нерегулярного строения. Химическая реакция между оксидами металлов и карбоксильными группами была доказана различными методами и привела вначале к представлению о солевых поперечных связях, которые, как считали, способны легко перегруппировываться при приложении нагрузки или повышении температуры испытания. Это допущение противоречит высокому значению энергии солевых связей, поэтому предположили (Б. А. Догадкин, 1960 г.), что перегруппировка связей облегчается в результате скольжения ионизированного карбоксила по ионам металла на поверхности частиц оксида. [c.56]


    Вулканизация. Для придания резиновому покрытию химиче ской стойкости, прочности и эластичности его вулканизуют. В зависимости от марки резины или эбонита, принятого метода крепления резиновых обкладок к металлу вулканизацию осуществляют одним из следующих способов в вулканизационных котлах или гуммируемых аппаратах под давлением в гуммируемых аппаратах без давления (открытый способ). В качестве теплоносителя наибольшее применение находит насыщенный водяной пар, ценным свойством которого является строго определенная температура конденсации при данном давлении, выдерживаемая в течение всего процесса. Однако образующийся конденсат частично вымывает отдельные составляющие резиновой смеси, вследствие чего ухудшаются физико-механические свойства и химическая стойкость покрытия. При вулканизации горячим воздухом коррозионная стойкость и срок службы гуммировочного покрытия повышается на 20—25% по сравнению с вулканизацией насыщенным паром. Особенно это важно при эксплуатации резин и эбонитов в агрессивных средах при повышенной температуре. Режим вулканизации выбирается в зависимости от марки применяемой резиновой смеси и клея, толщины резинового покрытия и габаритов защищаемого оборудования. Например, гуммировочное покрытие на эбоните марки ГХ-1626 может вулканизоваться как под давлением, так и открытым способом. Применение эбонита марки ГХ-1627 возможно только при вулканизации под давлением (в котле или в аппарате). Его вулканизация открытым способом не позволяет достигнуть необходимой твердости и химической стойкости покрытия. [c.207]

    Наиболее распространенным и многотоннажным сополимером на основе винилхлорида, как известно, является сополимер с винилацетатом. Введение в макромолекулу даже небольшого числа звеньев винилацетата заметно уменьшает межмолекулярное взаимодействие и облегчает взаимное перемещение макромолекул по сравнению с ПВХ (снижается TJ, что позволяет перерабатывать полимер при более низких температурах . Однако промышленные сополимеры, содержащие до 15% винилацетатных звеньев, не отличаются заметно от ПВХ по величине Т , а также по ряду физико-механических свойств при обычных температурах. Сополимеры винилхлорида с небольшим содержанием винилацетатных звеньев (2—10%) широко используются в производстве жестких прозрачных изделий методом каландрирования, литья и экструзии. В некоторых случаях их добавляют в композиции на основе ПВХ с целью улучшения перерабатываемости последнего. Сополимеры, содержащие 13—17% винилацетата, характеризуются хорошей формуемостью и повышенной ударной прочностью и используются в производстве граммофонных пластинок и других жестких изделий. Благодаря хорошей растворимости в органических растворителях они широко применяются и для приготовления лаков, для пропитки бумаги и тканей 101, а также для получения химических волокон [c.269]


    На скорость твердения футеровки и ее физико-механические свойства влияют температурно-влажностные условия твердения. Для ускорения процесса твердения, а также повышения прочности и долговечности цементных растворов, бетонов и железобетонных изделий в настоящее время все шире применяется обработка их Насыщенным водяным паром. При этом методе температурное воздействие сочетается с обязательным наличием в материале водяной среды, которая способствует протеканию реакций образования цементирующих веществ. [c.88]

    Термопласты используют в виде гранулированных порошков для переработки в изделия методом литья под давлением, в качестве поделочных материалов (листы, прутки, трубы и др.) и в виде пленок толщиной менее 1 мм, выпускаемых в листах или рулонах. Физико-механические свойства термопластов приведены в табл. 18, 19. Прочность таких материалов, как капрон, полиэтилен, полиамиды и фторопласты, значительно снижается при повышении температуры, а охлаждение их ниже 0°С приводит к появлению хрупкости. [c.16]

    Полиарилаты — очень интересный новый класс полимеров, обладающих ценным комплексом физико-механических свойств высокой теплостойкостью, значительной прочностью при повышенных температурах, высокими диэлектрическими показателями и т. д. В книге изложены вопросы, посвященные определению прочностных и релаксационных свойств этих полимеров. Описанные методы определения характеристик механических свойств полиарилатов могут быть применены для любых других классов твердых полимеров. Подробно рассмотрено влияние условий синтеза полиарилатов на формирование надмолекулярной структуры и комплекса механических свойств, описаны принципы физической модификации полиарилатов. Отдельные разделы книги посвящены растворам полиарилатов, термическим и диэлектрическим свойствам этих полимеров. [c.2]

    Исследования показывают, что оптимальными режимами производства термоусаживаемой пленки из полиэтилена высокой плотности, изготовленной по принятой в работе технологии, являются температуры вытяжки, близкие к температуре плавления кристаллитов (110— 120 °С) минимально допустимая температура составляет 80 °С. Эти выводы подтверждены результатами исследований физико-механических свойств пленки, а также изучением ее структуры электронно-микроскопическими методами и рентгеноструктурным анализом. Полученная пленка имеет хорошо сформированную сферолитную структуру. Степень кристалличности в этих условиях превышает 80%. При испытаниях облученной до доз 15—20 Мрад пленки перед вытяжкой наблюдается повышение относительного удлинения при разрыве до 700%, которое при дальнейшем возрастании поглощенной дозы резко снижается. Температура вытяжки влияет на прочность пленки. Так, при вытяжке пленки, нагретой [c.217]

    Во втором методе может быть обеспечена любая необходимая действующая поверхность и толщина фильтра. Последнюю обычно рассчитывают заранее и задают зазором щелевой фильеры, что позволяет получать фильтры практически из любых элементов. Фильтр представляет из себя полимерную пленку, наполненную фильтрующим компонентом, причем содержание последнего составляет, по крайней мере, 50% от массы фильтра. В качестве полимерной основы используются полистирол (как связующее фильтров из элементов с атомным номером от 12 до 22) и эфиры целлюлозы повышенной степени полимеризации. Наилучшими физико-механическими свойствами (однородность, эластичность, механическая прочность и др.) обладают фильтры на основе триацетата целлюлозы. [c.51]

    Приведенные примеры дисперсных структур и материалов на их основе дают возможность представить ту универсальную роль, которую играют структурированные дисперсные системы в самых различных областях народного хозяйства. Соответственно одна из центральных задач современной коллоидной химии, имеющая большое практическое значение, заключается в научном обосновании и разработке методов управления свойствами, и в первую очередь механическими свойствами дисперсных структур. При этом, в зависимости от конкретных практических требований, задача может состоять как в повышении, так и в понижении прочности (сопротивления формоизменению) таких структур. Рассмотренная в начале параграфа зависимость прочности структуры от числа X и прочности контактов Р указывает следующие принципиально возможные пути управления механическими свойствами 1) изменение числа контактов путем варьирования размера частиц (дисперсности) и плотности их упаковки, 2) изменение прочности индивидуальных контактов путем варьирования физико-химических условий их возникновения и развития. Это позволяет реализовать значения прочности в очень широком интервале значений от 10 Н/м2 для грубодисперсных структур с коагуляционными контактами до 10 —10 H м для высокодисперсных структур с фазовыми контактами. [c.323]


    Повышение внимания к упруго-пластическим свойствам волокнистых материалов связано также с тем, что, в отличие от наиболее ранних работ, в которых исследователи стремились описать взаимозависимость главных физико-механических показателей, в настоягцее время объектами изучения становятся процессы формирования интересующих нас свойств в ходе изготовления материала. Среди факторов, определяющих прочность готовой бумаги, важнейшая роль принадлежит, по-видимому, длине волокон, которой и уделялось главное внимание в наиболее ранних работах [1, 2]. Но одной длиной частиц не удается объяснить такие явления, как, например, высокая прочность конденсаторной бумаги, значительная часть волокнистых частиц (фибрилл) которой в результате длительного размола сильно укорочена. Более глубокое исследование деформационных свойств волокнистых материалов на разных стадиях нроизводственных процессов с использованием новых методов реологических исследований [3, 4] указывает на то, что при анализе прочности этих материалов необходимо учитывать целый ряд факторов, среди которых не последнее место, по-видимому, занимают деформационные свойства индивидуальных волокон и их изменения в ходе обработки. [c.241]

    В литературе описано много примеров синтеза привитых и блоксополимеров на основе винилхлорида, для получения которых использованы практически все известные методы. Применение привитой сополимеризации для модификации ПВХ позволило придать материалам на его основе ряд новых свойств повысить теплостойкость, эластичность, ударопрочность изделий, стойкость к растворителям и другим химическим агентам и т. п. Например, прививка акрилонитрила придает жесткому ПВХ повышенную теплостойкость и улучшает физико-механические характеристики. Химическое совмещение ПВХ с поливиниловым спиртом или карбоксилсодержащими полимерами дает возможность получать гидрофильные волокна с хорошей накрашиваемостью. Привитые сополимеры на основе поливинилхлорида и полиакрилатов, полиолефинов или синтетических каучуков обладают высокой эластичностью и стойкостью к динамическим нагрузкам. Прививка ненасыщенных низкомолекулярных полиэфиров позволяет повысить прочность изделий из мягкого поливинилхлорида и уменьшить миграцию из них пластификаторов. [c.371]

    Поскольку существование предельного напряжения ползучести не доказано, то пределом ползучести при данной температуре или при заданной продолжительности нагружения называют постоянное напряжение, которое вызывает деформацию заданной величины или определенную скорость деформации. Ускоренные методы определения предела ползучести не учитывают различия физико-хими-ческих и структурных процессов при кратковременном и длительном нагружении. Многие закономерности изменения сопротивления ползучести и обычных механических свойств в зависимости от внутренних и внешних факторов различны, а иногда даже противоположны. В процессе ползучести при повышенных температурах происходит непрерывное изменение структуры. При рекристаллизации (рост зерен) скорость ползучести значительно возрастает, т. е. сопротивление ползучести уменьшается. В отличие от кратковременной прочности, сопротивление ползучести в ряде случаев понижается в результате деформации и потому для некоторых материалов снижение пластичности приводит к повышению сопротивления ползучести. В результате ползучести снижается работоспособность не только разрывных, но и выщелкивающих мембран, хотя и в значительно меньшей степени. Последние через определенное время могут потерять устойчивость и для них кроме критической нагрузки важной характеристикой может являться также критическое время или критическая деформация. [c.161]

    Скорости массообменных процессов, осаждающая способность осадителей и обусловленные этим особенности структурообразования волокон при формовании по мокрому методу зависят также от природы используемого растворителя, точнее, от вида пары растворитель — осадитель. В работе [10] было проведено исследование влияния различных параметров процесса формования на свойства волокон из сополимера винилхлорида с акрилонитрилом (СХН-60). В качестве растворителей использовали диметилформамид и ацетон, осадительные ванны представляли собой смеси растворителя с водой. Поперечные срезы волокон, полученных из растворов в диметилформамиде, оказались практически такими же, как и при формовании гомо полимера винилхлорида в водные ванны. Волокна, полученные из ацетоновых растворов, характеризуются значительно более высоким содержанием полимера, более плотной структурой в поперечном сечении и меньшей способностью к сорбции красителя, чем волокна, полученные из диметилформамидных растворов. С повышением содержания ацетона в осадительной ванне форма поперечного среза волокна постепенно изменяется от лентообразной к бобовидной и почти круглой. Для волокон, полученных из ацетоновых растворов, характерны более высокие степени вытяжки и значительно более высокие физико-механические показатели прочность и устойчивость к двойным изгибам. Волокна, сформованные из диметилформамидных растворов, выдерживают только десятки циклов двойных изгибов. Если растворителем является ацетон, то волокно разрушается после более чем 100 000 циклов. Сопоставляя эти данные с результатами исследования влияния условий формования ПВХ из диметилформамидных растворов, надо иметь в виду, что вода является значительно более сильным осадителем для ацетоновых растворов сополимера винилхлорида, чем для диметилформамидных. Поэтому можно провести аналогию между формованием сополимера из диметилформамидных растворов в водные ванны и получением волокон из ПВХ в ваннах, содержащих метанол и этанол. [c.401]

    Исследование взаимодействия активных добавок с поверхностью стеклянных волокон. Механические и диэлектрические свойства стеклопластиков при выдержке в различных активных средах значительно зависят от физико-химических явлений, протекающих на границе раздела стекло — смола. Естественно поэтому повышение смачивающей способности связующего по отношению к стеклянному волокну и увеличение прочности адгезионного сцепления улучшают стабильность свойств стеклопластиков в условиях повышенной влажности. Смачивающую способность связующего ФН с различным количеством активной добавки АМ-2 оценивали по величине краевого угла смачивания, который определялся на образцах полированного стекла методом сидячей капли. Наряду с определением угла смачивания измерялась высота капиллярного поднятия связующего по волокну. [c.32]

    При этом вследствие реакции передачи цепи может происходить также образование привитых сополимеров. Механохимиче-скнй метод используют для получения блок- и привитых сополимеров на основе различных каучуков с целью улучшения их физико-,механических свойств (жесткости, прочности и т. д.), а также для повышения ударной прочности ряда жесткоцепных полимеров (эфиры целлюлозы и др.) за счет их модификации эластомерами. [c.66]

    Материалы, получаемые методом ТМХО, значительно превосходят по своим физико-механическим свойствам материалы, изготовленные способом ТМО. Особо следует отметить повышенные плотность, прочность и теплопроводность зтих графитов, причем теплопроводность рекристаллизованных графитов можно изменять в довольно широких пределах в зависимости от природы и количества карбидообразующих элементов, используемых в качестве добавок. [c.197]

    Основными критериями пригодности покрытий, предназначенных для защиты трубопроводов, эксплуатирующихся при повышенных температурах, является теплоустойчивость и термовлагостойкость этих покрытий, оцениваемые изменением их физико-механических свойств в процессе термостарения. Показатели этих свойств после испытаний в течение 2000 ч должны быть такими же, что и для покрытий холодных трубопроводов. Приведенные критерии пригодности защитных покрытий требуют уточнения путем корреляции результатов лабораторных и производственных испытаний на действующих трубопроводах. Методы лабораторных испытаний основаны на определении срока службы и эффективности покрытий путем изучения кинетики изменения их свойств под воздействием факторов, имеющих место в реальных усла виях эксплуатации защищаемого трубопровода. Прочность сцепления покрытия с металлом при сдвиге, прочность при ударе, изгиб, УОЭС определяются на образцах в процессе их длительного выдерживания при 160 °С.,  [c.23]

    Очень важной и интересной областью применения мелами-но-формальдегидных смол является пропитка д и различных тканей для придания последним несминаемости и уменьшения усадки. Эти смолы прочнее удерживаются на ткани и вообще дают наилучшие результаты по сравнению с мочевиноформаль-дегидными и другими смолами [188—190]. Имеется ряд обзоров по этому вопросу Бувье [116], Смита [117] и других [118, 191 — 193]. На суть происходящего при этом процесса имеются в настоящее время два различных взгляда. Робинсон [194] и некоторые другие считают, что происходит химическое взаимодействие смолы с волокном. Другой взгляд заключается в том, что смола просто проникает внутрь волокна, где осаждается механически. Процесс проводится пропиткой ткани раствором смолы, содержащим катализатор, с дальнейшей обработкой для окончательной поликонденсации. При этом происходит обычно увеличение жесткости и прочности ткани [195]. Изменением условий обработки и применением тех или иных добавок можно изменять физико-механические свойства полученной ткани [118, 196—201]. Недостатком этого метода придания тканям безусадочности и несминаемости является постепенное удаление смолы из ткани. Пакшвер [202] указывает, что при повышении температуры обработки устойчивость аппрета Возрастает. [c.195]

    Как известно, резины, полученные методом терморадиационной вулканизации, обладают рядом преимуществ по сравнению с термическими вулканизатами повышенной износостойкостью, сопротивлением старению и другими ценными эксплуатационными свойствами [1]. Однако в процессе терморадиационной вулканизации резино-кордпы х изделий заметно ухудшаются физико-механические свойства капронового корда. Кроме того, прочность связи между кордом и резиной в образцах, вулканизованных терморадиационным методом, ниже, чем в образцах, вулканизованных обычным термическим методом. Это определяет необходимость модификации капронового корда с целью повышения его радиационной стойкости и адгезии к резине. [c.171]

    В настоящее время мировая выработка метакриловых и акриловых полимеров достигла широкого масштаба, что можно объяснить прежде всего их замечательными оптическими свойствами, идеальной прозрачностью, повышенной атмосферостойкостью, твердостью, ударной прочностью, устойчивостью к бензинам и маслам и другими качествами, по которым они превосходят такие пластмассы, как полистирол, поливинилхлорид, иоливинилаце-тат, ацетат целлюлозы и др. Особенно высокими физико-механическими свойствами обладает полиметилметакрилат, получивший из всех акриловых смол самое важное техническое значение. Акриловые и метакриловые полимеры легко окрашиваются во всевозможные цвета. Акрилаты и метакрилаты можно полимеризовать или сополимеризовать всеми известными методами, что расширяет ассортимент производимых промышленностью акриловых полимеров. [c.12]

    На рис. 1У.41 приведена зависимость коэффициента трения пенополистирола от давления при различных температурах. Из рисунка видно, что стабилизация коэффициента трения происходит при высоких температурах раньше, чем при низких. С ростом нагрузки коэффициент трения возрастает, стремясь к определенному пределу для каждой температуры, который обусловлен физико-механическими свойствами материала в данных конкретных условиях. Например, при 20 °С и давлении 0,7 кгс/см2 коэффициент трения равен 0,36, а при 105 °С и таком же давлении коэффициент трения не превосходит 0,15. Это объясняется тем, что с повышением температуры выше температуры стеклования пенополистирола резко изхменяются механические свойства полимера падает прочность, возрастает относительное удлинение и т. д., что вызывает значительное уменьшение удельной силы трения. Уменьшение удельной силы трения может быть столь велико, что увеличение фактической площади контакта с ростом температуры не приводит к увеличению силы трения. Это необходимо учитывать при расчетах режимов формования пенопласта непрерывным методом. [c.142]

    За последнее время достигнут значительный прогресс в разработке и освоении качественных сталей для трубопроводов ответственного назначения созданы и внедрены новые технологические приемы изготовления труб. Несмотря на это, статистика отказов свидетельствует о том, что проблема предотвращения хрупких, коррозионных, усталостных и прочих разрушений остается исключительно актуальной. Это связано с тем, что существующие нормы и правила расчета на прочность не учитывают в комплексе всего многообразия конструктивнотехнологических и эксплуатационных факторов, в частности, двухосного напряженного состояния трубы, повторно-статического характера нагружения, наличия различного рода дефектов, изменения физико-механических свойств материала под влиянием длительно действующих температурно-силовых полей и коррозионно-активных сред. Очевидно, что с целью повышения точности и достоверности применяемые расчетные методы должны дополняться результатами экспериментального изучения закономерностей разрушения в трубопроводных материалах. В этой связи, одной из важнейших задач в деле обеспечения прочности, долговечности и экологической безопасности трубопроводов является совершенствование критериев и методов оценки работоспособности металла и сварных соединений труб в условиях, наиболее полно отражающих реальные. [c.4]

    Присутствие газовых примесей в металлах и сплавах сильно влияет на физико-химические свойства и эксплуатационные качества последних. Так, например, известно, что введение элементов внедрения в л1еталл приводит к повышению его жаростойкости, сопротивления ползучести и оказывает сложное влияние на прочность. Имеется возможность регулирования механических свойств сплавов и их поведения при различных температурах путем использования закономерности взаимодействия элементов внедрения с дислокациями и перераспределения примесей по формам нахождения в зависимости от внешних условий. Имеются многие примеры негативного влияния газов на свойства металлов. Так, примеси водорода, кислорода, азота и углерода вызывают переход тугоплавких металлов из пластичного состояния в хрутткое. Можно выделить три основных направления в использовании методов определения газов в металлах. [c.930]

    Развитие энергетики, промьш1ленности, строительства, сельского хозяйства, всех видов новой техники, здравоохранения, совершенствование быта и обеспечение питания человека требует производства во все возрастающих количествах материалов, веществ и препаратов с определенным комплексом механических, физических, химических и биологических свойств. Превращение одних веществ (сырья, полуфабрикатов) в другие, обладающие полезным и заданным комплексом свойств,— главная задача химии и химической технологии. Прогресс техники требует непрерывной работы по повышению прочности, жаропрочности, теплостойкости и химической стойкости конструкционных материалов. Исследования последних лет по химии и физике твердого тела свидетельствуют о широких возможностях дальнейшего повышения прочности и сулят в недалеком будущем получение материалов, обладающих почти теоретическим максимумом прочности, упругости и теплостойкости. Уже сейчас в небольшом масштабе реализован способ получения высокопрочных композиционных материалов на основе нитевидных кристаллов ряда таких веществ, как окись алюминия, окись магния и т. п. Огромное внимание приковано к древнейшему из материалов — стеклу. Разработанные методы упрочнения стекла обещают большой экономический эффект, а уя<е реализованная возможность использования металлургических шлаков для производства ситаллов позволит применить их для массового потребления. Из экспериментальных достижений последних лет следует, что значения прочности обычных межатомных связей не ставят границу максимальной прочности материала. Так, уже теперь при применении высоких давлений и температур можно получать искусственные материалы с твердостью, большей чем у алмаза. [c.150]


Смотреть страницы где упоминается термин Физико-механические свойства методы повышения прочности: [c.94]    [c.56]    [c.235]    [c.99]    [c.386]    [c.339]    [c.206]    [c.110]   
Пенополимеры на основе реакционноспособных олигомеров (1978) -- [ c.194 , c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Метод свойствам

Методы прочность

Механическая прочность

Физико-механические свойства



© 2024 chem21.info Реклама на сайте