Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний определение озолением

    Определение содержания истинного белка в дрожжах основано на отделении истинного белка от других азотосодержащих веществ путем осаждения его сульфатом меди в щелочной среде. В растворе остаются аминокислоты и азотосодержащие вещества. В осадке определяют азот методом Кьельдаля с применением сильного катализатора и, пользуясь эмпирическим коэффициентом 6,25, вычисляют содержание истинного белка в анализируемой пробе дрожжей. Озоление дрожжей производят в присутствии спиртового раствора уксусно-кислого магния в муфельной печи, нагретой до 800 °С. При производстве гранулированных дрожжей определяют размеры гранул микрометром или штангенциркулем и просеиванием остатка на сите. [c.334]


    В качестве добавок при озолении фосфорсодержащих образцов применяют вещества основного характера, например, нитраты в виде этанольного раствора нитрата магния при озолении молока [5.388]. При определении фосфора в нефти добавляют оксид цинка и обугливают пробу [5.389—5.391 ]. При озолении таких фосфорорганических соединений, как трибутилфосфат, трикрезилфосфат или трифенилфосфат, возможны потери фосфора даже при добавлении карбоната натрия или оксида цинка [5.392]. Для анализа таких соединений применять метод озоления не следует. [c.150]

    Для определения в нефтепродуктах (от лигроина до кокса) 23 элементов в интервале концентраций 1—5000 нг/г пламенным атомно-абсорбционным методом перед озолением к пробе добавляют серную кислоту и сульфонат магния или калия. Навеску нро бы (лигроина 75 г, керосина 35 г, печного топлива 20 г, тяжелого газойля 10 г, кокса 2 г) в платиновом тигле смешивают с сульфонатом магния или калия (количество не указано), добавляют 5 капель серной кислоты, нагревают до полного испарения жидкой части и сухой остаток прокаливают в муфельной печи при 650 °С от 30 мин (лигроин) до 4 ч (кокс) [157]. [c.85]

    Неоднозначное влияние на результаты анализа наблюдается также при определении фосфора после Обработки графитовой печи HGA-2100 лантаном. Для обработки в печь вводят 10 мкл 1%-ного раствора нитрата лантана и проводят термообработку по программе сушка 30 с при 120 °С, озоление 40 с при 1350 °С, атомизация 10 с при 2700 °С. Если фосфор в анализируемом растворе находится в форме гидрофосфата калия, то в результате модификации атомизатора абсорбционный сигнал усиливается примерно в 5 раз, а если в форме пирофосфата магния — ослабляется примерно на 30% [269]. [c.155]

    Прямое определение мышьяка в нефтепродуктах методом непламенной атомизации невозможно из-за высокой летучести его органических соединений. Уже на стадии озоления практически весь мышьяк улетучивается. Разработан экстракционно-атомно-абсорбционный метод определения мышьяка в бензиновых фракциях нефти — сырье для каталитического ри-форминга [163]. Метод основан на обработке пробы иодом для перевода мышьяка в растворимую в воде форму. Для предотвращения потерь мышьяка на стадии озоления в графитовой печи экстракт обрабатывают нитратом магния. В делительную воронку вместимостью 25 мл наливают пробу бензина, содержащего не меньше 10 нг мышьяка, доводят объем раствора до 10 мл гептаном, добавляют 0,5 мл 1%-ного раствора иода в толуоле и встряхивают несколько секунд. Через 1 мин вводят 10 мл 1%-ной азотной кислоты, встряхивают [c.171]


    МПа с нагревом (температура и длительность не указаны). Оксид мышьяка поглощается раствором (20 мл) нитрата магния в 0,5 н. азотной кислоте. В графитовую печь вводят 20 мкл раствора и после сушки и озоления атомизируют в атмосфере аргона. Аналитическая линия Аз 197,3 нм. Ванадий, натрий, железо и хлор при высоких концентрациях мешают определению мышьяка. Эти помехи значительно снижаются в присутствии нитрата магния, который, кроме того, предотвращает потери мышьяка при концентрировании раствора нагреванием. Выход мышьяка составляет 94,3%- На анализ с использованием кислородной бомбы затрачивается примерно в 10 раз меньше времени, чем при озолении с серной кислотой. В 14 образцах нефтей различных месторождений содержание мышьяка составляет от 10 до 1000 нг/г. В сахалинской нефти обнаружено 11— [c.200]

    Подробные исследования процесса озоления нефтепродуктов имеются в работах [37, 63]. Для определения содержания металлов в их органических солях химическим методом пользуются одним из следующих способов. Пробу озоляют прямым или кислотным методом, золу растворяют и раствор анализируют. По другому способу пробу сжигают и по массе окисла подсчитывают содержание металла. При кислотном озолении расчет ведут по массе полученного сульфата. Иногда соединения восстанавливают водородом до металла и определяют его массу. Для получения окислов алюминия, бария, ванадия, кальция, меди, железа, свинца, магния, марганца, серебра, натрия, никеля, калия, стронция и цинка пробу заворачивают в фильтровальную бумагу и прокаливают при 700—1100°С [64]. [c.18]

    Ход определения. Навески масла (0,5 г для нерафинированных и 1,3 г для рафинированных масел) и 0,75 г окиси магния, взятые с точностью 0,0002 г, выдерживают в фарфоровом тигле в сушильном шкафу при 200 °С до прекращения выделения дыма. Затем тигель нагревают на открытом огне до полного озоления навески (должен отсутствовать остаток черного цвета) и прокаливают в муфельной печи при 800—900 °С в течение 1,5 ч. Содержимое тигля охлаждают, смачивают 20 мл воды и растворяют при нагревании в 20 мл 2 н. серной кислоты. При анализе рафинированных масел раствор количественно переносят в мерную колбу емкостью 100 мл, при анализе нерафинированных масел его сначала разбавляют водой до 500 мл и отбирают 50 мл этого раствора в мерную колбу емкостью 100 мл. К раствору добавляют 20 мл молибденового реагента, выдерживают смесь 30 мин на водяной бане и охлаждают при комнатной температуре. Доводят объем раствора до метки водой и измеряют его оптическую плотность, как описано для построения калибровочного графика. [c.108]

    Погрешности анализа, обусловленные взаимодействием золы с материалом тигля, можно избежать выбором подходящего материала тигля и озолением при возможно низкой температуре. Приводимые в литературе рекомендации в ряде случаев противоречивы. При определении щелочных и щелочноземельных металлов следует использовать платиновые тигли [5.37, 5.38], однако, если в золе присутствуют легко восстанавливаемые элементы (благородные металлы, медь, свинец и теллур) их применять не рекомендуется. Очень часто используют кварцевые тигли, но они не пригодны при определении калия [5.39], кальция и магния [5.40]. Тигли из родия рекомендованы для озоления проб, остаток которых содержит фосфаты [5.41 ]. Фарфоровые тигли применяют реже, чем кварцевые, поскольку возможно взаимодействие между компонентами золы и глазурью. [c.135]

    Кремний. При определении кремния в крови и тканях животных пробы озоляют в платиновых тиглях без добавок (5.451 ]или с добавлением карбоната натрия [5.218—5.220]. Для озоления крови рекомендуют использовать смесь карбоната натрия и фосфата аммония [5.218]. Нефть медленно озоляют в платиновой чашке без добавок [5.63] или в присутствии сульфоната магния при 650 °С 5.61]. [c.143]

    Сравнительное изучение сухого озоления и других методов разложения за некоторым исключением [5.145, 5.203] показало хорошую сходимость результатов при определении магния [5.135, 5.142, 5.158, 5.160]. [c.143]

    В составе золы растений всегда находятся алюминий и железо. Особенно много их в корнях растений, лесных подстилках и в стенном войлоке. Их присутствие в растворе после озоления мешает определению кальция и магния. Поэтому, прежде чем приступить к анализу Са и Mg, проводят отделение полуторных окислов. [c.69]

    Ткани. Определению кальция п магния в тканях атомно-абсорбционным методом посвящено большое количество работ. Некоторые исследователи использовали методику сухого озоления, другие—мокрого озоления концентрированными кислотами. В ряде статей указывается на применение второго метода с растворением ткани в азотной кислоте и последующим непосредственным определением магния [261, 288]. Однако большинство авторов [289], определявших содержание магния в тканях, предпочитали проводить озоление ткани в течение нескольких часов при 500 или 550° С и далее растворять остаток в разбавленной НС1 и HNO3. Многие авторы применяли эту же методику для определения в тканях кальция, с той лишь разницей, что после озоления остаток растворяли в хлориде лантана, хлориде стронция [261, 289] или в ЭДТА [275]. [c.154]


    В работе [1913] были изучены методы определения металлов в полимерах с использованием рентгенофлуоресцентной спектроскопии. Хотя авторы работы рассматривали анализ только полибутадиена, полиизопрена и сложных полиэфиров, эти методы применимы и к анализу полимеров другого типа, например полиолефинов. Было проведено определение хрома, марганца, железа, никеля, кобальта, меди и цинка. Образцы озо-ляли, золу растворяли в азотной кислоте, а затем проводили рентгенофлуоресцентный анализ. При этом не было необходимости в разделении элементов, поскольку при концентрациях до 10 МЛН они не мешают определению других металлов. Для того чтобы устранить взаимное влияние элементов и полимерной матрицы, авторы предпочли не проводить анализ твердого полимера, а растворить его. Использование для растворения азотной кислоты связано с тем, что в отличие от других минеральных кислот она не поглощает рентгенофлуоресцентного излучения анализируемых металлов. Как правило, расхождение между расчетными и экспериментальными значениями не превышало 10%. Наибольшая ошибка характерна для определения хрома. По данным ряда исследователей, результаты количественного определения будут намного завышены, если вместо сухого озоления проводить озоление с использованием серной кислоты [1917], элементной серы [1914], нитрата магния [1917, 1918], бензол- и ксилолсульфокислот [1915, 1916]. Как было установлено в работе [1913], преимущества сухого озоления связаны с тем, что процесс проводится достаточно медленно и при относительно низких температурах, не превышающих 550 °С. [c.373]

    Привлекает внимание другой метод, в котором сухое озоление проводят, пропуская пары азотной кислоты и воздуха над анализируемым образцом, обработанным нитратом магния . Свинец выделяют, экстрагируя его диэтилдитиокарбамат (стр. 502) органическим растворителем и проводя окончательное определение стандартным дитизоновым методом, где в качестве растворителя берут четыреххлористый углерод. Извлечение составляет примерно 90%, однако потери свинца можно уменьшить, обрабатывая стандартные растворы так же, как и анализируемый. [c.518]

    Х(ля уменьшения потерь германия рекомендуют производить озоление угля с добавкой карбоната натрия нри 600" 1102, 260] нли карбоната кальция при 1000° [264]. Способ озоления угля без потерь германия, пригодный гакже к коксам и каменноугольным смолам, состоит в сжигании навески пробы в смеси с сухими окислителями — окисью и нитратом кальция [99] или окисью и нитратом магния 1100]. Озоление с магниевой смесью протекает медленнее, но более спокойно. Описан способ мокрого сожжения угля нагреванием со смесью бихромата калия, серной и фосфорной кислот. После разложения пробы германий отгоняют с соляной кислотой 1125]. Мокрое сожж ение в колбе Кьельдаля со смесью серной и азотной кислот рекомендовано также для определения германия в 6H0jrorH4e KHx материалах растительного происхождения [431. [c.417]

    Не мешают анионы 1 , Br , BO3 , S0 , S2O3 [3], до 0,25 г S0 , 0,24 г SIO3 [842], оксалаты [28, 567, 1005]. Яблочная и молочная кислоты влияют мало [32]. Мешают ионы СЮ при концентрации 0,05 % и перекись водорода при концентрации > 0,3% [207]. Ацетаты, тартраты, цитраты ослабляют окраску растворов [30, 32, 33, 967, 1261]. Этанол и многоатомные спирты мешают образованию окрашенного соединения магния [399]. Углерод или его соединения занижают результаты определения магния, поэтому при анализе материалов органического происхождения необходимо полное озоление проб [952]. [c.124]

    При анализе фторсодержащих. материалов особое значение имеет способ взятия пробы, что связано с предотвращением потерь фтора в виде летучих фтористого водорода и тетрафторида кремния. Перед открытием или определением фтора проба должна быть высушена или кальцинирована, а органические образцы озолены без потери фтора. Для этого применяются фиксаторы — окись кальция [446, 508, 514, 696, 741], иногда перекись кальция. Однако при этом не исключена возможность некоторой потери фтора [241, 335, 374—376, 581, 584, 778, 864]. При озолении npo6i.i в присутствии ацетата магния при 500° С были получены более надежные результаты [600, 604, 780], чем при использовании и -,-вести [78, 113, 114, 336, 368, 369, 385, 765]. В качестве фиксаторов применяют также окись или перекись магния [559, 612, 626. 783 , либо нитрат алюминия [389, 390, 454], Во всех случаях процесс проводят в платиновой или никелевой посуде [647, 669, 702, 777, 797, 812, 816, 852, 856, 865]. [c.23]

    Растительный материал и вытекающий из кювет раствор во всех опытах подвергался химическому анализу. Азот определяли после озо-ления растительного материала с серной кислотой колориметрически,с реактивом Несслера, общий фосфор из той же озоленной смеси — также колориметрическим методом, кальций и магний — трилоном Б. Данные ПС определению азота и фосфора в растениях томатов и огурцов из опыта 1 приведены в табл. 5. [c.249]

    Для определения железа, хрома и меди в маслах и смазках с озолением пробы е качестве коллектора иопользуют оксид магния [289]. К оксиду магния добавляют равное количество смеси угольного порошка с внутренним стандартом (угольный порошок-f-0,35% кобальта в форме оксида) и тщательно растирают. Эталоны готовят из оксидов определяемых элементов на основе смеси коллектора с внутренним стандартом. Концентрация металлов в эталонах 0,001—1,0%. В навеску пробы вводят смесь коллектора с внутренним станда,ртом (10 1) и нагревают на электроплитке до полного испарения масла. Затем сухой остаток прокаливают в муфельной цечи 1 ч яри 550 °С и золу растирают в агатовой ступке. В канал (диаметром 2,5 мм и глубиной 5 мм) электрода вводят 25 мг цорошка и анализируют в дуге переменного тока силой 6 А. Аналитический промежуток 2 мм, экспозиция 30 с, ширина щели спектрографа ИСП-28 равна 35 мкм. Использованы следующие аналитические линии Fe 259,96/Со 258,72 Сг 313,20/Со 326,08 Си 324,75/фон. При озолении масла с оксидом магния обнаружено меди на 10—20% больше, чем при прямом озолении без коллектора. Относительная ошибка метода 7%. [c.188]

    При прямом озолении пробы германий почти полностью улетучивается. Для его сохранения медленно сжигают нефтепродукт с окислительной смесью, и легколетучий двухвалентный германий переходит в среднелетучий четырехвалентный. В работе [50] описан метод озоления нефтепродукта для колориметрического определения содержания германия, по которому 30 г пробы тщательно смешивают в фарфоровой чашке диаметром 100 Л1Л1 с 30 г смеси азотнокислого магния и окиси магния (2 3). Твердый или высоковязкий продукт осторожно нагревают до размягчения. Смесь сверху засыпают тонким слоем окиси магния и выдерживают б—7 суток при температуре не выше 200 °С. При этом следят, чтобы из чашки не выделялся дым. Затем чашку переносят в холодный муфель, где производят медленное доокисление пробы до полного обесцвечивания содержимого чашки. [c.211]

    Если сильноосновные аниониты используются нри анализе биологических материалов, то в большинстве случаев перед разделением необходимо удалить органические вещества путем сухого или мокрого озоления. Как правило, сочетание мокрого озоления хлорной кислотой с ионообменным разделением нежелательно, так как ионы перх.пората столь прочно удерживаются ионитом, что его регенерация становится затруднительной. Если определению подлежат только кальций и магний, то следует нредночесть сухое озоленпе. При анализе некоторых растворов, содержащих органические вещества, щелочноземельные металлы можно определить непосредственно в вытекающем растворе. В качестве примера упомянем метод определения кальция в моче титрованием, принадлежащий Фоссу [57]. [c.264]

    Сухое озолённе. В большинстве случаев озоление пищевых продуктов проводят при температуре 450—550°С в течение 4—16 ч. При более низких температурах озоление затягивается, а при более высоких возможно улетучивание некоторых элементов, например, железа [32, 68]. При озолении продуктов, содержащих заметные количества хлоридов (хлеб, консервы и др.), наблюдаются потери Ре, 5Ь, РЬ, А1 и Си при обычных режимах озоления за счет образования относительно летучих хлоридов этих металлов [3, 32, 67, 68]. В этих случаях озоление проводят таким образом, чтобы перевести элементы в менее летучие нитраты или сульфаты [68, 74]. Чаще всего перед озолением к образцу добавляют нитрат магния или другие соли азотной кислоты, или смачивают образец разбавленной (1 1) азотной кислотой или разбавленной серной кислотой [68, 74, 76]. Добавки нитратов, кроме уменьшения потерь, ускоряют озоление [36]. В зависимости от элемента добавку производят не только перед озолением, но иногда после обугливания или после получения бурой золы [36, 45, 70]. Более подробно способы сухого озоления будут указываться при рассмотрении методов определения каждого элемента. [c.224]

    Ход анализа. Навеска сухого растительного материала (100— 200 лг), предварительно измельченная и просеянная через сито с отверстиями 0,25 мм, озоляется сухим способом в муфельной печи при 400—500°. После озоления в остывшие тигли добавляют 1— 2 капли дистиллированной воды и 5—7 капель концентрированной НС1. Затем тигли помещают на слабую электроплитку с закрытой спиралью и производят постепенно выпаривание (без кипения) почти досуха. В тигли наливают горячую дистиллированную воду (7—9 мл) и снова производят выпаривание при тех же условиях. Эта операция производится 2—3 раза до полного освобождения от НС1. Далее осадок из тигля переносят в мерную колбу на 25— 50 мл (в зависимости от содержания магния). Раствор фильтруют через складчатый фильтр в сухую колбу. Полученный фильтрат подщелачивают 10%-ным раствором NaOH до pH 10 и используют для спектрофотометрического определения. [c.120]

    Бериллий. Сообщается о потерях бериллия при сухом озолении проб [5.68, 5.69], что можно объяснить или ненадежностью аналитического метода его определения, или неполным растворением золы [5.70—5.72]. При озолении к пробе можно добавить сульфонат магния [5.61 ], но это не обязательно. Озоление следует проводить в платиновых сосудах. Золу растворяют более длительное время, чем обычно, в кон1дентрированной кислоте, например 10 Л-1. хлороводородной или концентрированной хлорной кислотами [5,72], или во фтороводородной кислоте [5.71, 5.73], или сплавляют с карбонатом натрия [5.74], В последнем случае бериллий выделяется совместно с кремниевой кислотой. [c.137]

    Сера. При определении серы в органических материалах с использованием метода сухого озоления возникают осложнения, связанные с тем, что сера может находиться или в виде летучих соединений, или соединений, из которых образуются летучие соединения, такие как HgS, метилтиол, горчичное масло, теряемые при обычном высушивании пробы [5.338, 5.339]. Нет полной уверенности в том, что потерь серы можно избежать введением ацетата кальция [5.340], карбоната натрия [5.340, 5.341 ] или нитрата магния [5.342]. В некоторых работах сообщается, что удовлетворительные результаты получаются при озолении с добавками ацетата магния [5.54[, нитрата магния [5.343, 5.344] или карбоната кальция [c.148]

    Для определения фосфора в органических соединениях широко используют химические, физико-химические, а также физические полумикро- и микрометоды [244, 246, 257, 260, 320—328]. Основными способами минерализации являются сожжение в колбе, наполненной кислородом [270, 271, 294, 296, 329—333], сожжение в трубке в токе кислорода, позволяющее определять С, Н и Р из одной навески, разрушение смесями кислот в открытой системе типа Кьельдаля или в запаянной трубке (окисление по Кариусу) [28, 146, 295, 300, 301, 334—337], сплавление с щелочными агентами в микробомбе или в калориметрической бомбе [4, 338—343]. Предложены восстановительные способы минерализации с использованием металлов и сплавов (А1, К, Мд, 2п) 1[21, с. 252 314, с. 228 344 345]. В последние годы установлена возможность определения фосфора после озоления вещества в низкотемпературной плазме [257—259]. Анализ заканчивают определением фосфора в виде ортофосфат-иона, используя методы неорганического анализа. Обязательной заключительной стадией минерализации является гидролиз фосфорсодержащих продуктов разложения с количественным переводом их в РО4 . Весовыми формами являются пирофосфат магния, фосформолибдат аммония или комплексы их с органическими осадителями (хинолин, стрихнин и т. д.). Комплексы можно определять титриметрически, используя растворы нитрата лантана, уранилацетата и церия. [c.174]

    Влияние натрия, калия, кальция и фосфатов незначительно и полностью устраняется добавлением в растворы 10 мг мл ЭДТА или 5 мг мл стронция. Результаты определения магния, полученные тремя разными путями (прямое разбавление образца, озоление образца с последующим добавлением нескольких капель дистиллята, разбавление и удаление протеинов 0,05 н. уксусной кислотой), хорошо согласуются между собой, что доказывает правильность метода. Повторные анализы редко дают результаты, отличающиеся от полученных более чем на 2%. [c.135]

    Анализируемый образец подвергают озолению или осаждают д одержащийся в нем белок. Затем осаждают оксалат кальция, обрабатывая раствор избытком оксалата аммония в слегка кислой среде. Если кислотность раствора установить такой, чтобы значение pH лежало в пределах 5—6, то присутствие фосфатов и магния в количествах, эквивалентных количеству кальция, не мешает проведению анализа. Осадок отделяют фильтрованием, растворяют в кислоте и обрабатывают отмеренным избытком титррванного раствора сульфата церия. Не вступивший в реакцию избыток этого раствора определяют обратным титрованием раствором соли Мора. Метод может быть использован для определения 0,5 у кальция, причем ошибка не превышает 2%. Ошибка метода в изученных пределах (0,5—12 у) в среднем составляет меньше 0,5%. [c.170]

    Веществами, мешающими определению кальция и часто содержащимися в образцах биологического происхождения, являются фосфаты, небольшие количества магния и белок. Имеются указания 128, 30] на то, что определению кальция мешает также плазма крови, содержащая значительные концентрации холестерина и жиров. Фосфаты и магний образуют осадки только в щелочной среде. Поэтому, устанавливая pH раствора таким образом, чтобы избежать осаждения фосфатов и магния, можно устранить вредное действие этих примесей. На вредное влияние белка, которым обычно раньше пренебрегали [31, 32], впервые указали Ван-Сляйк и Сендрой [20] и другие [33]. Вредное влияние белка выражается в том, что в его присутствии часть оксалата кальция образует коллоид, который может проходить через фильтр, а также в том, что часть белка может попасть в осадок и обусловить избыток в расходовании окислителя. Поэтому перед определением кальция, безусловно, необходимо удалить белок из анализируемого раствора. При работе с очень малыми количествами анализируемого раствора, как было указано выше, озоление можно осуществить быстро и легко. Кроме того, для выделения белка с успехом можно использовать трихлоруксусную кислоту [20], а также разложить белок в жидкой фазе [34]. Озоление и разложение с помощью окислительного действия кислот приводит также к разрушению холестерина, что иногда существенно при проведении точных анализов [28, 30]. [c.173]


Смотреть страницы где упоминается термин Магний определение озолением: [c.227]    [c.8]   
Методы разложения в аналитической химии (1984) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Озоление



© 2025 chem21.info Реклама на сайте