Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллы дислокационная

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося вещества-зародышей кристаллов, которые способны расти. Рост кристаллов происходит наиболее легко на острых углах первоначальных зародышей. Эти зародыши и образующиеся затем кристаллы содержат определенные дислокации на поверхности роста, что приводит к наличию винтовой дислокации, в результате которой при большом увеличении наблюдается спиральная структура поверхности кристаллов. Дислокационная теория, основные положения которой изложены в работе [26], объясняет механизм роста кристаллов индивидуальных н-алканов и их смесей. [c.17]


    Впрочем, факт локализации деформации хорошо известен из исследований пластичности кристаллов. Дислокационный механизм пластической деформации и такие ее проявления, как полосы скольжения, являются прямым свидетельством локализации процесса деформирования. Иначе говоря, и процесс ползучести управляется событиями, которые разыгрываются в отдельных точках объема образца — там, где в силу гетерогенности материала или наличия в нем нарушений активационные явления протекают быстрее, чем в остальных местах. В локализации процесса ползучести можно усматривать качественную аналогию с процессом разрушения. [c.501]

    Дислокации, как и точечные дефекты, могут перемещаться по кристаллической решетке. Именно это обстоятельство служит основой объяснения пластической деформации кристалла. Дислокационные представления позволяют объяснить такие особенности пластического течения, как сравнительную легкость возникновения, необратимость, неоднородность, анизотропию и т. д. Движение дислокаций приводит к пластической деформации кристалла при очень малых усилиях. Механизм неупругой деформации неоднозначен — возможны варианты, описываемые в руководствах по физике твердого тела. Нас здесь в первую очередь интересует взаимодействие точечных и линейный дефектов и, следовательно, возможность проявления такой взаимосвязи в процессах неупругой деформации. [c.94]

    Рассмотрим массообмен между частицей и сплошной средой, когда сопротивление переносу сосредоточено в самой частице. В этом случае изменением концентрации во внешнем потоке можно пренебречь. Такие задачи будем называть внутренними. Так, если к внешним задачам относили определение коэффициентов массоотдачи, то к внутренним — нахождение кинетических коэффициентов роста и зародышеобразования кристаллов. Вид кинетических коэффициентов определяется из теорий роста, экспериментальных данных. Все существующие теории роста кристаллов можно разделить на три категории [33] 1) теории, описывающие рост кристаллов с чисто термодинамической точки зрения, имеющие дело с идеальными кристаллами (без дефектов решетки) 2) дислокационные теории, учитывающие, что источником ступеней при росте плоскостей кристалла являются дислокации 3) теории, описывающие рост кристалла, как кристаллохимические реакции на поверхности. [c.262]

    В первой дислокационной модели предполагается правильное распределение моноатомных ступеней на поверхности растущего кристалла, что проявляется в образовании гладкой поверхности. В действительности, однако, поверхность содержит множество дефектов, которые при росте приводят к возникновению шероховатой поверхности. Структура поверхности обусловливает двил<ение слоев и, следовательно, скорость роста. [c.274]


    Метод декорирования основан на образовании очень маленьких частиц в активных центрах твердых тел. Обычно при нагреве кристалла до определенной температуры вдоль дислокационных линий появляются частицы, которые можно наблюдать либо в проходящем, либо в рассеянном свете. Декорирование дислокаций возможно из-за более быстрой диффузии частиц вдоль дислокационных линий, преимущественного зарождения частиц на дислокациях, способности дислокаций служить источниками вакансий. Декорирующими частицами не всегда являются частицы примеси. Известны два способа декорирования деф тн ой структуры кристаллов. В одном случае исходный образец помещали в кварцевую ампулу, в которой создавали вакуум 0,66 Па. Затем ее запаивали, нагревали до температуры 350°С и выдерживали 1 ч. Во втором случае дефекты в кристалле декорировались после облучения образцов рентгеновским излучением. Вдоль дислокационных линий появлялись микроскопические поры. [c.160]

    По дислокационной теории скорость роста кристалла из расплава при небольших переохлаждениях выражается уравнением  [c.260]

    Дислокации образуются в процессе роста кристаллов, при пласти-ческой деформации, при наличии больших температурных градиентов. Выявление дислокационных искажений методом травления основано на том, что растворение начинается особенно легко в местах выхода дислокаций на поверхность. Здесь значительно снижается энергия отрыва атома с поверхности твердого тела. Скорость травления в мес- [c.107]

    Tax выхода дислокаций выше, чем в других точках кристалла. Поэтому здесь после травления образуются ямки. Форма основания ямки зависит от ориентации плоскости, в которой идет травление. Ямка представляет собой пирамиду с вершиной, уходящей в глубину пластины. Количество дислокационных ямок травления не зависит от времени травления. Однако при большой продолжительности травления [c.108]

    Рассмотренная дислокационная модель качественно удовлетворительно объясняет рост пленок в тонких НК из собственного беспримесного пара при малых пересыщениях сг. Вопрос о влиянии примесей на рост кристаллов нз собственного пара исключительно сложен и пока изучен недостаточно. Обычно предполагается, что примеси отравляют изломы и что только свободные изломы могут участвовать в процессе роста. [c.482]

    Рост из расплава. При росте кристалла из расплава движущей силой является относительное переохлаждение 8Т/Т = = (7 — То)/Т о на фронте кристаллизации. Поверхностная шероховатость кристалла, контактирующего с собственным расплавом, а также величина переохлаждения и определяют в основном вид зависимости скорости роста кристалла от 8Т/Т. Как показывает расчет, скорость роста кристалла может зависеть от ST/T линейно (модель нормального роста все поверхностные узлы активны), квадратично (модель дислокационного роста активными центрами являются, например, винтовые дислокации), экспоненциально (рост кристалла из расплава происходит по механизму двумерного зарождения). [c.484]

    Кристаллизация из пара через слой жидкости. Исследования кинетики роста НК и пленок с одновременным использованием газовой и жидкой фаз немногочисленны. Все они в основном сводятся к выявлению лимитирующих стадий процесса, к экспериментальному определению зависимости вида V (ЬТ). Так, например, при осаждении германия через слой расплавленного раствора германия в олове оказалось, что лимитирующей стадией являются процессы на границе расплав—кристалл и что скорость роста пленки пропорциональна 8Ту. Следовательно, вероятнее всего здесь реализуется дислокационный механизм. [c.485]

    В будущем, вероятно, появится возможность создавать приборы, основанные на электрических свойствах дислокаций в НК полупроводников. Известно, что дислокация обладает способностью собирать (адсорбировать) примеси в своем поле упругих напряжений. Это приводит к перераспределению примесей вблизи дислокаций в объеме НК (на этом, в частности, основан метод декорирования дислокаций) и появлению р—п-переходов. Формируя дислокационную структуру в полупроводниковом НК (в исходном состоянии совершенный кристалл), можно таким образом создавать сложные электронные схемы высокого разрешения. [c.504]

    Выполненные в рамках данного проекта исследования по влиянию магнитного поля на морфологию реакционного фронта при растворении молекулярных кристаллов аналогов не имеют. Основная часть работ по влиянию магнитного поля на дислокационную структуру и реакционную [c.48]

    В настоящей главе излагаются результаты экспериментальных работ по выращиванию монокристаллов германия с малым разбросом удельного сопротивления по радиусу слитка, с минимальным числом дислокаций. Приводятся результаты исследований температурного поля в расплаве в зависимости от конструкции нагревателя, от размещения тигля внутри него. Эффективность нагревателя, поля температур, сформированного в расплаве, оценивается в зависимости от качества полученного кристалла. Подробно рассматриваются схемы теплового экранирования, с помощью которых получены без-дислокационные монокристаллы. [c.205]


    Энергии неравновесной и равновесной границ, создающих одинаковый разворот кристаллов вдали от границы, различаются величинами энергии упругого поля и энергии взаимодействия между элементами зернограничной структуры. Конечно, это не означает, что если две границы имеют различные значения собственной энергии, то одна из них является неравновесной, поскольку энергия этих границ может быть разной из-за различия их кристаллографических параметров. Известно, что энергия границы зависит от параметров разориентировки зерен и плоскости залегания границы [202], в каком-то смысле, например, специальная граница более равновесна, чем произвольная. Однако далее мы будем рассматривать в основном неравновесное состояние границ, обусловленное присутствием дефектов дислокационного характера, и, используя термин неравновесная граница зерен , будем подразумевать только то, что такая граница имеет нескомпенсированные дальнодействующие напряжения, и на элементы зернограничной структуры действуют нескомпенсированные напряжения от других элементов структуры границы. Изучение указанного вида неравновесных границ имеет особый интерес, поскольку такие границы играют определяющую роль во многих процессах пластической деформации и рекристаллизации [ПО, 111, 146, 193, 203], а также, как будет показано ниже, в необычных свойствах наноструктурных материалов. [c.94]

    В процессе эксплуатации колонных аппаратов в условиях статических и малоцикловых нагрузок происходит эволюция дислокационной структуры образуются разрозненные дислокационные скопления, устойчивые полосы скольжения, ячеистая и фрагментированная (кристаллит разбит на микрообласти, разориентированные на углы порядка нескольких градусов) структуры. При этом изменяются и физико-механические свойства предел текучести, прочность, пластичность, коэффициенты упругости, трения, магнитные, электрические и тепловые свойства, а также скорость распространения упругих волн. Обнаружено, что образование фрагментированной структуры с "ножевыми" границами зерен приводит к появлению хрупкого излома при ударном разрушении. Количественный анализ поверхности разрушения показал, что доля хрупкой составляющей равна 20 - 30%. [c.18]

    Возможность роста нитевидных кристаллов алмаза под каплями металлов по механизму VLS экспериментально доказана. В то же время нельзя отрицать возможности роста по дислокационному механизму. Так, число кристалликов, выросших на поверхности затравочного монокристалла, близко к числу дислокаций в природном алмазе [97] и составляет приблизительно 0 /см . Алмазная пленка может наследовать дислокации подложки [98]. Кроме того, даже в самых чистых условиях проведения экспериментов, выделяющийся графит будет служить своего рода примесью, блокирующей рост нитевидного кристалла алмаза. Влияние примеси на рост нитевидных кристаллов рассмотрено в работах [99]. [c.109]

    В настоящем разделе рассмотрены корреляция между рельефом поверхности пинакоида и дислокационным строением кристалла, основные источники ростовых дислокаций в пирамидах < > и некоторые особенности реальной структуры кристаллов синтетического кварца. [c.89]

    Поскольку дислокации, особенно винтовые, тесным образом связаны с процессом роста кристаллов, интересно было изучить, не отражается ли дислокационное строение пирамиды <с> в морфологических особенностях рельефа поверхности роста пинакоида и, если подобное соответствие имеется, то нельзя ли использовать его в качестве критерия оценки распределения (а возможно, и плотности) дислокаций в кристалле. Оказалось, что для поверхности базиса в условиях нормального однородного роста характерно образование двух морфологически различных типов рельефа. [c.90]

    Холлокс и Смолмен [19, 44] изучили методом электронной микроскопии поведение образцов Ti o.g во время отжига. Материал деформировали при 1150°С и наблюдали в нем дислокационные диполи и удлиненные дислокационные петли. В процессе отжига дислокационные петли стягиваются в дорожки из маленьких петель, которые растут и срастаются (рис. 75 и 76). Если образец отжигался в течение 15 мин при 1400 °С, то в нем уже не обнаруживались дислокационные петли. Образцы отжигали до образования в кристалле дислокационной сетки. [c.162]

    Источниками дислокаций (до деформации) являются сегрегация примесей напряжение и дислокационные центры кристаллизации срастание раз.тично ориентированных зерен и субзерен межзеренное общение и др. В отоженном металле число дислокаций достигает Ю см . Пластическая деформация способствует увеличению плотности дислокаций на 5-6 порядков, движению дислокаций и их групп, включая границы зерен. В результате они приобретают сложную форму, увеличивается их длина, общая энергия и сопротивление скольжению. Выход дислокации на поверхность кристалла приводит к сдвигу на одно межатомное расстояние. Следовательно, суммарный сдвиг при начальной плотности дислокаций N0 = Ю5/см2 составит = Ю - Ю - 10- = 10- что соот- [c.78]

    Процесс кристаллизации начинается с выделения из пересыщенного раствора мельчайших частиц кристаллизующегося вещества — зародышей кристаллов. Они способны расти, причем рост кристаллов происходит наиболее легко на острых углах первоначальных зародышей. На микрофотографиях при большом увеличении наблюдается спиральная структура поверхности кристаллов ларафиновых углеводородов. Механизм роста кристаллов индивидуальных парафинов нормального строения и их смесей объясня- ет дислокационная теория 1[4, 5]. [c.118]

    Дислокационная теория росаа кристаллов из растворов [59]. Модель предыдущего раздела основана на предположении о том, что полную скорость диффузии определяет поверхностная диффузия модель удовлетворительным образом описывает кинетику роста кристаллов из газовой фазы в случае, когда градиент концентрации в объемной фазе можно считать пренебрежимо малым по сравнению с разностью концентрации в непосредственной близости от кристалла и равновесной концентрации. В случае, когда градиент концентрации в объемной фазе велик, процессом, определяющим полную скорость диффузии, является объемная диффузия. Этот случай, как правило, приходится рассматривать при кристаллизации из растворов (или из газовой фазы в присутствии инертного газа) [60]. [c.272]

    Дислокационные линии могут оканчиваться на поверхности кристалла или аа границе зерен, но не внутри криота иа. Поэтому дио локации йсег да образую замкнутые петли или же ветви на другах дислокациях и располагаются в виде неправильной с тки Фрагша [V. 8].  [c.6]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Не менее важное значение для получения надежных картин травления имеет правильная обработка поверхности образца. Обычно кристаллы шлифуются и механически полируются, однако иногда уместна электролитическая полировка. Для выявления дислокаций в поликристаллических образцах карбида ниобия шлиф обрабатывался после химического травления в ванне с раствором [пН2504 + тНЫ0з + рНР]. Полученные ямки, плотность которых 10 см-2, образовывали характерные субграницы. При многократном травлении их расположение практически не изменялось. Часто П0 виду и расположению ямок травления можно определить направление дислокационных линий. Так, при исследовании поликристаллических образцов природного кварца методом гидротермального травления были обнаружены плоскодонные и пирамидальные ямки. Плоскодонные ямки соответствовали промежуточному положению дислокаций. Применяя послойное травление, можно определить пространственное распределение линейных дефектов. [c.160]

    Третий из показанных на рис. 2.44, а импульсов соответствует процессу акселерационного типа. Когда дислокации противоположного знака сближаются и аннигилируют или дислокация выходит на поверхность кристалла и исчезает, их энергия преобразуется в упругую. Процессы сближения или выхода на поверхность дислокаций происходят с ускорением, отсюда название импульса этого типа. Энергия процесса аннигиляции дислокаций порядка Дж, длительность импульса — 10 с, ширина спектра— сотни мегагерц. Другие дислокационные источники имеют большую длительность и энергию (до 10 Дж). [c.173]

    Теория дислокаций исходит из того, что идеально правильный порядок расположения атомов (как это показано на рис. 94) в реальных кристаллах нарушается. Даже ничтожное отклонение от этого порядка может привести к тому, что в некоторых участках кристалла число атомов в соседних плоскостях неодинаково (рис. 95). Тогда вдоль всей плоскости скольжения АВ (в направлении, перпендикулярном плоскости чертежа) возникает дефект структуры, называемый дислокационной линией, или дислокацией. Если есть дислокации, атомные связи между плоскостями будут рваться под действием-Янещ-него усилия неодновременно, а поочередно. Следствием этого является передвижение дислокации из одного участка кристалла в другой. Когда дислокация выйдет на поверхность, там образуется ступенька атомного размера. Если на поверхность выйдет много дислокаций, [c.216]

    Электронно-микроскопические исследования выявили очень дефектную структуру кристаллов алита в клинкерах и твердых растворах 3S. Блочность кристаллов проявляется в виде ручьевых узоров со средним размером ячеек 200—400 нм, что вызвано пересечением трещинами скола системы винтовых дислокаций, ориентация которых одинакова. Распространение трещины происходит по определенным кристаллографическим плоскостям. Таким образом, зная расстояние между дислокационными линиями, можно определить плотность дислокаций в минерале. Движение сетки дислокаций в процессе излома кристалла и скопления их на границах раздела блоков вызывает образование характерной ячеистой структуры минерала. Другим компонентом дефектной структуры является образование ямок травления в местах выхода дислокаций. Ямки травления на кристаллах исследуемых образцов имеют форму пирамиды, а их размеры увеличиваются пропорционально длительности травления. Этот факт свидетельствует в пользу того, что ямки травления дислокационные, поскольку ямки травления недислокационного происхождения, как правило, имеют форму усеченной пирамиды и исчезают при продолжительном травлении. [c.237]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

    Исследовано влияние магнитного поля на дислокационную структуру молекулярных кристаллов ацетилсалициловой кислоты (аспирина) и п-ацетаминофена (парацетамола), широко применяющихся в фармации в качестве жаропонижающих, противовоспалительных средств. С помощью метода травления обнаружено, что магнитное поле смещает дислокации в кристаллах и, кроме того, влияет на морфологию реакционного фронта при их растворении. Для травления кристаллов аспирина была использована смесь растворителей этиловый спирт - четыреххлористый углерод, ямки травления на грани (001) имели форму параллелофаммов. В случае кристаллов парацетамола при травлении смесью уксусного ангидрида с четыреххлористым углеродом форма ямок травления на фани (010) была ромбической. [c.48]

    При равномерном осаждении металла на противоположные стороны углублений происходит геометрическое выравнивание. На формирование микрорельефа поверхности электроосажден-ных металлов влияют также особенности процесса электрокристаллизации. Размеры, форма отдельных кристаллов, ступени роста и дислокационные искажения — все это в совокупности определяет так называемую кристаллическую шероховатость. [c.268]


Смотреть страницы где упоминается термин Кристаллы дислокационная: [c.39]    [c.80]    [c.81]    [c.39]    [c.80]    [c.81]    [c.53]    [c.22]    [c.159]    [c.238]    [c.339]    [c.43]    [c.21]    [c.94]    [c.26]    [c.13]   
Основы техники кристаллизации расплавов (1975) -- [ c.65 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Дислокационная модель двойникования кристалла

Диффузионно-дислокационный механизм течения кристаллов

Мартенситный кристалл, дислокационная модель

Рост кристаллов дислокационный

Термоупругий мартенситный кристалл дислокационная модель



© 2025 chem21.info Реклама на сайте