Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакций многостадийных

    Кинетика процессов травления. Травление рассматривают как многостадийный процесс, включающий следующие этапы 1) диффузия реагента к поверхности 2) адсорбция реагента 3) поверхностная реакция 4) десорбция продуктов взаимодействия 5) диффузия продуктов реакции от поверхности. [c.101]

    Сложность изучения кинетики реакции в системе с двумя фазами состоит в том, что реагирующие компоненты могут распределяться между обеими фазами и скорость протекания реакций в каждой будет определяться концентрацией этих компонентов. Кроме того, в гетерогенных условиях реакция начинается и в некоторой части протекает на поверхности раздела фаз. Реагирующие вещества должны подойти к поверхности раздела, а продукты реакции отойти от нее. Следовательно, в общем случае скорость диффузии, а также возможности ее увеличения имеют большое значение для хода реакции в гетерогенной среде. Скорость превращения зависит поэтому рт скорости переноса реагирующих веществ из различных фаз в зону реакции, скорости химической реакции и быстроты удаления продуктов реакции из реакционной зоны. Причем скорость такого многостадийного процесса превращения определяется скоростью наиболее медленно текущей стадии процесса и общая закономерность обусловливается, в большей или меньшей степени, соотношением скоростей составляющих процессов. [c.66]


    Релаксационная кинетика многостадийной фермент-субстратной реакции. Проанализируем кинетику реакции с участием п промежуточных соединений [39, 42]  [c.210]

    Во-первых, авторы сочли целесообразным не выделять в отдельную главу вопрос о кинетическом уравнении химического процесса. Содержавшиеся ранее в этой главе параграфы, посвященные изложению общих принципов составления и использования кинетических уравнений для одностадийных и многостадийных реакций, предпосланы в виде отдельных параграфов в главах, посвященных рассмотрению кинетики реакций простых типов и кинетики сложных реакций. Вопрос о соответствии кинетического и стехиометрического уравнения реакции вынесен в гл. 11, в которой, как и в предыдущих изданиях, излагаются основные понятия химической кинетики. [c.5]

    Вследствие многостадийности большинства химических процессов даже случайное совпадение наблюдаемого кинетического закона с законом мономолекулярной, бимолекулярной и т. д. реакций еще не может служить доказательством подлинности того или иного механизма реакции. Поэтому для характеристики кинетики экспериментально изучаемых процессов вводится понятие порядок реакции, принципиально отличное от понятия молекулярность. [c.17]

    Макроскопическая кинетика. Макроскопическая кинетика изучает процессы образования вещества, в которых наряду с химическими реакциями учитываются явления диффузии или адсорбции. Иначе говоря, в макроскопической кинетике рассматриваются многостадийные гетерогенные процессы, у которых скорости химических превращений и диффузионных или адсорбционных явлений соизмеримы. [c.17]

    Следует подчеркнуть, что степенная зависимость от концентраций реагирующих веществ практически всегда выполняется для скоростей отдельных стадий химического процесса. При этом как порядок по отдельному веществу, так и суммарный порядок реакции всегда являются целыми положительными числами. Если речь идет об отдельной стадии процесса, то порядок ее никогда не превышает трех. Поэтому особо важное значение имеют в химической кинетике реакции первого, второго и третьего порядка [13]. В общем случае суммарный порядок многостадийной реакции может быть нулевым, дробным либо целым числом он определяется экспериментально. [c.64]

    Детонационная стойкость. Возможность детонации в двигателе, как отмечено выше, в значительной степени определяется химическим составом применяемого топлива. Для бензинов нефтяного происхождения — в первую очередь от их углеводородного состава. В условиях камеры сгорания в период подготовки рабочей смеси к сгоранию углеводороды, находясь в паровой фазе, подвергаются сложным химическим изменениям. Главную роль в этих изменениях, по-видимому, играют окислительные реакции многостадийного характера с цепным механизмом. Важное значение в кинетике таких превращений принадлежит активным промежуточным продуктам, получающимся в ходе реакций. Следует отметить, что температурные условия в камерах сгорания двигателей таковы, что протекают и чисто термические превращения углеводородов с образованием свободных радикалов, разного рода осколков молекул, свободного углерода и других продуктов. [c.103]


    С другой стороны изучение ферментативных реакций в стационарном режиме имеет ряд существенных недостатков. Наиболее важным из них является то, что стационарная кинетика дает весьма ограниченную информацию о детальном кинетическом механизме ферментативной реакции. Стационарная кинетика, отражая лишь лимитирующие стадии процесса, практически не дает информации о быстрых , нелимитирующих стадиях превращения субстрата в активном центре фермента. Определение элементарных констант скорости многостадийной ферментативной реакции из данных стационарной кинетики не представ-ляется.возможным. Действительно, кинетика каталитической реакции, включающей п промежуточных соединений (схема 5.16), описывается 2 п + 1) константами скорости. Стационарная же скорость этой обратимой реакции независимо от числа промежуточных соединений, принимающих участие в механизме реакции, дается уравнением (см. гл. VI) [c.174]

    Однако в большинстве случаев реакции многостадийны. Для многостадийных реакций порядки реакции по реагентам, как правило, не совпадают с стехиометрическими коэффициентами, а общий порядок реакции не равен сумме стехиометрических коэффициентов (см. 7.3). Соответственно в этом случае для расчета скорости реакции используют кинетическое уравнение (7.3), а не его частный случай — закон действующих масс для кинетики [см. уравнение (7.5)]. [c.170]

    Методы релаксационной кинетики в современном виде -мощное оружие в исследовании многостадийных фермент-субстратных реакций. Ниже анализируется кинетика реакции с участием п промежуточных соединений  [c.177]

    Экспериментальные данные по кинетике реакции получали в виде зависимости концентрации озона в газовой фазе на выходе из реактора от времени озонирования. Характерный вид кинетических кривых показан на рис. 1, из которого следует, что взаимодействие исследованных соединений с озоном является многостадийным процессом, скорость которого в значительной степени зависит как от природы окисляемого вещества, так и от pH среды. [c.89]

    Метод полного кинетического анализа более предпочтителен, поскольку он может быть использован для того же самого процесса вне зависимости от конфигурации реактора и условий протекания процесса. Статистический метод может оказаться единственно возможным в тех случаях, когда нет времени для исчерпывающего изучения кинетики, когда в реакции участвует слишком большое число реагентов или она многостадийна, а также при недостаточно выясненных каталитических воздействиях. [c.74]

    Синтез механизмов реакции на основе стехиометрического анализа системы. Роль второго этана в общей ППР для определения механизма и кинетики химической реакции исключительно велика, ибо необоснованно выбранная или неполная система гипотез о механизме реакции не может привести к построению адекватной модели химической реакции. Практика показывает при этом, что экспериментатор, исходя из интуитивных соображений, как правило, не может выбрать достаточно полную систему конкурирующих гипотез, особенно для многостадийных химических реакций. [c.173]

    За последние три десятилетия в результате систематического изучения кинетики и термодинамики реакций крекинга отечественные и зарубежные исследователи накопили обширные данные, позволяющие ближе подойти к решению указанной задачи. Наиболее важным результатом изучения проблемы термического крекинга явилось, по нашему мнению, изменение наших представлений о сущности термического крекинга. Господствовавший в конце двадцатых годов взгляд на крекинг алканов как на процесс независимого сосуществования нескольких параллельных реакций, протекающих по молекулярному механизму, уступил место представлению о термическом крекинге как сложном многостадийном, но едином радикально-цепном процессе, в котором часто молекулярные реакции играют уже второстепенную роль. [c.4]

    Совокупность всех стадий, из которых складывается процесс превращения исходных веществ в конечные продукты, называется механизмом химической реакции. В многостадийных реакциях общая скорость процесса определяется или лимитируется стадией с самой малой константой скорости. Такая стадия называется лимитирующей. В установившейся многостадийной реакции все стадии протекают с одинаковой скоростью, определяемой лимитирующим процессом. Выявление лимитирующей стадии в сложной многостадийной реакции — одна из важных задач химической кинетики. [c.314]

    Наиболее полную информацию о кинетике ферментативных реакций дает изучение их протекания в нестационарном режиме (см. гл. V). Исследование стационарной кинетики ферментативных процессов имеет ограниченное значение для понимания многостадийного механизма действия ферментов. Это связано прежде всего с тем,что в общем случае невозможно однозначно приписать экспериментально определяемые значения констант скоростей индивидуальным химическим стадиям (см. 1 гл. V и VI). Тем не менее кинетические параметры типа = = У/(Е](,и Кт.каж, которые, следуют из основного уравнения стационарной кинетики — из уравнения Михаэлиса (6.8), как показал Альберти с сотр. [1], позволяют оценить нижний предел константы скорости любой индивидуальной стадии ферментативной реакции [типа (6.9) или даже более сложного обратимого процесса (5.16)]. [c.268]


    С экспериментальной точки зрения нахождение константы скорости элементарного процесса является одной из самых фундаментальных задач. Эта задача решается без труда в случае простых реакций и неизмеримо усложняется в случае быстрых многостадийных процессов. За последние годы достигнут существенный прогресс в этом направлении, и исследование кинетики даже сложного процесса сегодня перестало быть камнем преткновения для исследователя. [c.3]

    В последнем разделе обсуждаются особенности других возможных стадий электродных процессов — химических и образования новой фазы, а также многостадийные и параллельные процессы и роль явлений пассивности и адсорбции органических соединений в электрохимической кинетике. В этом разделе отражены только самые основные особенности кинетики сложных процессов и приведено ограниченное число примеров практически важных электрохимических реакций. [c.3]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]

    В книге рассматриваются закономерности возможных стадий электрохимических реакций, особенности многостадийных и параллельных процессов, явление пассивности и роль адсорбции органических веществ в кинетике электродных процессов. Авторы остановились здесь лишь на самых основных особенностях кинетики сложных процессов и ограничились разбором некоторых характерных примеров. [c.3]

    На основании вышесказанного можно сделать вывод, что исследование кинетики и механизма многостадийных электродных процессов с участием органических соединений в общем случае представляет собой весьма непростую проблему. Многочисленность принципиально реализуемых в данной системе химических и электрохимических стадий и неоднозначность пути реакции выдвигают на первый план задачу выяснения химизма изучаемых процессов, т. е. установление природы их основных и побочных конечных продуктов, обнаружения и идентификации возможно большего количества нестабильных промежуточных продуктов реакции (интермедиатов). Решение такой, по существу, чисто химической задачи должно предшествовать решению вопросов физико-химических определению лимитирующих стадий процесса и их кинетических характеристик, нахождению связи между теми или иными параметрами и кинетикой суммарной реакции и ее отдельных стадий. [c.194]

    Характерной особенностью большинства многостадийных процессов в электрохимии органических соединений является сочетание электрохимических и химических стадий реакции, осуществляющихся последовательно или параллельно друг другу. Ниже на примере процессов катодного восстановления органических веществ, включающих химические стадии протонирования и димеризации, а также процессов каталитического выделения водорода и электровосстановления нитросоединений мы рассмотрим различные аспекты влияния химических стадий процесса на его кинетику, механизм и селективность, природу промежуточных продуктов и их устойчивость. [c.230]

    Гетерогенные каталитические реакции являются сложными многостадийными процессами. Мы рассмотрим здесь их химическую кинетику, предполагая, что процессы массо- и теплопереноса протекают много быстрее собственно каталитической реакции и состав реакционной среды можно считать постоянным независимо от удаления от поверхности катализатора. Строгое и детальное изложение современной теории кинетики гетерогенных каталитических реакций дано в [6—81. [c.74]

    В ряде теоретических работ сделана попытка модифицировать решение Зельдовича и Франк-Каменецкого (плп аналогичные решения) путем последовательного перехода от одной стадии к другой с учетом тепловыделения на данной стадии и потока тепла от других стадий (рассматривалась и более частная задача, когда имеется одна зона реакции и заданный поток тепла извне) (см. [203, 207 —212, 240, 241] и др.). При этом, однако, не удалось пока найти выражение, которое давало бы в явном виде зависимость скорости многостадийного горенпя от давления, начальной температуры и т. д. прн заданной кинетике реакции па каждой стадии. [c.69]

    Таким образом, ХОГФ функционального слоя формулируется как задача химической кинетики многомаршрутной многостадийной реакции. В общем виде такая задача была решена в [21]. Для анализа конкретных реакций необходимо знание полного набора констант скоростей отдельных стадий, что представляет экспериментальную задачу большой сложности, но для ее решения можно использовать подходы теории кинетики гетерогенного катализа [20]. [c.77]

    Скорость мономолекулярных гомолитических реакций не зависит от растворителя и равна скорости реакции в газовой фазе. В табл. 31 приведены опытные данные по кинетике распада N265 в различных растворителях (реакция первого порядка). Распад М Об — сложный, многостадийный процесс, но при достаточно высоких давлениях константа скорости процесса определяется константой скорости спонтанного разложения К аОд. Приведенные данные хорошо подтверждают вывод о независимости скоростей гомолитической мономолекулярной реакции от растворителя. Ниже приведены константы скоростей бимолекулярной реакции димеризации циклопентадиена в различных растворителях при 323 К. [c.601]

    В-четвертых, в современной кинетике, как и в других естественных дисциплинах, возрастает роль математических методов и инструментов. Широко используется самая разнообразная компьютерная техника для обработки результатов кинетических опытов. Все чаще кинетическая установка сочленяется с ЭВМ для оперативной обработки результатов кипетпческих измерений, т. е. идет непрерывный процесс математизации эксперимента, С другой стороны, для теоретического анализа и описания сложных многостадийных реакций широко используются математические методы, часто проводится численное решение соответствующей системы уравнений на ЭВМ. Накоплен известный опыт в области так называемых обратных задач химической кинетики, когда по совокупности исходных данных восстанавливают (конструируют) механизм сложной реакции в виде соответствующей схемы. Иными словами, современная кинетика все теснее переплетается и использует результаты соответствующих разделов математики теории диф( ренциаль-ных уравнений, графов и т. д. [c.368]

    Механизм превращений индивид/альных углеводородов в условиях каталитического крекинга изучен достаточно подробно, а в отношении переработки нефтяных фракций остается много нерешенных задач. Сложность изyчeн я кинетики и построения математических моделей таких процессов нефтепереработки, как каталитический крекинг, в ,1зывается многостадийностью процесса и использованием в качестве сырья смеси углеводородов различных классов. Скорость превращения промышленного сырья является величиной, характеризующей сумму различных реакций углеводородов. Поэтому при построении кинетической модели процесса каталитического крекинга обычно ограничиваются рассмотрением простых схем и реакций, протекающих по первому порядку, [c.250]

    Электрохимические реакции, встречающиеся в производстве, оказываются, как правило, многостадийными. Поэтому дальнейшая разработка теории многостадийных процессов является одной из важнейших задач электрохимической кинетики. Наряду с этим необходимо указать на проблему интерпретации рх-эффектов в условиях, когда специфическая адсорбция ионов раствора приводит к ускорению электродных процессов (например, выделение водорода в присутствии специфически адсорбирующихся анионов, электровосстановле-иие анионов в присутствии специфически адсорбирующихся катионов и др.). Так как при этом существенную роль играют локальные значения гр1-потенциалов из-за электростатического взаимодействия между реагирующими ионами и ионами двойного слоя, то решение этой проблемы непосредственно связано с развитием теории двойного слоя при специфической адсорбции ионов. [c.390]

    Наличие точного решения диффузионной задачи для системы электродов диск — кольцо подводит строго количественную базу для применения метода ВДЭК к исследованию кинетики многостадийных реакций. Теория позволяет найти связь между предельным током на кольцевом электроде, током на диске и константой скорости превращения фиксируемого на кольце промежуточного продукта в конечный. Конкретный вид решения уравнения конвективной диффузии определяется типом реакции, приводящей к исчезновению интермедиата. Точное аналитическое выражение для тока на кольце существует лишь для случая превращения нестабильного промежуточного продукта в конечный в результате гетерогенной (электрохимической или химической) реакции первого порядка. Оно может быть представлено в виде формулы (6.26) или посредством эквивалентного ей выражения [c.213]

    Как видно из предыдущих параграфов, вопрос о маршрутах в сложных химических реакциях и кинетических характеристиках реакций решается на основании экспериментальных данных в виде кинетических кривых скоростей реакций. Часто кинетика многостадийной реакции осложнена автокатализом, автоингибированием и химической индукцией. в таких случаях при решении обратной задачи полезно использовать кинетическую информацию не в виде кинетических кривых, а концентрационными соотношениями. Такие графики позволяют ответить на вопрос о том, как превращаются продукты (параллельно, последовательно и т. д.), каковы порядки реакции и относительные константы скорости. Ниже приводится ряд примеров. [c.59]

    Исследования кинетики различных взаимодействий показывают, что чаще других встречаются реакции первого, второго и иногда третьего порядков. Так, например, к реакциям первого порядка относится термическая диссоциация газообразного иода 12 — 21 (v=k , ) и разложение пентаоксида азота 2N2O5 — —4NO2-I-O2 (v = k n o,)- (Можно предположить, что реакция разложения N2O5 многостадийна и ее лимитирующая стадия, имеет первый порядок.) К реакциям второго порядка относятся, например, процессы [c.111]

    Поликонденсация — это многостадийный процесс, каждая стадия которого является элементарной реакцией взаимодействия функциональных групп. Постоянство константы равновесися К на всех стадиях поликонденсации, т. е. независимость ее от молекулярной массы соединения, в состав которого входит реагирующая функциональная группа, подтверждено многочисленными экспериментальными данными. Флори показал, что кинетика полиэтерификации аналогична кинетике этерификации монофункциональных соединений. Константа равновесия реакции образования полиэтилентерефталата равна 4,9 (при 280°С) и не зависит от молекулярной массы полимера. Константа равновесия реакции амидирования равна 305 (при 260°С). Принцип независимости свойств, связей и групп в макромолекулах одного полимергомологиче-ского ряда от молекулярной массы полимера лежит в основе современной химии высокомолекулярных соединений. (Исключение представляют лишь полимеры с системой сопряженных связей, см. с. 408.) [c.144]


Смотреть страницы где упоминается термин Кинетика реакций многостадийных: [c.314]    [c.2]    [c.2]    [c.179]    [c.208]    [c.212]    [c.65]    [c.223]    [c.2]    [c.2]   
Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика многостадийных

Реакции многостадийные



© 2025 chem21.info Реклама на сайте