Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ химический, кристаллов Agl

    Галогениды щелочных металлов. Существование слабых химических взаимодействий между ионами галогенидов щелочных металлов, как и в случае атомов инертных газов, вытекает из результатов анализа свойств кристаллов и паров этих веществ. Отличие от инертных газов здесь состоит не только в том, что ионы заряжены, но и в том, что анион и катион одного галогенида неодинаковы по размерам. Ранее возможность химического типа взаимодействий между ионами в кристаллах галогенидов щелочных металлов не учитывалась. Ионы рассматривались как химически насыщенные частицы. Взаимодействие между ионами в существенных чертах предполагалось парным, так что полная энергия кристаллической решетки считалась суммой энергий взаимодействия ионов, взятых попарно. При этом учитывались все возможные парные комбинации ионов. [c.88]


    Рассмотрев кратко химическое строение полимеров, перейдем к объемному изображению макромолекул, что необходимо для понимания особенностей структурообразования в полимерах. В основу такого рассмотрения положим представления, развитые А.И. Китайгородским в органической кристаллохимии [75]. Согласно этим представлениям, каждый атом описывается сферой с межмолекулярным радиусом R. Величины этих радиусов определяются по данным рентгеноструктурного анализа идеальных кристаллов органических веществ. При этом считается, что валентно несвязанные атомы, вступающие в межмолекулярное (а не химическое) взаимодействие, касаются друг друга по границам сфер. Это схематически изображено нарис.З. Тогда, если [c.29]

    Уравнение (12) имеет первостепенное значение в термодинамическом анализе химических процессов для химической технологии. Изменение свободной энергии при химической реакции может быть определено экспериментально с использованием уравнения (11) или (12). Для того чтобы использовать первое из них, необходимо определить Н и S для каждого вещества, что делается обычно при помощи калориметрической техники, описанной в разделе И1, и использования термохимических данных об энтальпиях образования (здесь это не рассматривается). Энтальпии и энтропии ЧИСТЫХ веществ, участвующих в реакции, могут быть рассчитаны также по спектроскопическим и структурным молекулярным данным, но обычно только для газового состояния. Для того чтобы использовать уравнение (12), необходимо определить константу равновесия реакции по измерениям парциальных давлений или состава. Для практического использо вания указанных уравнений при изучении химических реакций важно иметь информацию, касающуюся температурной зависимости свободной энергии, энтальпии и энтропии каждого реагента. Большая часть данной главы посвящена проблеме изучения этих свойств для органических кристаллов. [c.15]

    В последнее время к этим методам присоединился еще структурный анализ кристаллических координационных соединений при помощи рентгеновских лучей. В гл. 7 уже было показано, что по данным структурного анализа химические радикалы в кристаллах функционируют в общем случае в виде отдельных структурных групп, например радикал [НОз] и радикал [304] " (ср. рис. 50 и 51, стр. 246 сл.). [c.437]

    Кристаллография исследует и определяет законы симметрии— законы, которым подчиняется расположение центров тяжести атомов, ионов, молекул, радикалов. Кристаллография ограничивает единицу анализа пространства кристалла элементарной ячейкой и определяет способы и меру трансляции этого единичного объема в пространстве. Связь же структуры кристалла и его физических и химических свойств определяется, помимо мотива структуры, природой и размерами слагающих кристалл частиц, а также родом и силой связи между ними. Связи структуры и свойств кристалла — предмет кристаллохимии, а изучение конкретных свойств кристалла в связи с их структурой — предмет кристаллофизики. [c.90]


    Кроме ряда научных данных, используемых в теории строения вещества, рентгеноструктурный анализ органических кристаллов оказывает помощь органической химии при установлении строения отдельных соединений. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. Рентгеновский анализ был применен для исследования строения многих десятков стероидов при этом выяснилось, что некоторым стероидам приписывались неправильные пространственные конфигурации. При помощи этого метода была полностью расшифрована структура такого сложного вещества, как фталоцианин. Рентгеновский метод позволяет надежно определять молекулярные веса белков для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки. [c.742]

    При формировании керметных покрытий из смеси тонкодисперсных порошков никеля, хрома, кремния и бора во время обжига (при 1040—1080°) развиваются интенсивные химические реакции с выделением жидкой фазы. О составе образующихся соединений можно судить по концентрационным кривым распределения указанных элементов в покрытии (рис. 4). Максимумы для хрома и бора совпадают. Это означает, что хром вступает в соединение с бором. По данным анализа, образуются кристаллы СгВ игольчатой формы. Участки покрытия, обогащенные никелем, как правило, являются одновременно и местом [c.261]

    Результаты химического анализа этих кристаллов, выделенных в чистом виде, показали, что они представляют собой двойную соль кальция и натрия ортомышьяковой кислоты, но с мень- [c.48]

    Действительно, казалось бы, достаточно учесть коэффициенты < , приводящие к соблюдению равенства / = 0Я, извлечь. квадратный корень и получить значение величины Рлю-,бо о отражения — и тогда анализ структуры кристаллов становится таким же предельно ясным и последовательным, хотя. несравненно более сложным методом, как например, определение удельного веса вещества, химического анализа неизвестного соединения и т. п, [c.73]

    В настоящее время хорошо разработан рентгеноструктурный анализ, являющийся одним из самых надежных средств анализа структуры кристаллов. В реальных кристаллах в отличие от идеальных всегда имеются различные нарущения (дефекты) правильного расположения частиц. Эти нарушения влияют на свойства кристаллов. Их присутствие отражается на механической прочности, электропроводности, химической активности кристаллических веществ. Кроме того, каталитические свойства многих кристаллических катализаторов также зависят от дефектов, и активные центры поверхности катализатора часто совпадают с дефектными участками. Некоторые дефекты — дислокации — важны для развития кристаллов. Кристаллы, растущие в природных условиях, по-видимому, не могли бы возникнуть или росли бы очень медленно, если бы не существовало дислокаций. [c.226]

    Диаграммы состояния, подобные описанным выше, строятся на основании опытных данных. Первые работы по изучению зависимости между температурой и концентрацией растворов, равновесных с кристаллической фазой, были выполнены около двухсот лет тому назад Ломоносовым и несколько раньше Глаубером. Как в этих, так и в ряде следующих работ состав раствора, равновесного с кристаллами, определялся с помощью химического анализа. Этот метод пригоден лишь в ограниченном числе случаев, так как, с одной стороны, точное разделение кристаллов и жидкой фазы иногда встречает непреодолимые трудности, например при большой вязкости раствора или при высоких температурах. С другой стороны, не всякое соединение достаточно устойчиво, чтобы его можно было выделить в чистом виде, и не для всякого вещества имеются достаточно надежные методы анализа. [c.378]

    Отсутствие одного нз элементов соединения в некоторых узлах его кристаллической решетки обусловливает изменение его состава — отклонение от стехиометрии . Известен ряд веществ, в кристаллах которых дефектов Шоттки так много, что отклонения от стехиометрии легко определяются химическим анализом. В зависимости от условий получения и роста кристаллов число вакансий может быть различным, поэтому нестехиометрические соединения обычно имеют непостоянный состав. К числу таких веществ относятся хорошо изученные оксид и карбид титана. Их состав можно выразить в общем виде формулами ТЮ , х = 0,70-г-1,30 и ЛСх, = 0,604-1,00. [c.152]

    Трудности при моделировании такого рода ФХС обусловлены не только их сложностью, но и тем, что до недавнего времени были недостаточно разработаны соответствующие разделы теоретической механики неоднородных сред. Так, отсутствовали общие уравнения движения многофазных сред, которые учитывали бы многокомпонентный массо- и теплоперенос, фазовые превращения, химические реакции, неравномерность распределения частиц дисперсной фазы по размерам. Поэтому моделирование процессов массовой кристаллизации из растворов сводилось либо к решению уравнения баланса размеров кристаллов вне связи с силовыми и энергетическими взаимодействиями фаз, либо к оперированию алгебраическими (при анализе установившихся режимов) уравнениями баланса массы и тепла для аппарата в целом как для объекта с сосредоточенными параметрами. [c.4]


    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    По спектру ядерного магнитного резонанса можно определить свойства ядер, строение молекул, подвижность частиц в кристаллах в разных условиях, ЯМР применяется при изучении кинетики и механизма химических реакций, состояния вещества в растворах, процессов протонного обмена мел<ду молекулами в растворах, для анализа сложных смесей продуктов реакции. [c.62]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    Впервые проведено комплексное исследование ГЦК углерода методами Оже-спектроскопии, электронной дифракции, просвечивающей электронной микроскопии с атомным разрещением, КР-спектроскопии, ИК Фурье-спектроскопии, Фурье-синтез кристаллического потенциала, свидетельствующие о том, что эта фаза - новая фаза углерода. Химический анализ показал, что ГЦК-фаза является чисто углеродной. Рассчитанное по данным электронной дифракции распределение кристаллического потенциала внутри элементарной ячейки кристалла показало, что атомы углерода находятся только в позиции ГЦК. [c.178]

    Химическое изучение реакционной способности С70 пока затруднено, поскольку выделение С70 всфечает значительные трудности по сравнению с Сбо- О химии высших фуллеренов известно пока также недостаточно. Наиболее информативной является работа Болча , в которой описаны синтез и структура иридиевого ко.иплекса Сщ. Успешный анализ структуры кристаллов дал полную информацию о длинах связей и углах. Геометрия координационного узла иридия одинакова в комплексах не только [c.141]

    Ри( 0з)4 5Н20. Гидрат нитрата плутония (IV) выкристаллизовывается при медленном испарении азотнокислых растворов [387]. Химический и спектрографический анализы этих кристаллов показали, что состав их отвечает формуле Ри(МОз)4 5НгО. Нитрат плутония (IV) с меньшим числом молекул воды можно получить более быстрым упариванием азотнокислых растворов на водяной бане [716]. Кристаллы нитрата размером более [c.85]

    Недавно Фланиген и Грос синтезировали фосфорсодержащие цеолиты (названные фосфатными цеолитами) и подробно охарактеризовали их, проведя химический и рентгеноструктурный анализы и адсорбционные исследования, а также применив метод электронного микроанализа. Вхождение фосфора в структуру решетки было затем подтверждено ИК-спектроскопически и анализом структуры кристалла [133, 134]. [c.333]

    Долгое время основное внимание исследователей уделялось физте-ской природе кристаллизации, особенно физической кинетике на фронте роста. Такой подход, справедливый для строго однокомпонентных систем, не мог привести к решению задач синтеза высокосовершенных монокристаллов более сложного состава. Потребовался детальный анализ химической природы кристаллизации. Также далеко неполным оказалось описание кристаллизации как процесса, определяемого только кинетикой на фронте роста. Возникла потребность изучения всех сопутствующих явлений, в том числе плавления исходного вещества и охлаждения выросшего монокристалла. Следовательно, для более детального исследования высокотемпературной кристаллизации необходимо рассмотрение физико-химических процессов, происходящих в расплаве и особенно вблизи фронта роста, а также явлений, определяющих химическую и физическую кинетику непосредственно на фронте роста и твердофазных процессов, происходящж в кристалле при высоких температурах. [c.8]

    Такого рода соединения, образование которых можно доказать анализом выделенных кристаллов, появлением максимума на кривой плавкости, кондуктометрическим титрованием и т. д., часто имеют несолеобразный характер [например, 50(8ЬС1е)2] и большей частью обнаруживают характер молекулярных соединений. Этот вопрос можно решить определением кристаллической структуры, установлением изоморфизма с известными солями, измерением электропроводности в подходящем растворителе или наблюдением Раман-спектров. Впрочем, между структурой соединения в твердом и в растворенном или газообразном состоянии существуют значительные различия. На основании химических превращений вывод следует делать с большой осторожностью, так как такие соединения часто находятся в равновесии с минимальными количествами другой формы, которое определяет характер рассматриваемого взаимодействия. [c.283]

    Метод, определение те.мпературы появления первых кристаллов и конца кристаллизации, с ртутным термометром, в масляной бане, химический анализ первых кристаллов, Гранины гомогенности и состав сосуществующих твердых фаз определялись дилатометрически, по изменению окраски при нагревании и охлаждении, по кривым нагревания (з масляной бане, с визуальными отсчетами по ртутному термометру), по растворимости в органических растворителях. Мол. /о. [c.620]

    С целью идентификации проводили анализ полученных кристаллов КТН. Состав образцов определяли тремя независимыми методами химическим анализом, по температуре фазового перехода из сегнетоэлектрического в параэлектриче-ское состояние и ио удельному весу. [c.308]

    Вторая глава содержит описание рентгеноспектрального флуоресцентного анализа, кристалл-дифракционных и бескри-стальных методов обеспечения спектральной избирательности, краткую характеристику выпускаемой промышленностью аппаратуры, ее основных элементов и режимов работы. В этой главе показаны также основные методические приемы, позволяющие обеспечить высокую точность и чувствительность анализа полимерных материалов. Приведен обзор исследований по рентгеноспектральному флуоресцентному анализу химических волокон, целлюлозы, бумаги, пленок, тканей и других полимерных материалов. [c.3]

    Рентгеноспектральные методы сравнительно давно применяются в аналитической практике и описаны в ряде монографий [9—12, 15]. Применительно к полиме4зным материалам они стали использоваться, однако, только в последнее время, и имеющиеся в литературе сведения по теории и практике рентгеноспектрального (в основном, рентгенофлуоресцентного кристалл-дифракционного) анализа полимерных веществ до сих пор не обобщены. Что касается бескристального рентгеноспектрального анализа полимерных материалов и в особенности рентгенофлуоресцентного определения легких элементов, а также аппаратуры и методов простого абсорбционного рентгеновского анализа химических волокон и тканей, дифференциальной рентгеновской абсорбциометрии полимерных пленок, то эти вопросы главным образом отражены в работах автора. [c.6]

    Достигнутый структурным анализом уровень лучше всего характеризуется сообщением о завершении анализа структуры кристаллов витамина В5з. Можно считать блестяпщм достижением успешное исследование соединения, молекула которого содержит более 100 атомов, при отсутствии в кристалле центров инверсии и в условиях, когда точный химический состав и структурная химическая формула заранее не были известны. [c.614]

    В условиях химического анализа осадок не вносится в раствор в готовом виде, а образуется в нем по мере прибавления осадителя. При этом возникают сначала мельчайшие зародышевые кристаллы, которые постепенно растут, причем поверхность их иепре-рыг.но обновляется за счет отложения все новых и новых слоев соогветствующего вещества. В то же время эта постоянно обнов-лякрщаяся поверхность кристалла непрерывно адсорбирует различные примеси из раствора. В процессе роста кристалла эти примеси постепенно вытесняются ионами, входящими в состав кристаллической решетки осадка. Однако такое вытеснение обычно происходит недостаточно полно. В зависимости от условий осаждения большая или меньшая часть примесей, первоначально находившихся на поверхности частиц, в результате адсорбции оказывается отделенной от раствора вновь отложившимися слоями осаждаемого вещества. [c.113]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Проведем анализ процесса нагревания системы состава й1. При нагревании системы до температуры Т1 изменения фазового состояния не наб.1юдается. Нагревание кристаллов А и ДхВ отражено на диаграмме плавкости стрелками на ординатах А и А Вр. При температуре 7, начинается плавление системы. На кривой нагревания должна наблюдаться температурная остановка, так как эвтектика плавится. Сос ав твердой и жидкой фаз нетиеняется, температура остается постоянной, пока не расплавится вся эвтектика. Далее происходит плавление кристаллов химического соединения АдВ . При этом происходит изменение состава жидкой фазы. Состав твердой фазы остается неизменным АзсВу. В связи с изменением состава жидкой фазы меняется температура плавления. При температуре состав жидкой фазы стано-вит( я равным йь т. е. равным составу исходной системы. При этой температуре расплавится последний кристалл АхВ . Далее будет происходить нагревание жидкого расплава без изменения фазового состояния системы. [c.230]

    По данным рентгеноструктурного анализа, катализатор из Ы1А1з имеет структуру ГЦК-никеля. Линейный размер кристаллов возрастает симбатно температуре и продолжительности выщелачивания алк>минида. Ы 2А1з полностью разрушается только в очень жестких условиях. Все это обусловливает существенную разницу в физико-химических свойствах катализаторов указанных фаз. [c.35]

    Рассмотрены особеииости активного формирования крупных кристаллов новой фазы - графита в интервале темиератут)ы изменения химического состава нанодисперсных углеродных материалов. Исследования выполнены методами реитгеноструктурного анализа и электронной микроскопии на материалах, приготовленных на нефтяных коксах (содержание S от -0,5 до -2,5 масс.%). [c.195]


Смотреть страницы где упоминается термин Анализ химический, кристаллов Agl: [c.240]    [c.240]    [c.56]    [c.6]    [c.66]    [c.461]    [c.83]    [c.210]    [c.699]    [c.166]    [c.87]    [c.116]   
Химия несовершенных ионных кристаллов (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Реальные кристаллы. Физико-химический анализ. Физические методы фазового анализа



© 2025 chem21.info Реклама на сайте