Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Набухание в орг. основаниях

    Проверка адекватности модели кинетики набухания осуществлялась на основании экспериментальных данных о положении оптической и фазовой границ. Для проверки адекватности использовался средний квадрат отклонения между экспериментальными и расчетными данными положения оптической и фазовой границ. Результаты проверки показывают, что моделирование деформации механических свойств полимера в процессе его ограниченного набухания, основанное на представлении системы сополимер — растворитель как сплошной среды с одним внутренним релаксационным процессом, вполне допустимо (погрешность не превышает +9%). Параметрами реологических уравнений являются модуль упругости среды и кинетический коэффициент ползучести, характеризующий внутреннюю подвижность макроцепей сополимера. Наряду с этим предлагаемая модель допускает (при необходимости) дальнейшее уточнение характеристик среды на основе более углубленного исследования реологических свойств системы сополимер — растворитель . [c.328]


    Объемный метод определения степени набухания основан на измерении объема полимера до и после набухания  [c.319]

    Присутствующая в катионите влага препятствует протеканию-целевой реакции образования дифенилолпропана, так как она идет с выделением воды поэтому катиониты необходимо обезвоживать. Для этого предложены различные пути сушка при температуре около 100 °С (или в вакууме при —40°С), сушка над фосфорным ангидридом, азеотропная отгонка воды с бензолом, гептаном и другими растворителями. Предложен способ , по которому катионит выдерживают некоторое время в расплавленном феноле, а затем удаляют воду в виде азеотропной смеси с фенолом. Недостатком многих способов является резкое сокращение объема гранул при высушивании, что приводит к их разрушению и образованию пыли. При набухании высушенных гранул в смеси реагентов происходит их дальнейшее растрескивание. Поэтому приемлемыми способами обезвоживания катионита являются лишь такие, при которых обеспечивается минимальное изменение объема гранул. Авторами разработан способ, основанный на вымывании воды из катионита смесью исходных реагентов . [c.149]

    Доминирующее влияние диффузии как первичного физического процесса, обусловливающего изменение реологических свойств полимера и, как следствие, вызывающее движение фазовой и оптической границ, привело к ряду моделей [И, 12, 20, 26], кинетика набухания в которых описывается на основании уравнения нестационарной диффузии. В работах [И, 12, 20] исследование и описание процесса набухания полимеров рассматриваются в двух аспектах движение фазовой границы системы полимер — растворитель движение оптической границы вглубь материала полимера. [c.299]

    Аналитическая форма математической модели процесса набухания сополимеров. Имея диаграмму связи процесса набухания (рис. 4.5), возможно на основании алгоритма формирования системных уравнений, представленного в 3.2, записать систему дифференциальных уравнений математической модели процесса набухания [c.314]

    Аналитическая форма математической модели сульфирования сополимеров с предварительным набуханием в дихлорэтане. На основании принципов формализованного анализа диаграмм связи из диаграммы, показанной на рис. 5.6, получена аналитическая форма математической модели брутто-процесса сульфирования [c.350]

    Принцип определения величины набухания (приращения объема пробы вещества во времени) основан на измерении перемещения плунжера 18 (перемещаемого поршнем 4 через штоки 5 и 16) внутри катушки датчика перемещения. [c.44]


    Влияние гидроокиси натрия на показатели набухания бентонита и Рт (табл. 26) при малых концентрациях объясняется пептизацией, а при высоких — коагуляцией. Есть основания полагать, что при контакте с глинистыми минералами наряду с обменными процессами происходит частичное молекулярное поглощение щелочи — хемосорбционный процесс. [c.60]

    Метод определения совместимости резин с бензинами, содержащими синтетические компоненты. Метод основан на определении показателей набухание , изменение массы — для резин и концентрация фактических смол — для бензинов. Используются два метода А и Б. Метод А предназначен для оценки совместимости серийно применяемых резин с бензинами, содержащими синтетические компоненты. Метод Б предназначен для оценки совместимости вновь разрабатываемых резин с товарными и опытными бензинами [6, 12]. [c.414]

    Привитой сополимер полиэтилена и винилпиридина сохраняет прочность, эластичность и нерастворимость в воде, присущую полиэтиленовым пленкам. Присутствие боковых ответвлений поли-винилпиридина придает сополимеру способность к набуханию в воде и свойства полиэлектролитов. Эти свойства можно усилить, превращая слабоосновные пиридиновые звенья привитого сополимера в четвертичные аммониевые основания  [c.555]

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]

    На основании полученных данных строят графики зависимости степени набухания q от времени t для двух образцов резины. [c.113]

    Задание. На основании полученных данных по равновесному набуханию объяснить, на чем основано определение параметров пространственной сетки сшитого полимера. [c.113]

    Образование водородных связей приводит к усложнению структуры вещества, как, например, в полимерах. Изучение этих связей позволяет расшифровывать не только строение веществ, но и глубже понимать механизм многих физико-химических и химических процессов, особенно протекающих в водных средах — диссоциацию кислот и оснований, гидролиз веществ, набухание полимеров и пр. [c.95]

    Благодаря тому что эти вещества содержат полярные группы основного характера —NH—, —NHg, при набухании в воде они образуют нерастворимый макромолекулярный катион и ион ОН . Таким образом, их можно рассматривать как высокомолекулярные слабые основания. [c.499]

    Вследствие набухания полимерного основания в водных растворах солей повышается скорость диффузии ионов в полимере, а это ускоряет реакцию ионного обмена и вовлекает в реакцию все имеющиеся основные группы полимера, несмотря на его нерастворимость. При обработке полученной соли водой можно обратно выделить исходное соединение. [c.499]

    Удаление старых покрытий. Химический способ удаления с поверхности изделия старых покрытий основан на растворении, набухании или химическом разрушении пленки, т. е. превращении пленки в состояние, при котором она легко может быть снята с поверхности механическим путем. [c.214]

    Полисахаридный скелет клеточных стенок растений получил наименование холоцеллюлозы. Выход ее зависит от содержания в растительной ткани целлюлозы и гемицеллюлоз. Лабораторные методы, применяемые для выделения холоцеллюлозы, основаны на превращении лигнина методами окисления или хлорирования в растворимое состояние. Среди таких методов наибольшее распространение получили обработка растительных тканей хлоритом натрия в уксуснокислой среде, перуксусной кислотой или газообразным хлором с последующим растворением хлорлигнина в спиртовом растворе, содержащем слабое органическое основание, например этаноламин. Воздействие на лигнин должно осуществляться в условиях, обеспечивающих достаточное набухание растительной ткани. Однако это набухание не должно быть чрезмерным, так как в противном случае часть гемицеллюлоз переходит в раствор и выход холоцеллюлозы снижается. Для предохранения гемицеллюлоз от растворения иногда отмывку растворившегося лигнина проводят водой, смешанной с этанолом. Если для обработки растительной ткани с целью удаления лигнина применить среды, в которых она почти не набухает, например смесь перекиси водорода с ацетоном, этанолом, удаление лигнина сильно затрудняется. [c.339]


    Если полимеры имеют одинаково построенную основную цепь и различаются лишь характером заместителей, можно считать, что основную роль в определении величины проницаемости будут играть межмолекулярные силы. В первом приближении величина межмолекулярных сил может быть оценена из плотности энергии когезии полимеров , рассчитанной на основании данных о набухании, дифференциальных теплотах растворения и др. Проницаемость должна находиться в обратной зависимости от плотности энергии когезии, так как последняя увеличивается с ростом полярности полимеров и плотности упаковки макромолекул Значения плотности энергии когезии, взятые из работы Шварца сопоставлены в табл. 8 с данными о водородопроницаемости некоторых полимеров. [c.82]

    Объемный метод определения степеин набухания основан на иэмерепнн объема полимера до п после набухания  [c.319]

    Стойкость к набуханию в жидкостях зависит от типа полисилоксана и от содержания наполнителя. Обычные силоксановые вулканизаты, как правило, сильно набухают в неполярных жидкостях и слабо в полярных, а бензомаслостойкие (фтор- и нитрилсилоксановые)—наоборот [3, с. 154—156 33 72, с. 176]. Меньше набухают твердые (более наполненные) вулканизаты. Набухание увеличивается с повышением температуры и сопровождается ухудшением механических показателей, не всегда обратимым, так как некоторые жидкости разрушают сетку вулканизата. Примерами жидкостей, в которых обычные вулканизаты набухают на 100—275%, а бензомаслостойкие на 5—30%, являются ССЦ, хлороформ, толуол, ксилол, циклогексан, фреон-114, керосин, силиконовые масла. В ацетоне, наоборот, первые набухают на 15—25%, вторые на 150—200%. Фторсилоксановые резины разрушаются фреоном-22 и этаноламином. Оба типа вулканизатов стойки к водным растворам солей, кислот и оснований, слабо (на 5—25%) набухают в спиртах, ацетонитриле, ледяной уксусной кислоте, средне (на 40—50%) в дихлорэтане и дибутилфталате, сильно (больше 150%) в бутилацетате. [c.495]

    При прямом контакте сополимера с пизкомолекулярпым растворителем в жидком состоянии происходит сорбция низкомолекулярного компонента сополимером [3—6]. Этот процесс сопровождается увеличением линейных размеров образцов сополимера, что и послужило основанием для термина набухание . [c.296]

    Рассмотрение кинетики набухания в указанных аспектах приводит к проблеме решения уравнения нестационарной диффузии в условиях перемещающихся границ. Точное решение задач подобного рода известно лишь в очень ограниченном числе случаев [27, 28]. Метод аналитического решения задач диффузии (теплопроводности) при наличии движущихся границ предложен [29—31]. Этот метод основан на разложении искомого решения в ряд по некоторым системам мгновенных собственных функций соответствующей задачи. Таким образом, рассмотрение процесса набухания с учетом диффузионных явлений приводит к весьма сложной проблеме решения уравненийТмодели. Этот подход к описанию кинетики набухания нельзя признать исчерпывающим по ряду причин. Так, здесь недостаточно четко отражены физические особенности внутренней структуры полимеров. Параметры моделей не имеют явной связи с молекулярными характеристиками ноли- [c.299]

    Теплоты набухання по закономерностям изменения мало чем отличаются от тепловых эффектов растворения. Эта аналогия дает основание рассматривать пабуханпе как растворение растворителя в ВМС. [c.316]

    Развивающиеся вокруг глинистых частиц гидратные оболочки оказывают на них расклинивающее воздействие. Гидратированные частицы, раздвигаясь, увеличивают объем системы, глина набухает (рис, I, 17, а). При этом ослабляется сцепление между частицами глины, ее прочность уменьшается и порода размокает, 11сли глинистая порода состоит из минералов с раздвижной кристаллической решеткой (монтмориллонит, вермикулит), то происходит гидратация межпакетного пространства, обусловливающая виу-трикристаллическое набухание (рис, 11.17,6). Так как у этих минералов вклад суммарной площади оснований пакетов в значение удельной поверхностп преобладает (до 80%), они набухают во много раз лучше минералов с жесткой кристаллической решеткой. [c.63]

    Первоначально набухание характеризовали на основании визуальных наблюдений без применения замерных устройств. Из множества методик виауального определения величины набухания следует выделить методику, предложенную М. X. Фишером, заключающуюся в следующем. Диспергированное вещество помещается в градуированный сосуд, и фиксируется его начальный объем. Затем в сосуд вводится жидкость и по истечении определенного промежутка времени измеряется объем набухшего вещества. Отношение объема набухшего вещества к его начальному объему по данной методике характеризуется как величина набухания. Поскольку величина пористости пробы одного и того же вещества при подобных определениях может варьироваться в широких пределах, получаемые величины дают трудносходимые результаты, а порой и отрицательное набухание. Ф. Ф. Лаптев и А. Г. Кирьянова предложили для определения набухания использовать резиновые пленки, в которые помещаются цилиндри- [c.18]

    Кроме объемных методов определения набухания предпри- нимались попытки характеризовать набухание по величине привеса и по количеству жидкости, поглощаем эй при набухании веществом. На этом принципе основан прибор Г. Ф. Фрейндлиха, позволяющий по снижению уровня жидкости в градуированном капилляре качественно судить о количес1ве поглощаемой при набухании тем или иным порошкообразным веществом жидкости. Прибор Г. Ф. Фрейндлиха, несколько видоизмененный Э. Г. Ки-стером [54], был применен последним для определения всасывания — набухания различных диспергир эванных веществ. [c.19]

    Физико-химические воздействия жидких сред могут повлиять на начало роста, распространение или разрыв трещины серебра в термопластичном полимере. По-видимому, жидкость должна диффундировать в полимер, чтобы повлиять на начало роста трещины серебра. Нарисава [119] определил критические напряжения ст, образования таких трещин в тонких пленках ПС и ПК, находящихся в контакте с различными спиртами и углеводородами. Он наблюдал, что трещины серебра появляются без существенной задержки по времени и что о,- уменьшается с уменьшением длины цепи растворителя (от 45 до 20 МПа для ПС, от 70 до 50 МПа для ПК). На основании этих результатов он пришел к выводу, что слабое набухание микроскопического слоя поверхности материала является необходимым и достаточным условием, чтобы вызвать образование трещин серебра. Тот же автор получил критерий для ст в виде выражения (8.29) со значениями активационных объемов 1,0—1,3 нм , энергий активации 109—130 кДж/моль и констант скорости (1 —10)-10- С для ПС и (2—50) lO- с- для ПК- [c.386]

    Недостаточная изученность процессов взаимодействия углеводородов нефти с различными химреагентами, а также отсутствие методов установления закономерностей взаимодействия компонентов пластовой среды в зависимости от состава, свойств к условий применения химреагентов затрудняют решение задачи по определению перспективности химических веществ для нефтедобычи.-Изыскание и выбор химреагентов осуществляются в основном опытным путем. Более целесообразным является комплексный подход [2], основанный на физико-химических исследованиях характеристик основных свойств химреагентов и изменений их под действием геологических и технологических факторов пластовой среды с помощью различных современных инструментальР1ых методов, лабораторных и промысловых исследований. В условиях конкретных нефтяных месторождений необходимо, чтобы подобранные опытным путем химические вещества и их композиции обладали следующим комплексом физико-химических свойств. Они должны растворяться в воде и органических соединениях понижать поверхностное натяжение на границе раздела фаз и улучшать смачиваемость породы водой обладать высокими нефтеотмывающими и вытесняющими свойствами улучшать реологические свойства нефти предотвращать или не вызывать отложение асфальто-смолистых и парафиновых веществ в пористой среде и скважине не способствовать при взаимодействии с глиной ее набуханию не стимулировать образование водонефтяных эмульсий б [c.6]

    Методом Пржеборовского и Тиле [8] можно исследовать скорость набухания одновременно весовым и объемным путем, пользуясь при этом одной навеской. Метод основан на взвешивании исследуемого образца в двух жидкостях, в которых данный вы-сокополимер не набухает. [c.302]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Процессы взаимодействия полимеров с низкомолекуляриыми жидкостями, приводящие к набуханию и растворению полимеров, имеют большое практическое значение как при переработке полимеров. гак lf при эксялуатацнн полимерных изделий. Например, многие синтетические волокна и пленки получают из растворов. Процесс пластификации, применяемый в производстве изделий из полимерных материалов, основан на набухании полимеров в пластификаторах. Лаки и клеи — это растворы полимеров. Во всех перечисленных случаях очень важно, чтобы полимеры хорошо набухали и растворялись в низкомолекулярных жидкостях. [c.314]

    Ионообменные смолы, являющиеся по своей природе высокомолекулярными кислотами или основаниями, должны быть иерастпоримы в воде и в водных растворах и обладать определенной ограниченной способностью к набуханию. При взаимодействии с ионами, находящимися в растворе, иониты образуют нерастворимые соля. При последующей обработке раствором более сильного электролита в элюат переходит компонент исследуемой смеси, удерживавшийся на иоиите. Например  [c.160]

    Способность глинистых частиц к двойному лучепреломлению усиливается по мере проникновения воды (или органической н<идкости) между слоями кристаллической решетки. Этот эффект, по Г. Амброну и А. Фрею, тем интенсивнее, чем больше интеркристаллическое набухание и чем больше разница коэффициентов преломления среды и дисперсной фазы. В глинистых суспензиях двоякое лучепреломление между скрещенными николями отсутствует. Молекулярное движение и отсутствие ориентации частиц делает эту систему статистически изотропной. Однако при течении вследствие ориентации вытянутых плоских или нитеобразных частиц наблюдается поляризация проходящего света. И. Лэнгмюр на этом основании сделал заключение о форме частиц в суспензии бентонита. Е. Гаузер с сотрудниками показал наличие отчетливого двойного преломления уже при крайне малой скорости течения суспензии высокодисперсного бентонита, совершенно прозрачной и практически не отличающейся от воды по вязкости и поверхностному натяжению. Этот эффект был предложен для гидравлических и аэродинамических исследований обтекания. [c.36]

    Если бы образец, испытываемый в камере уплотнения, состоял из чистого монтмориллонита и все кристаллы глины осаждались так, что их базальные поверхности оказывались параллельными плоскостям напластования, давления набухания и уплотнения при достижении условий равновесия оказались бы равными. Фактические давления набухания были ниже давлений уплотнения, что подтверждает рис. 8.27, на котором объемные плотности, полученные аналитическим путем на основании изотерм адсорбции, сравниваются с объемными плотностями, рассчитанными по данным об уплотнении. На рис. 8.27 приведена также кривая, построенная Чилингаром и Найтом на основе данных об уплотнении образца промышленного бентонита, который предварительно был приведен в равновесие с дистиллированной водой. В обоих экспериментах при уплотнении кристаллы глины, очевидно, в какой-то мере ориентировались беспорядочно, а уплотненные образцы содержали норовую и гидратационную воду. [c.316]

    Механизм ухудшения проницаемости чувствительных к воде пород под воздействием водных растворов изучали многие исследователи. Чтобы упростить интерпретацию результатов, эксперименты проводили с однофазными системами. Обычно через керн или песчаную набивку прокачивали сначала концентрированный раствор хлорида натрия, а затем растворы с постепенно снижающейся минерализацией или дистиллированную воду. Особенно информативными были эксперименты Бардона и Жакена, так как им удалось расчленить влияние, которое оказывают на снижение проницаемости набухание кристаллов глины, а также диспергирование и пептизация глинистых частиц. Они определили диапазон минерализации, в котором каждбе из этих явлений имеет место. На основании ряда экспериментов на песчаной набивке, содержащей монтмориллонит, они установили, что снижение проницаемости с уменьшением концентрации хлорида натрия до 20 г/л (рис. 10.9) количественно коррелируется с повышением суммарного объема глины при набухании ее кристаллов, о чем сообщал Норриш (см. раздел главы 4, посвященный механизму набухания глин). Эта зависимость определяется уравнением [c.410]

    В настоящее время нет оснований предполагать, что каждой из этих групп отвечают определеннйе полисахариды гемицеллюлоз. По-видимому, во всех трех группах присутствуют одни и те же полисахариды (глюкоманнаны и ксилоурониды), за исключением арабогалактанов, которые сравнительно легко переходят в водный раствор при нагревании до указанных выше температур. Разница в поведении этих гемицеллюлоз зависит главным образом от степени доступности их реагентам и наличия пространственных затруднений, вызываемых наличием сетки из мелкопористого целлюлозного геля на поверхности волокон. Если холоцеллюлозу обработать веществами, вызывающими сильное набухание волокон и растворяющих гемицеллюлозы, например водной щелочью, и извлечь из нее основную массу гемицеллюлоз, входящих во все перечисленные выше группы, то способность их к растворению в горячей воде и гидролизу разбавленными кислотами оказывается практически одинаковой. [c.349]

    Длн оценки структурной анизотропии тонких прослоек воды и других жидкостей Грин-Келли и Дерягиным [62, 63] был применен метод, основанный на измерении изменения двойного лучепреломления (ДЛ) монтмориллонита при его набухании в соответствующих жидкостях. На рис. VII.10 приведена схема установки для измерения разности хода в направлении оси с глинистого агрегата. Глинистый блок помещался в углублении предметного стекла. После наливания жидкости сверху надвигалось покровное стекло. После Црекращения набухания блока (через время до 48 ч) компенсатором Сенармона поляризационного микроскопа в свете D-линии натрия измерялась разность хода и вычислялось двойное лучепреломление В образца набухшей глины. Для вычисления отсюда ДЛ пленок внутрикристаллического набухания АВ была использована формула Винера, позволяющая вычислить В в функции степени набухания S в предположении, что жидкие прослойки сохраняют изотропные оптические свойства объемной фазы. [c.204]

    Величина е может быть определена различными методами. Наиболее простым и удобным является пикнометрический [ПО, 145], основанный на измерении количества пикнометрической жидкости, заполняющей внутреннюю структуру частицы полимера. В качестве пикнв-метрической жидкости применяют бутанол, метанол, которые хорошо смачивают ПВХ и не вызывают его набухания [7- 9]. Однако с помощью пикнометрического метода определяют лишь общую пористость, но не получают информации о внутренней структуре. [c.38]


Смотреть страницы где упоминается термин Набухание в орг. основаниях: [c.310]    [c.387]    [c.67]    [c.469]    [c.396]    [c.29]    [c.322]    [c.389]    [c.200]   
Химия целлюлозы и ее спутников (1953) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Набухание



© 2025 chem21.info Реклама на сайте