Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы плотность окислов

    В литературе пока имеются лишь отдельные сведения о формировании окисных пленок на тугоплавких металлах и рассматривается этот процесс не с металловедческих позиций. Подробное освещение результатов этих работ выходит за рамки обсуждаемых вопросов и общей направленности данной книги. В связи с этим ограничимся некоторыми общими сведениями об окисных пленках, образующихся на тугоплавких металлах. Выше было сказано, что тантал, наиболее коррозионностойкий из тугоплавких металлов, весьма стоек во многих агрессивных средах вследствие устойчивости в этих средах его окисла Т 2 Об. Однако окисел Таг Об растворяется в плавиковой кислоте, чем и объясняется малая устойчивость тантала в этой кислоте. Окисел тантала растворяется также в щелочах с образованием танталатов. Таким образом, в тех средах, в которых окись тантала растворима, тантал нестоек. Для образования поверхностной пленки необходимо наложение анодного тока, причем, чем вьппе плотность тока, тем быстрее достигается потенциал вьщеления кислорода (линейный участок кривой на рис. 51). Тем не менее образование пленки наблюдается и без наложения [c.57]


    Другим примером истинного гетерогенного горения является горение нелетучих металлов. Здесь процесс осложняется образованием тугоплавких окислов, блокирующих поверхность металла и препятствующих дальнейшему контакту с кислородом. Если окисная пленка остается компактной, то диффузионная кинетика процесса описьшается формулой (II, 77). При разнице в плотности металла и окисла пленка растрескивается и доступ кислорода облегчается (пример —горение магния). Резкое изменение характера процесса имеет место, когда температура горения достигает температуры плавления окисла. Жидкий окисел частично сдувается с поверхности газовым потоком, что облегчает диффузионный перенос кислорода к поверхности окисляемого металла. Из школьных опытов по химии известно, что в обычных условиях [c.264]

    По мнению ряда исследователей, хемосорбцию на металлах можно объяснить, предположив, что между адсорбатом и адсорбентом образуется связь, приближающаяся в большей или меньшей степени к химической. Механизм катализа предполагает повышенную реакционную способность образовавшегося хемосорбированного соединения. Образование связи между металлом и молекулой сорбата определяется наличием у металла донорных или акцепторных электронных уровней. Металлы с простой валентной оболочкой, образующей -зону, являются типичными донорами электронов с малой плотностью уровней в зоне. Такие металлы хорошо адсорбируют акцепторы электронов, т. е. молекулы окислителей. Однако из-за большой прочности образующейся связи с переходом металла в другую фазу (окисел, сульфид и т. п.) такие металлы, как правило, непригодны в качестве катализаторов. [c.28]

    Независимость перенапряжения кислорода т) = е — во от pH могла бы быть объяснена предполагаемым равновесием металл/окисел металла. Тогда скорость выделения кислорода была бы только функцией парциального давления кислорода. Правда, оказывается трудным истолкование величины Ъ. С другой стороны, при анодном образовании хемосорбированных слоев потенциал зависит не только от степени заполнения, ко и от плотности тока примерно по уравнению Тафеля, как показывают данные, приведенные в 155. Потенциал начала образования этих слоев смещается на 59 мв щ. pH, так же как и потенциал выделения кислорода при заданной постоянной плотности тока I и постоянной степени заполнения 0. Согласно этому реакция образования окисла в уравнении (4. 218) являлась бы лимитирующей стадией. Но знания об образовании окислов еще недостаточны, чтобы можно было продолжить анализ этого процесса. [c.674]


    Согласно представлениям Феттера в электролите, свободном от окислителей , скорость коррозии в стационарных условиях может определяться плотностью анодного коррозионного тока к, который должен протекать через металл для поддержания его в пассивном состоянии. Эта плотность анодного тока к вызывает образование слоя с той же скоростью, с какой он растворяется. В соответствии с данными рис. 316, процесс можно представить следующим образом некоторое количество ионов металла, которые, двигаясь через пассивирующий слой , подходят к фазовой границе окисел/электролит, переходят далее через фазовую границу в электролит (электрохимическая реакция [c.803]

    Если ингибитор не способен восстанавливаться или восстанавливается с незначительной скоростью, то сразу возникает вопрос какая катодная реакция обеспечивает осаждение пассивирующего окисла и поддержание его в устойчивом состоянии Здесь предлагаются два механизма. Согласно одному из них уже небольшая скорость восстановления ингибитора достаточна для того, чтобы поддерживать металл в пассивном состоянии, поскольку восстановленная форма ингибитора, например СггОз, входит в состав пассивирующего окисла, который приобретает благодаря этому более высокие защитные свойства. Согласно другому, пассивация при малых катодных токах возможна из-за того, что большинство эффективных ингибиторов относится к хорошо адсорбируемым соединениям, в силу чего большинство активных центров на поверхности защищаемого металла оказываются химически или физически связанными с ингибитором. В таких условиях уже незначительные катодные плотности тока (в расчете на всю геометрическую поверхность) достаточны для того, чтобы сместить потенциал к значениям, при которых осаждается пассивирующий окисел. [c.53]

    Разница же в защитных свойствах этих анионов обусловлена тем, что они создают различные поля у поверхности металла. Поскольку хром является металлом, а его связь с кислородом — главным образом электровалентной, то слой кислорода, посредством которого анионы связываются с металлом, будет отрицательно заряженным относительно остальной части аниона. Для того чтобы ион-атому защищаемого металла пройти от I ко II слою, необходима определенная энергия, которую не всегда может обеспечить катодный процесс. Ион-атому металла, вышедшему на поверхность, легче задержаться в I слое, образуя с кислородом этого слоя пассивирующий окисел. Поэтому при погружении железа в раствор хромата оно пассивируется и в отсутствие внешнего анодного тока. Для того чтобы возникла пассивирующая пленка в этих условиях, достаточна та небольшая плотность катодного тока, ко- [c.69]

    Окисел цинка, предназначенный для реакции с серной кислотой, с целью определения количества кислоты, выделяющейся при этом взаимодействии, был приготовлен путем сжигания металла. Окисел не был совершенно чист, он оставлял нерастворимый осадок около 1,86 процента. Все нижеприведенные количества этого окисла исправлены на величину. Опыт был проведен в калориметре. Для этих опытов нельзя применять концентрированную кислоту. Однако, если пользоваться слабой серной кислотой, то нельзя ею обливать сухую окись цинка, так как при этом почти мгновенно образуется твердая масса, которая очень медленно растворяется. Лучше предварительно смешать в калориметре окисел с достаточным количеством воды. При этом совершенно не выделяется теплоты. Сначала делают отсчет по термометру, а затем вливают кислоту, которую я брал с содержанием шести атомов воды Й . При вычислении результатов этих опытов я, согласно экспериментальным данным г-на Реньо, принял теплоемкость окиси цинка равной 0,1248 теплоемкость взятой серной кислоты я принял равной 0,6157. Далее, я предположил, что в соответствии с плотностью образовавшейся жидкости ее теплоемкость составляется из теплоемкостей ее составных частей. Нельзя пока утверждать, что это предположение совершенно точно. Однако в данном случае отклонение от истинного значения должно быть очень незначительным. [c.98]

    В монокристаллах меди грани располагаются по степени убывания плотности упаковки атомов в следующем порядке (111) (001) (011) -V (113) (133) (012). Так как общепризнано, что чем плотнее упаковка атомов на поверхности грани, тем больше работа выхода электронов с этой грани, значит, экспериментальные данные опровергают те теоретические положения, которые предсказывают, что скорость окисления должна определяться переносом электронов на поверхности раздела металл — окисел. Горни [337] полагает, что расхождение экспериментальных данных о скорости окисления различных кристаллографических граней могло бы быть обусловлено небольшой разницей контактного потенциала двух граней (поверхности металла и окисла) при низких температурах. [c.95]

    Пассивное состояние может возникать и за счет кристаллизации малорастворимой соли на поверхности металла. Например, свинец в растворах серной кислоты пассивируется вследствие образования малорастворимого сульфата PbS04-При анодной поляризации свинцового электрода в серной кислоте плотность тока в порах слоя PbS04 сильно возрастает, потенциал сдвигается в положительную сторону и появляется возможность образования двуокиси свинца РЬОг. Но соль кристаллизуется из пересыщенного раствора, а не образуется непременно за счет химической реакции непосредственно на поверхности металла (как окисел). Поэтому соль может закрыть любой участок поверхности, но слой ее далеко не всегда является сплошным и непроницаемым для раствора. [c.595]


    Образование на поверхности металла первичной монослой-ной окисной пленки приводит к тому, что скорость растворения металла резко (в 10 —10 раз) снижается, а плотность анодного тока при этом определяется процессами перехода катионов из металла в окисел, перемещением катионов или анионов окисла через окисел, переходом катионов из окисла в раствор. Кинетика каждого из этих процессов сильно отличается от кинетики выхода катиона в раствор из мест выступов решетки при активном растворении. Однако имеется и нечто общее для электродных процессов, протекающих как из активного, так и из пассивного состояний скорость любого из этих процессов зависит от напряженности электрического поля на границе металл—электролит, снижающейся по мере роста ее толщины. При постоянном потенциале ток пассивного растворения падает во времени и после очень длительного периода (многие недели) на очень стойких сплавах достигает чрезвычайно низких значений (Ю- А/см ). Наличие на поверхности пассивного металла фазовых окислов подтверждено экспериментально. Пассивная пленка на коррозионно-стойкой хромоникелевой стали имеет толщину 30—100 А [73]. Чаще всего такая пленка представляет собой кислородное соединение металла. Пассивное состояние металла поддерживается лишь в строго определенной области потенциалов. При смещении потенциала в область отрицательнее Фляде-потенциала за-пассивированный электрод реактивируется. Пассивная пленка на [c.10]

    В настоящей работе определяется общая пористость двух образцов катализаторов, один из которых представляет собой чистый -металл или окисел, другой может быть многокомпонентным катализатором. Как показывает формула (19), для определения общей пористосш необходимо знать истинную и кажущуюся плотность катализатора. [c.74]

    Если окисел имеет состав МвтОц и если атомная масса металла равна А, а плотность окисла равна р, то [c.58]

    По мнению ряда исследователей, хемосорбцию на металлах можно объяснить, предположив, что образование связи между металлом и молекулой сорбата определяется наличием у металла донорных или акцепторных электронных уровней. Металлы с простой валентной оболочкой, образующей 5-зопу, являются типичными донорами электронов с малой плотностью уровней в зоне. Такие металлы хорошо адсорбируют акцепторы электронов, т. е. молекулы окислителей. Однако пз-за большой прочности образующейся связи с переходом металла в другую фазу (окисел, сульфид и т. п.) такие металлы, как правило, непригодны в качестве катализаторов. [c.21]

    В чистом виде уран — серебристо-белый металл с голубоватым оттенком. Плотность 19,0 точка плавления 1130°. Типичные валентности +4 и +6. Легко окисляется на воздухе. При небольшом нагревании сгорает до UaOg. Это — наиболее устойчивый окисел урана. [c.428]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Соединения с кислородом. Окислы. Высший окисел ОзаОд белый. Получается окислением металла или нагреванием гидроокиси, сульфата, нитрата, оксалата и других подобных соединений галлия. Подобно окиси алюминия окись галлия образует несколько полиморфных модификаций. -Модификация со структурой типа корунда получается в результате разложения нитрата или гидроокиси галлия при 400—450°. Она отличается большой плотностью (6,48 г/см ). Быстрым нагреванием гидроокиси до 400—500°, а также гидротермальным синтезом [9] можно получить у -ОзаОз с кубической структурой типа шпинели. Разложением нитрата при 200—230° получают б-модификацию, отличающуюся малой плотностью ( 5 г/см ). Ее структура аналогична структуре окиси индия. Все эти модификации метастабильны и при длительном нагревании выше 1000° переходят в устойчивую моноклинную Р-модификацию, аналогичную по структуре 6-А120а с плотностью 5,95 г/см . Ее можно получить также гидротермальным путем при 300° и выше [I]. В ее структуре есть атомы галлия, находящиеся как в тетраэдрическом, так и в октаэдрическом окружении атомов кислорода. [c.227]

    Н[изший окисел — закись галлия ОзаО — можно получить нагреванием металла в разреженной зтмосфере двуокиси углерода или водяного пара, а также восстановлением окиси (лучше всего металлическим галлием). Это темно-коричневое до черного цвета вещество с плотностью 4,77 г/см , устойчивое на воздухе при комнатной температуре и легко окисляющееся при нагревании. Обладает сравнительно большой летучестью и может быт ь возогнано в вакууме выше 500°. Выше 700° диспропорционирует  [c.227]

    Соединения с кислородом. Окись 1П2О3 получают, прокаливая гидроокись галлия или его нитрат. Она светло-желтая, приобретает при нагревании коричневую окраску. Кристаллизуется в кубической решетке типа МП2О3. Плотность 7,1 г/см . Легко растворяется в кислотах, если не была подвергнута сильному и продолжительному прокаливанию. Прокаленная окись индия на холоду реагирует с кислотами очень медленно, но хорошо растворяется в разбавленных кислотах при нагревании. Щелочи на нее не действуют. Теплота образования 221 ккал/моль. При 700—800° восстанавливается водородом или углеродом до металла. Плавится при 1910°. Нелетуча. При нагревании выше 1200° частично диссоциирует, образуя низший окисел [21. Монокристаллы окиси индия в виде прозрачных зеленоватых кубиков или октаэдров получают путем, транспортной реакции [7  [c.282]

    Прежде всего пойдет первый процесс (кривая АВ, рис. 111) ионы свинца при этом сразу же вступят во вторичную химическую реакцию с образованием труднорастворимой соли PbSO4. В этот момент на поляризационной кривой, снятой потенциостатически, будет наблюдаться спад тока (кривая ВС) при одновременном быстром возрастании анодной поляризации. При более высокой плотности тока достигается потенциал электродной реакции (2) и на аноде образуется нерастворимый высщий окисел этого металла. [c.289]

    Очевидно, что прежде всего пойдет первый процесс ионы свинца при этом сразу же вступят в химическую реакцию с образованием труднорастворимой соли PbS04. Поскольку концентрация сульфата или серной кислоты в растворе обычно значительна, то после включения тока очень быстро достигается произведение растворимости PbS04, который выкристаллизовывается на поверхности анода, образуя солевую пленку. В этот момент на поляризационной кривой, снятой потенциостатически, будет наблюдаться спад тока при одновременном быстром возрастании анодной поляризации (рис. 105). После спада тока потенциал электрода заметно и быстро растет до выделения кислорода. Спад тока и смещение потенциала обусловлены тем, что образовавшаяся на свинцовом аноде солевая пленка несплошная и в порах ее возможна ионизация свинца. В связи с сокращением поверхности истинная плотность тока возрастает и потенциал сдвигается в область более положительных значений. При этом достигается потенциал реакции (3) и на аноде образуется нерастворимый высший окисел металла РЬОг. Однако на этой стадии процесс не задерживается, так как образовавшаяся в порах фазовая пленка двуокиси свинца не обладает ионной электропроводностью и рост ее быстро затормаживается. Это приводит к дальнейшей значительной поляризации анода, вплоть до потенциала выделения кислорода. Вместе с тем, для протекания этого процесса необходимо значительное перенапряжение, поэтому становится возможным более электроположительный процесс (4) окисления ранее образовавшегося сульфата до двуокиси свинца. Не исклю- [c.436]

    Компактную (цельную) платину как материал для анодов на станциях катодной защиты предложил Коттон [14]. Такие аноды при подходящих условиях могут работать с плотностью анодного тока до Ю" А-м-2. Действующее напряжение практически не ограничивается, а скорость коррозии (в предположении об оптимальности условий) очень мала — порядка нескольких миллиграммов на 1 А в год. Впрочем, это обеспечивается преимущественно при сравнительно низких плотностях тока в морской воде прн эффективном отводе образующейся подхлор-ной кислоты. Если приходится применять благородные материалы для получения высоких плотностей анодного тока в плохо проводящих электролитах, то анодное растворение платины увеличивается вследствие образования хлорокомплексов и в таком случае становится непосредственно зависящим от плотности тока [15—17]. Кроме того, в воде с низким содержанием хлоридов при преобладании образования кислорода на поверхностях анодов образуется предпочтительно легче растворимый окисел РЮг вместо РЮ, вследствие чего расход платины тоже увеличивается. Тем не менее потери остаются малыми, так что цельная платина может практически считаться идеальным материалом для анодов. Однако такие аноды ввиду большой плотности платины (21, 45 г см-2) получаются очень тяжелыми, а ввиду весьма высоких цен на платину (28 марок ФРГ за 1 г по состоянию на сентябрь 1979 г.) они неэкономичны. Вместо них применяют аноды из других несущих металлов, рабочая поверхность которых покрыта платиной. [c.204]

    Для такого обсуждения необходимо привлечь фазовую диаграмму (см. рис. 316) для электрода второго рода, в котором А = = 0 (или А = ОН"). Разность потенциалов 61,20 = Ф1 — Фга. соответствующая реакции на границе металл/окисел, устанавливается в том случае, когда переход а (1, 2а) ионов металла осуществляется равновесно. Для трактовки разности потенциалов на грашще окисел/электролит в условиях, когда электролит не насыщен окислом (или гидроокисью), целесообразно использовать представления Енике (см. рис. 319). При предположении, что плотность тока обмена кислородного равновесия [c.802]

    ДВУОКИСЬ КРЕМНИЯ, крем п е 3 е м, SiO — окисел кремния, стабильный в твердом состоянии. По хим. природе Д. к.— кислотный окисел, реагирующий при высокой т-ре со многими окислами металлов, образуя силикаты. Самый распространенный окисел в земной коре и мантии (около 60%). Встречается в связанном (силикаты) и в свободном (кварц) состоянии. Модификации двуокиси кварц, тридимит, кристо-балит, китит, коусит и стишовит. Наиболее распространен кварц, отличающийся тригональпой симметрией. Его плотность 2,65 г см , средний температурный коэфф. линейного расширения 12,3. 10 град . При комнатной т-ре кварц служит изолятором, он бесцветен, обладает винтовыми элементами структуры, обусловливающими существование [c.319]

    Выше ( 7) было сказано, что сдвиг потенциала в отрицательную сторону, вызванный постоянной зачисткой (шлифовкой) поверхности электрода, рассматривается как серьезный аргумент в пользу концепции фазового окисла. Но шлифовка никеля и хрома род слоем раствора при одновременной анодной поляризации была в работе [76] столь интенсивной, что за единицу времени сошлифовывался слой металла, превосходящий тот, который мог бы анодно раствориться, превратиться в окисел или образовать пленку соли на электроде при использованной плотности тока. Несмотря на такой быстрый износ, на поляризационных кривых можно видеть максимум тока при Фп, после чего ток падает с ростом потенциала, давая типичную картину перехода металла в пассивное состояние. Правда, в этих условиях пп, по-видимому, больше, чем в отсутствие шлифовки. Но говорить в данном случае об образовании фазового окисла трудно. Торможение анодной реакции следует скорее связать с адсорбцией. Так как последняя протекает не мгновенно, то шлифовка несколько увеличивает [c.254]

    Плотность окисла, —4,7 Окисел будет довольно легко восстанавливаться до металла Основные свойства гидроокиси будут выражены лишь очень слабо Отвечающие ему соли будут легко разлагаться водой Хлорид формулы ЭС14 будет жидкостью с температурой кипения около 90 °С и плотностью около 1,9 [c.158]

    Коррозия решеток положительных пластин. При анодной поляризации в начале процесса формирования пластин поверхность решеток, состоящих из доэвтектического сплава свинца с сурьмой, начинает покрываться слоем сульфата свинца, который изолирует решетку от электролита. На непокрытых частях поверхности плотность тока увеличивается, поэтому анодный потенциал возрастает до величины, достаточной для окисления свинца до РЬОг. Двуокись свинца хорошо проводит ток и потому в дальнейшем в качестве электрода начинает работать не поверхность металла, а стойкая в серной кислоте двуокись свинца. Во время последующих разрядов и зарядов, вследствие объемных изменений, происходящих при переходе РЬОг в РЬ504 и обратно, поверхность свинцовой решетки в отдельных точках периодически обнажается и приходит в контакт с электролитом. При этом растворяются новые порции свинцового сплава и происходит формирование решетки она теряет прочность и возрастает электросопротивление пластины. По данным Б. Н. Кабанова, окисление сплава происходит также под действием кислорода, который выделяется в процессе заряда на РЬОг и диффундирует сквозь окисел к металлу решетки [37]. В значительной степени коррозия свинцово-сурьмяной решетки зависит от стойкости межкристаллитных прослоек сплава. При застывании отливки примеси, загрязняющие свинец и сурьму, проникают в межкристаллическое пространство. Если эти примеси образуют с серной кислотой соединения, растворимые в электролите, то коррозия сплава прежде всего начнется по прослойкам между кристаллами. Чем мельче будут кристаллы сплава, тем тоньше окажутся межкристаллитные прослойки и тем легче будет закрыть эти прослойки сплошным слоем РЬ504 и РЬОа, образующимся на поверхности кристаллов свинца (рис. 193) [3, с. 97 . [c.463]

    Однако, как замечает Менделеев, уже в первом издании Основ химии , если атомный вес урана удвоить (120x2 = 240), то высший окисел урана получает формулу иОз, и тогда надо рассматривать аналогию с SO3, СгОз, РеОз и т. п. Однако, хотя были все основания считать атомный вес урана равным 240, все же Менделеев продолжает считать его равным 120. Для окончательного решения вопроса, по его мнению, необходимо 1) определить плотность пара летучего хлорида урана (U U или U I4), 2) изучить низшие соединения урана, 3) определить теплоемкость металла и его соединений, 4) изучить формы кристаллических соединений закиси урана и т. п. [c.38]

    Металлический протактиний был получен восстановлением тетрафторида протактиния металлическим барием при температуре 1400 С. Получение металлического протактиния, о котором сообщали в 1934 г. Гроссе и Агрусс [35], было выполнено несколько необычным способом. Окись протактиния в высоком вакууме бомбардировали электронами с энергией 35 кэв или, в другом случав, пентахлорид протактиния термически разлагали на нити накала. Эти исследователи данных о свойствах металла не опубликовали. Металл, полученный восстановлением тетрафторида барием,—блестящее, ковкое вещество, по твердости близкое к урану. Рентгенограмма металлического протактиния показала, что он имеет тетрагональную структуру, отличную от структуры других металлов [36]. Вычисленная плотность металлического протактиния равна 15,37 г/см . На воздухе металл тускнеет, образуя сначала, вероятно, низший окисел протактиния, точный состав которого не известен. Металлический протактиний, подобно другим металлическим актинидам, реагирует с водородом при температурах от 250 до 300° С и образует гидрид РаН , изостр -турный с UH3. [c.101]


Смотреть страницы где упоминается термин Металлы плотность окислов: [c.418]    [c.418]    [c.198]    [c.552]    [c.157]    [c.31]    [c.81]    [c.100]    [c.209]    [c.92]    [c.390]    [c.48]    [c.154]    [c.54]    [c.552]    [c.582]    [c.810]   
Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.257 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы окислов



© 2025 chem21.info Реклама на сайте