Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок стадии

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    Биохимические реакции у растений и животных ускоряются биологическими катализаторами, называемыми фермента-м и. Они представляют собой либо высокомолекулярные белки, либо сочетание белков с соединениями небелковой природы. Каждый фермент характеризуется высокой избирательностью по отношению в каждому конкретному процессу. Например, окисление сахара в организме протекает примерно в 10 раз быстрее, чем при той же температуре в водном растворе под влиянием кислорода. В сложной цепи биохимических процессов окисления сахара в организме участвует неско.лько ферментов, каждый из которых катализирует отдельную стадию. [c.82]

    В действительности процесс репликации ДНК более сложен, чем описанный выше. Считается, что примерно двадцать белков участвуют в процессе репликации, в том числе и такие, которые разделяют родительские цепи, присоединяют и удаляют небольшие фрагменты затравок, вырезают неправильно присоединившиеся основания и исправляют поврежденные участки. Кроме того, оказывается, что синтез новой цепи на матрице происходит не как одна непрерывная стадия, но путем синтеза небольших цепей (фрагментов Оказаки), которые затем соединяются друг с другом с помощью фермента ДНК-лигазы. Затравкой этих фрагментов могут служить короткие цепи РНК, позднее заме- [c.150]

    Процессы получения белков [21, изображенные на рис. 6.1, а и б, различаются стадиями выделения и очистки биомассы. При работе на дизельном топливе необходима дополнительная ступень процесса - экстракция для извлечения остаточных углеводородов (не окисленных дрожжами или адсорбированных на них). [c.266]

    Каждая молекула НАД Н независимо от своего происхождения поступает на третью стадию метаболического процесса-окончательный цикл окисления, или дыхательную цепь,-и образует три молекулы АТФ. Каждая молекула ФАД Hj принимает участие в промежуточной части этой стадии и образует только две молекулы АТФ. Дыхательная цепь включает ряд флавинсодержащих белков (флавопротеидов) и цитохромов (рис. 20-23), с которыми взаимодействуют атомы водорода и электроны, образуемые из НАД Н и ФАД Н2, до тех пор пока они в конце концов не восстанавливают О2 в Н2О. Компоненты дыхательной цепи показаны на рис. 21-24. При повторном окислении НАД Н два атома водорода используются для восстановления флавопротеида, а выделяемая свободная энергия используется для синтеза молекулы АТФ из АДФ и фосфата. Флаво-протеид снова окисляется, восстанавливая небольшую органическую молекулу хинона, известного под названием убихинона, или кофермента Q. С этого момента судьбы электронов и протонов восстановительных атомов водорода расходятся. Электроны используются для восстановления атома железа в цитохроме Ь из состояния Fe в состояние Fe а протоны переходят в раствор. Цитохром Ь восстанавливается в цитохром с,. [c.330]


    Выход из тупика в третий раз оказался возможен благодаря процессам координационной химии. Появились такие молекулы, состоящие из железа, порфирина и белка, в которых железо могло связывать молекулу кислорода, не окисляясь при этом. Окисление Ре(П) после первой стадии связывания в них не осуществляется. Кислород просто переносится в различные участки организма, чтобы высвободиться при надлежащих условиях-кислотности и недостатке кислорода. Одна из таких молекул, гемоглобин, [c.260]

    Окисление сахара в организме происходит в результате сложной реакции, состоящей более чем из двух дюжин биохимически катализируемых стадий. Катализатор каждой такой стадии называется ферментом. Ферменты образуются в живых клетках и по своей природе являются белками. Молекулярная масса ферментов колеблется от сравнительно небольших значений порядка 10000 до величин порядка [c.450]

    Термические белки Стадия 21  [c.219]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]

    Поскольку каждая аминокислота присоединяется поочередно, при химическом синтезе белков очень важен выход на каждой стадии. Вновь обращаясь к синтезу Gly-Ala, отметим, что, если синтез пептидной связи прошел на 90%, такой синтез может считаться удовлетворительным. Однако, если те же условия использованы для синтеза декапептида грамицидина S, то общий выход составит 0,9 X 100% = 35%. При этом не учитываются потери при введении и снятии защитных групп. Следовательно, при синтезе белковых макромолекул образование пептидной связи должно проходить с высоким выходом. [c.68]

    Стереохимические отнощения в ряду природных аминокислот, входящих в состав белков, в настоящее время достаточно ясны. В их исследовании можно различить две стадии — во-первых, установление стерических отношений между аминокислотами и, во-вторых, установление абсолютной конфигурации. Решающую роль в изучении обеих проблем сыграло химическое превращение различных соединений друг в друга -без затрагивания асимметрического атома углерода, иными словами, непосредственное установление конфигурационного соответствия химическим путем. [c.365]

    Сопряжение я-электронов азота, углерода и кислорода придает пептидной связи особый характер. Полипептиды входят в структуру белков. Интересно, что первый синтез белка — инсулина, включающего в свою структуру 51 аминокислоту, который был выполнен до матричного синтеза обычным путем, проходил в 221 стадию. Так как выход продукта на каждой стадии никогда не достигает 100%, то выход конечного продукта многостадийного спн-теза очень мал. Кроме того очистка от побочных продуктов, получающихся на каждой стадии, очень трудна. [c.191]

    Кинетика первой стадии изучена весьма слабо [23, 241 это связано с методическими трудностями при измерении почти диффузионных скоростей (см., например, [25] и гл. V). Детально изучено равновесное состояние сорбции субстрата на ферменте. Найдено, что положение равновесия определяется практически лишь нековалентным взаимодействием с белком боковых химически инертных фрагментов молекулы субстрата. [c.128]

    Микробиологическая депарафинизация (МБД) предназначена для получения низкозастывающих нефтяных фракций как топливных, /так и масляных. Процесс депарафинизации при помощи микроорганизмов основан на способности некоторых видов микробов избирательно окислять парафиновые углеводороды, преимущественно нормального строения, в качестве единственного источника энергии, необходимой для их жизнедеятельности. Биомасса, накопленная микроорганизмами в результате процесса окисления парафиновых углеводородов, является побочным продуктом процесса и после выделения в чистом виде используется в качестве основы для получения кормового белка. Производство низкозастывающих продуктов осуществляется в две стадии собственно микробиологическая депа рафинизация и выделение депарафинизата из стойкой водно-эмульсионной смеси с микробной массой. [c.233]

    Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ. [c.27]


    Таким образом, образование сернистых соединений можно понимать как вторичный процесс, не связанный с нефтеобразова-нием и, так сказать, параллельный ему. Высказывались и противоположные гипотезы, согласно которым сера является в нефтях унаследованным компонентом и что первоначально образовавшиеся нефти содержат серу как обязательный компонент, исчезающий впоследствии на длинном пути ее превращения. Из этого как будто следует, что серой должны быть богаты геологические молодые нефти, более или менее близкие к исходному веществу нефти, тогда как нефти древние, метановые, могут серы и не содержать. Это соображение плохо вяжется с тем, что очень многие третичные нефти практически серы не содержат, тогда как иногда древние нефти, наоборот, богаты серой. Примерами первых могут служить нефти Баку, Грозного и ряда других месторождений, примерами вторых могут служить сернистые нефти Второго Баку. Вместе с тем исключениями крупного масштаба являются кайнозойские нефти Калифорнии, Мексики и другие, содержащие много серы и бессернистые палеозойские нефти северо-восточных штатов США. Связь между серой и углеводородами нефти часто понималась таким образом, что сера имеет белковое происхождение и должна принимать участие-в тех процессах, которые переводят живое вещество в нефть.. Между техм хорошо известно, что разложение белка связано с выделением серы в виде сероводорода, не принимающего участие в последующих превращениях органического вещества. Ввиду того, что сероводород минерального происхонодения может внедряться в углеводороды, проходя через стадию элементарной серы, нет никакой необходимости отводить белковой сере заметную роль. Все подобные гипотезы отличаются тем, что не объясняют, почему осернение нефти не является обязательным процессом, поскольку в природе имеются значительные месторождения бес-сернистой нефти. Кроме того, в подавляющем большинстве случаев сернистость нефти есть явление региональное, охватывающее громадные области, что говорит о какой-то общей причине явления. Факт восстановления сульфатов микроорганизмами есть. [c.179]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Прежде всего они проявляются в различной степени распространенности геометрических (пространственных) и временных кодов на ранних и поздних стадиях эволюции. На ранних стадиях доминировали геометрические коды. Временные проявляли себя главным образом на стадиях размножения (связанных с работой механизмов репликации и синтеза белков), а сигнальные связи со средой и другими системами того же типа осуществлялись с помощью соединений, имеющих строго определенную структуру (например, феромоны). Позже, с появлением нервной системы, временное кодирование приобрело исключительное значение. [c.338]

    Цианистоводородная к/слота и ее соли очень ядовиты. Попадая в организм/ H N вызывает нарушение тканевого дыхания, блокируя дыхательные ферменты. Предельно допустимая концентрация в воздухе 0,3 мг/м . В начальной стадии отравления ощущается царапанье в горле, жгуче-горький вкус во рту, слюнотечение. При высоких концентрациях человек почти мгновенно теряет сознание, наступает паралич дыхания, а затем и паралич сердца. Смертельная доза цианидов около 0,1 г. Указателем на присутствие H N в воздухе может служить табачный дым, который становится очень горьким. При отравлении цианидами следует вызвать рвоту и вдыхать пары аммиака. H N может накапливаться в воздухе рабочих помещений при горении целлулоида, при неполном сгорании и сухой перегонке азотистых органических веществ, при действии на белки концентрированной азотной кислоты, в забродивших дубильных соках. В табачном дыме от одной сигареты содержится около 0,2 мг H N. [c.277]

    Замечательные успехи в синтезе белков, достигнутые в последние годы, стали возможны после того, как Меррифилдом был разработан метод синтеза на твердом носителе. Принцип метода состоит в том, что исходная С-концевая аминокислота связывается ковалентно с нерастворимым полимером пространственной структуры и затем все последовательные стадии синтеза пептидной цепи проводятся на этом носителе. При этом отпадает необходимость выделения на каждой стадии синтеза полученных пептидов, так как они остаются привязанными к носителю, и становится возможным простой промывкой носителя удалять побочные продукты синтеза и непрореагировавшие исходные вещества. [c.381]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Однако катализаторы, способные проводить ресинтез белков из 2-аминокислот или дикетопиперазинов вне организма, до сих пор не открыты. В этом направлении проводились работы, из которых интерес представляют исследования А. Я. Данилевского [59]. Он действием протеолитических ферментов вне клеток получил своеобразные продукты ресинтеза—не растворимые в воде пластеины, которые не дают, однако, ни одной из характерных реакций на белки и природа которых до сих пор не установлена. Интерес в этом отношении представляют работы С. Е. Бреслера [60] с сотрудниками, которые осуществили обратный синтез белков, применив высокие давления порядка 5000—6000 ат. Эту стадию процесса С. Е. Бреслер назвал ресинтезом белков. Ему впервые удалось установить, что схематическая реакция [c.507]

    Теперь мы обратимся к краткому рассмотрению того, как описанные фотохимические изменения превраш,аются в электрический импульс, который стимулирует мозг. Существуют доказательства, что одиночный квант света может вызвать раздражение палочки сетчатки. Однако поглощение одного кванта еще не создает эффекта зрения. Для этого требуется попадание нескольких квантов (согласно разумной оценке, от двух до шести квантов) в одну и ту же палочку в течение относительно короткого временного промежутка. Но даже в этом случае процесс весьма эффективен, а энергия конечной реакции существенно превосходит энергию, поглощенную зрительным пигментом. Поглощение света инициирует цепь реакций, черпающих энергию из метаболизма. Тем самым зрительное возбуждение является результатом усиления светового сигнала, попадающего в сетчатку. Фоторецептор служит биологическим эквивалентом фотоумножителя, который преобразует кванты света в электрический сигнал с большим усилением и низким шумом (см. гл. 7). И фоторецептор, и фотоумножитель достигают большого коэффициента усиления с помощью каскада стадий усиления. Зрительные пигменты представляют собой интегральные мембранные белки, которые находятся в плазме и мембранах дисков внешнего сегмента фоторецептора. Фотоизомеризация ретиналя вызывает серию конформационных изменений в связанном с ним белке и тем самым образует или раскрывает ферментативный активный центр. Следует каскад ферментативных реакций, которые в конце концов дают нервный импульс. Электрический ответ начинается с кратковременной гиперполяризации, вызванной закрытием нескольких сотен натриевых каналов в плазматической мембране. Таким способом молекулы-посредники (мессенджеры) передают информацию от диска рецептора к мембране плазмы. Вероятным кандидатом на роль мессенджера является богатый энергией циклический фосфат цГМФ (гуанозин-3, 5 -цикломонофосфат), возможно, в сочетании с ионами Са +. Было показано, что катионная проводимость плазматических мембран палочек и колбочек прямо контролируется цГМФ. Таким образом светоиндуцированные структурные изменения диска активируют механизм преобразования, который сам генерирует потенциал, распространяющийся по плазматической мембране. В настоящее время детали механизмов преобразования и усиления продолжают исследоваться. Была предложена схема, основной упор в которой делается на центральную роль фосфодиэстеразы в процессе контроля за кон- [c.241]

    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Большинство ученых в настоящее время полагает, что эволюция кизни прошла через четыре стадии. Вначале происходило образование небольших молекул (амииокислот, нуклеотидов, сахаров). Из этих строительных блоков образовывались затем макромолекулы, такне, как белки и нуклеиновые кислоты. На третьей стадии происходило образование клеточиоподобной структуры, способной К самовоспроизводству. На последней стадии эта примитивная клетка эволюционировала в современную клетку, содер кащую генетическую программу синтеза белка. [c.181]

    Для проведения лабораторных исследований необходимо знать условия реакций, протекавших на первобытной. Земле, нричем следует отмстить, что ни белки, ни нуклеиновые кислоты не образуются самонроизвольно в нодны.ч растворах [47]. Самоконденсация формальдегида, другого возможного иредшест-венника живой материи, должна была бы привести к образованию сахаров, причем в присутствии СН4 реакция протекает через стадию фотолиза воды. [c.185]

    На первой стадии образование батородопсина происходит за времена порядка десятков пикосекунд, а каждая последующая в 10 —10 раз медленнее предыдущей. Согласно современным представлениям, изменения обусловлены стерической невозможностью для прямого а11-гра с-ретиналя поместиться на поверхности опсина. Лишь изогнутый 11-4<ис-ретиналь вписывается в белок. Поглощение кванта света приводит к фотоизомеризации и тем самым к напряженным структурам, а в конце концов — к расщеплению химической связи между белком и хромофором. Переход к батородопсину влечет за собой изомеризацию ретиналя с образованием почти аИ-граис-формы, но такой, которая еще не релаксировала к самой низкоэнергетической геометрии. Более сильно релаксировавший а11-гранс-изомер появляется на стадии люмиродопсина. На каждой стадии белковый скелет перегруппировывается заметно выраженные изменения, связанные одной или более углубленными внутрь карбоксильными группами, становятся видимыми в метародопсине I. Образование метародопсина И сопровождается депротонированием шиффова основания, а также существенными изменениями липидной структуры. Именно метародопсин II з Jпy кaeт следующий набор биохимических стадий, которые мы коротко рассмотрим. Изменения оптического поглощения, по-видимому, согласуются с представленной картиной. Понижение энергии возбужденного состояния вследствие взаимодействия ретиналя с опсином приводит к длинноволновому сдвигу соответствующей полосы поглощения, причем чем сильнее взаимо-дейс№ие, тем сильнее сдвиг. Когда последовательно образуют- [c.239]

    Доминантную роль в нековалентном связывании субстрата на ферменте играет сорбционное взаимодействие с белком боковой группы К (табл. 28). Из таблицы видно, что введение углеводородной группы СбНзСНг— как в молекулу метилацетата (при переходе к метилгидро-циннамату), так и в молекулу метилацетурата (при переходе к М-аце-тил-L-фeнилaлaнинaтy) обуславливает увеличение константы сорбции К7, М ) примерно на 2 порядка. С другой стороны, наличие в молекуле субстрата достаточно объемной углеводородной группы К приводит также и к ускорению на несколько порядков химических стадий ферментативной реакции. [c.134]

    На стадии 2 в механизме (4.41) происходит фактически более эффективное термодинамически выгодное гидрофобное взаимодействие между ферментом и субстратом. Однако этот процесс не приводит к более про чному связыванию субстрата на ферменте, поскольку сопровождающие его термодинамически невыгодные конформационно-сольвата-ционные изменения в белке протекают полностью за счет потенциальной свободной энергии сорбции (гидрофобного взаимодействия). [c.156]

    В итоге приходим к выводу, что конформационно-сольватационные изменения в активном центре, осуществляющиеся при (и за счет) сорбции субстрата на ферменте, приближают комплекс Михаэлиса (или, соответственно, ацилфермент), к переходному состоянию химической стадии (см. гл. II, теоретические воззрения Дженкса, Ламри и Эйринга относительно механизма напряжения ). Не исключено, что именно при этом происходит тонкая настройка по отношению друг к другу функциональных групп белка, входящих в составной нуклео-фял активного центра. [c.156]

    Помимо хлорофилла, который является основным видом фотосинтетических пигментов, в зелепо.м листе (в так называемых хлорипластах, представляющих собой сложные специализированные биологические структуры) содержатся и другие пигменты — каротинонды и фикобелины, которые обычно называют вспомогательными, Эти пигменты, по современным представлениям, принимают известное участие в фотосинтезе, а также защищают хлорофилл от фотоокисления. Помимо пигментов, основными компонентами хлоропластов, в которых, собственно, и осуществляется весь процесс фотосинтеза, являются липоидные вещества и белки, которые содержат большое число ферментов, необходимых для осуществления последующих стадий фотосинтеза, не связанных с воздействием солнечной радиации. [c.177]

    В синтетических полярных полимерах и белках набухание начинается с сольватации полярных групп. При образовании сольватных слоев поглош,ается около 20—40% растворителя от массы сухого полимера. Следующая стадия набухания — поглощение десятикратного объема растворителя — объясняется осмотически-ми явлениями. Набухание в современиой трактовке тесно связано с молекулярной структурой полимера. С термодинамической точки зрения процессы набухания ВМС и растворения низкомолекулярных веществ весьма сходны между собой набухание — явление,-характерное для полимеров. [c.285]

    Биоспецифическая хроматография применяется для очистки ферментов, так как она позволяв извлекать ферменты из сложных смесей в одну стадию с высокой степенью очистки и с большим выходом. В последнее время в качестве адсорбентов-носителей в биоспецифической хроматографии находят применение как макропористые неорганические адсорбенты (силикагели, силохромы, пористые стекла), так и макропористые органические сшитые сополимеры, например макропористые сополимеры глицидилме-такрилата с этилендиметакрилатом типа сферой (см. лекцию 6) со сферическими зернами разных размеров. Эти адсорбенты-носители обладают разной удельной поверхностью и крупными порами разных размеров. На рис. 18.10 представлен пример биоспецифической хроматографии химотрипсина на сфероне с иммобилизованным химической прививкой белком — ингибитором трипсина (являющегося также ингибитором химотрипсина). Из колонны, заполненной обычным макропористым сфероном без иммобилизованного ингибитора, химотрипсин выходит вместе с остальными белками, а из колонны, заполненной сфероном с привитым ингибитором, сопутствующие белки выходят приблизительно за то же время, а химотрипсин прочно удерживается. Это позволяет отделить [c.342]

    При съемке кристаллов белков, нуклеиновых кислот и других объектов с очень большими параметрами решетки, когда общее число отражений достигает нескольких десятков или сотен тысяч, а также при съемке кристаллов, нестабильных во времени или разлагающихся под действием рентгеновского излучения, возникает необходимость ускорения рентгеновского эксперимента. Один из естественных методов ускорения — повышение мощности рентгеновских трубок, в частности использование трубки с вращающимся анодом или переход к другим источникам мощного у-излучения. Второй метод — замена последовательного измерения отражений в обычных дифрактометрах одновременным измерением многих дифракционных пучков с помощью специальных устройств. В настоящее время разработаны так называемые многоканальные дифрактометры, оснащенные системой из нескольких (трех или пяти) параллельно перемещаемых счетчиков, которые регистрируют дифракционные лучи, возникающие одновременно (или почти одновременно) на разных слоевых линиях в процессе вращения кристалла. Эти приборы предназначены специально для кристаллов с большими периодами. В стадии технического совершенствования находятся в принципе более перспективные координатные детекторы, как олтномерные, так и двумерные. Одномерный координатный детектор позволяет измерять интенсивность всех дифракционных лучей одной слоевой линии (в том числе возникающие одновременно) с регистрацией угловой координаты (а следовательно, и индексов) каждого луча. Аналогичным образом двумерный координатный детектор позволяет регистрировать дифракционные лучи всех слоевых линий. [c.64]

    Определенные схемы и комбинации приемов анализа сложных структур (адекватные уровню развития вычислительной техники). Об этом, в частности, свидетельствует становление приемов структурного анализа в такой специфической области, как химия белков. Здесь широко используется паттерсоновский метод фиксации позиции тяжелых атомов, специально вводимых в белок, сравнение паттерсоновских распределений для ряда изострук-турных производных белка, выявление знаков (начальных фаз) структурных амплитуд путем статистической обработки данных о разности единичных амплитуд в изо-структурных парах (метод изоморфного замещения). На определенной стадии анализа привлекаются и априорные сведения о геометрическом строении отдельных группировок, входящих в состав белка [c.113]

    Водородная связь играет важную роль в неорганической и органической химии. Ее универсальность связана с распространенно стью в природе воды и соединений со связями О—Н. Низкая энергия водородной связи (сравнимая с энергией теплового движения), способность легко разрушаться и восстанавливаться при комнатной температуре вместе с огромной ее распространенностью обу словливает ту огромную роль, которую она играет в биологических системах. Упорядоченное расположение полипептидных цепей в структуре белка, поперечные связи в структуре целлюлозы и в двойной спирали дезоксирибонуклеиновой кислоты (ДНК) объясняют ся наличием водородной связи. Кроме того, доказано образование водородной связи на некоторых стадиях почти всех биохимических процессов. [c.142]


Смотреть страницы где упоминается термин Белок стадии: [c.485]    [c.56]    [c.320]    [c.303]    [c.227]    [c.336]    [c.194]    [c.486]    [c.180]    [c.339]    [c.371]    [c.154]   
Особенности брожения и производства (2006) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратурно-технологическая схема стадий выращивания i микроорганизмов, выделения и сушки белковых препаратов

Влияние белка на константы скорости отдельных стадий

Препаративная хроматография на ранних стадиях очистки белка

Природа и локализация синтеза РНК и белка на ранних стадиях вирусной инфекции

Синтез белка на ранних стадиях зародышевого развития



© 2025 chem21.info Реклама на сайте