Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен, молекула

    Пропионовый альдегид является весьма цепным сырьем для получения ряда продуктов тяжелого органического синтеза. Ранее малодоступный пропионовый альдегид может стать массовым и дешевым полупродуктом благодаря осуш,ествлению процесса оксосинтеза в промышленных масштабах. Как известно, получение пропионового альдегида оксосинтезом заключается в присоединении к этилену молекулы окиси углерода и водорода. Реакция протекает при температуре 150—160° С и давлении 150 — 300 ати, с применением в качестве катализатора карбонилов кобальта. Процесс этот разрабатывался, начиная с 1948 г., во Всесоюзном научно-исследовательском институте нефтехимических процессов [1.—3], в результате чего было предложено несколько технологических схем, в частности, триадная и солевая. [c.196]


    Этилен, молекула которого симметрична и неполярна, поли-меризуется с трудом. Лишь относительно недавно (около 25 лет тому назад) удалось осуществить полимеризацию этилена при температуре 300—400° и под давлением 1000—2000 ат. Это единственный в настоящее время процесс, проводимый в столь жестких условиях. Тем не менее производство полиэтилена осуществляется в огромных размерах, что следует объяснить положительными техническими свойствами полиэтилена и доступностью его сырья [c.29]

    Вследствие поляризации устойчивость двойной связи молекулы пропилена понижается и он легче вступает в реакции полимеризации, чем этилен, молекулы которого не поляризованы. 2-Метилпро-пен(изобутилен)  [c.58]

    Другой пример. При переработке нефти получается газообразное вещество — этилен. Молекулы этилена содержат всего лишь два атома углерода и четыре атома водорода. При нагревании этилена в присутствии катализаторов удается вызвать процесс соединения его молекул, что приводит к образованию длинных цепных молекул полиэтилена. Газ этилен совершенно не похож па полиэтилен, который представляет собой твердое, труднорастворимое вещество, образующее очень прочные пленки, волокна п пластмассы. [c.141]

    Самая простая такая молекула — этилен  [c.37]

    Чтобы перейти к дальнейшим обобщениям, сделаем следующее допущение. Пусть для перегородки, разделяющей фазы аир, будут характерны такие свойства для молекул компонентов фаз а или р она непроницаема, а для атомов, из которых состоят эти молекулы, — проницаема. Например, фаза а содержит этан, а фаза 3 — этилен и молекулярный водород. Молекулы этих соединений не могут пройти через перегородку, в то время как элементарный углерод и атомарный водород проходят сквозь нее. Так как фазы системы не содержат элементарных углерода и водорода, то в их состав могут входить только три компонента системы и после переноса атомы вновь соединятся, образуя те же три компонента  [c.128]

    Тонкую вращательную структуру спектра удалось разрешить только для немногих углеводородных молекул. Кроме метана и ацетилена, уже упоминавшихся выше, к таким углеводородам относятся этилен, этан и циклопропан. Остальные углеводороды имеют слишком низкую симметрию, слишком большие моменты инерции или то и другое одновременно, чтобы тонкая структура их спектров могла быть разрешена 1. [c.307]

    Интересно отметить, что в течение всего процесса молекула остается фиксированной на поверхности катализатора. Превращение гептана в циклический продукт происходит аналогично реакции обмена мо/кду этиленом и дейтерием  [c.170]


    Сравнительно низкая эффективность полимеризации этилена является, по-видимому, также результатом низкой эффективности инициатора. Этого можно было ожидать, так как соединение инициатора радикала с молекулой мономера формально является тем же развитием реакции. Низкая реакционная способность молекулы этилена и вытекающая отсюда низкая эффективность инициатора находят свое отражение в чувствительности полимеризации этилена к типу инициатора. В этом отношении этилен, по-видимому, уникален. Многие инициаторы свободных радикалов дают лишь незначительные выходы полиэтилена даже при наиболее благоприятных условиях. Вследствие этого было выдано многО патентов на приготовление катализаторов, специфических для проведения полимеризации этилена. Самые разнообразные требования предъявлялись к этим катализаторам, включая высокую степень превращения этилена, полимеризацию при низких давлениях и температурах, хорошее качество полимера и др. Многие из этих требований весьма сомнительны. [c.172]

    Додецилбензол производится несколькими нефтяными компаниями алкилированием бензола полипропиленом. Эти же компании вырабатывают и производные сульфонатов, которые используются в качестве детергентов для промышленных и бытовых нужд. Аналогично полистирол можно рассматривать как нефтяной углеводород, поскольку оба исходных соединения для его производства (этилен и бензол) получаются в настоящее время из нефти. В масляных фракциях, используемых для приготовления маслорастворимых сульфонатов, необязательно должны преобладать ароматические углеводороды, но сульфированию подвергаются только углеводороды, содержащие в молекуле ароматические кольца, которые избирательно сульфируются и в виде сульфонатов остаются в растворенном состоянии в остаточной неароматической части масла. [c.516]

    Сущность процесса заключается в том, что при взаимодействии триэтилалюминия с этиленом имеет место реакция роста цепи, в результате которой получаются высшие алкилы алюминия с прямой цепью. Эти алюминийалкилы затем окисляются воздухом с образованием алкоголятов алюминия, гидролиз которых дает высшие первичные спирты. При проведении реакции управляемой полимеризации получается смесь алюминийалкилов с различным содержанием атомов углерода в цепи. Так как мономерной единицей процесса управляемой полимеризации является этилен, то в результате окисления смеси алюминийалкилов получается смесь спиртов с четным числом углеродных атомов в молекуле, отличающихся друг от друга на 2 атома углерода. Получаемые спирты представляют собой смесь, содержащую свыше 40% спиртов Се—Сю и примерно столько же спиртов Сю—0,8-Длину спиртового радикала можно регулировать, изменяя на стадии полимеризации соотношение между триэтилалюминием и этиленом. [c.194]

    Ароматические углеводороды вследствие своей резонансной характеристики более устойчивы к иррадиации [772, 773], но с ними могут индуцироваться химические реакции. Таким образом, обработка Х-лучами нейтральных водных растворов бензола, насьщенного кислородом, дает фенол, пирокатехин-хинол, пара-бензохинон, альдегид и следы дифенила. В этом случае молекулярный кислород, но-видимому, принимает участие в реакциях радикалов [774]. Можно заметить для сравнения в водном растворе, содержанием кислород и этилен, гамма-лучи вызывают цепные реакции, которые образуют альдегиды с меньшим содержанием спиртов, кислоты, перекиси водорода и других перекисей. Для альдегидов выход в молекулах на 100 эе был около 200 [775]. Подобным же образом индуцируется гамма-лучами хлорирование более низких ароматических соединений таких, как бензол, толуол, ксилол и мезитилен однако бензол устойчив [776]. Как для бензола, так и для толуола хлорирование пропорционально квадратному корню интенсивности излучения это применимо и к присоединению, и к замещению [777 ]. Изучалось также и влияние радиации на асфальты [778]. Изменения, по-видимому, в отличие от вызываемых продувкой воздухом, линеарны по времени и проходят с небольшой скоростью. [c.152]

    Этил может терять атом водорода, образуя этилен. Каждый высвобождаемый таким образом атом водорода может реагировать с новой молекулой пропана и давать при этом молекулу водорода и радикал —пропил. Радикалы более длинные, чем метил и этил, малостабильны и установить их наличие нелегко. [c.297]

    Вспрыскивание или испарение какого-либо углеводорода в зону действия пламени подвергает вещество, находящееся в виде отдельных молекул в парах, действию температуры, при которой углеводороды уже не стабильны и разлагаются на элементы. Такое разложение происходит не прямо а проходит ряд ступеней. По аналогии с известными процессами крекинга нефтей до газа, при котором температуры все-таки ниже, чем в пламени (700° С вместо 1200—1500° С) можно заключить, что большие молекулы разбиваются на более мелкие молекулы газов. Образуются метан, этан и этилен, пропан и пропилен, немного дивинила и, возможно, — водорода. [c.473]


    Избирательность адсорбции на цеолитах еще более резко выражена для углеводородов с тройной связью в молекуле, например ацетилена, особенно при низких концентрациях его в газе. При обычных производственных температурах (20° С) активность цеолитов в 2—3 раза выше активности угля СКТ. С повышением температуры разница в адсорбционной способности цеолитов и активированного угля еще более увеличивается, что является отличительной особенностью адсорбции на синтетических цеолитах колебания температур перерабатываемого газа не играют столь существенной роли, как в случае применения активированного угля. В незначительном числе случаев ацетилен приходится извлекать из смесей, содержащих этилен. Высокий коэффициент разделяющей способности цеолитов по смеси этилен — ацетилен указывает на возможность их применения для целей очистки этилена от примесей ацетилена. [c.113]

    Подобные этилену молекулы R2N-BX2 легко полимерпзуют-ся, а образующиеся димеры и тримеры являются аналогами замещенных циклобутаиов и цнклогексаиов. Молекулы типа г имеют плоские 4-члениые циклы [6, 7] с длиной связи В—N 1,60 А. Для молекул типа д характерна конформация кресла [8]. Фосфорные аналоги. молекулы д имеют подобную конформацию с длиной связн В—Р 1,94 А [9а]. Примером структуры типа е служит молекула [НгВ Р (СНз)г]4 [96]. Получены также соединения мышьяка [ (СНз) гАз ВПо] (где га = 3 илп 4). [c.186]

    ПП имеет более низкую плотность, чем большинство полиэтиленов (0,905 г/см ) и более высокую прочность. Его температура плавления составляет 162 °С, что значительно выше, чем у ПЭВП. Это делает ПП пригодным для изготовления изделий, подлежащих стерилизации и микроволновой обработке. Температура стеклования высокая (может быть 10 °С, но это зависит от кристалличности и способа измерения), так что ударная прочность плохая. Ударную прочность можно улучшить сополимеризацией с этиленом. Обычно добавляется 5% этилена и формируются блок-сополимеры, в которых содержащие этилен молекулы образуют несмешиваемую распределенную фазу, находящуюся в матрице из гомополимера (ПП). Ударная вязкость значительно возрастает без снижения общей температуры плавления. Использование других статистических полимеров дает увеличение ударной вязкости и эластичности при снижении прочности при растяжении и температуры плавления. [c.23]

    Основной пространственный каркас молекулы создают а-связи, образованные путем перекрывания гибридизованных р -ор-биталей четырех атомов углерода. Кроме того, четыре 2/>л-орби-тали образуют цепь я-связей, охватывающих всю молекулу. Подобно этилену, молекула б утадчена плоская и может иметь транс- и цис-формы. Обычно реализуется цис-форма [15]. [c.60]

    В нредыдуш их разделах были рассмотрены способы получения олефинов дегидрированием парафиновых углеводородов без уменьшения числа углеродных атомов в молекуле. Этаи дегидрируется в этилен простым нагреванием до высокой температуры, более высокомолекулярные углеводороды, как пропан, бутан, пентан, дегидрируются каталитическим способом. Высокомолекулярные парафиновые углеводороды — гексан, гептан и т. д. — не могут быть превращены экономически приемлемым способом в олефины с раттм числом атомов С, так как в этом случае преобладают процессы крекинга. [c.49]

    Этилен ведет себя па первый взгляд так, как будто оп принадлежит к другому гомологическому ряду, чем а-олефины с большим числом углеродных атомов [43]. При действии этилена на триэтилалюмипий нри температуре 100—120° и давлении этилена около 100 ат молекулы этилена внедряются между алюлгпнием и этплып.(ми группами [c.67]

    По поведению ири хлорпровании замещением низкомолекулярные олефины можно разделить на две группы. К первой группе относятся олефины с прямой цепью, как этилен, нропен, м-бутен и м-иентен, реагирующие с хлором при окружающей температуре только с образованием продуктов присоединения. Вторая группа включает в себя углеводороды, которые при равных условиях реагируют исключительно путем замещения с сохранением двойной связи в молекуле вновь образовавшегося хлорироизводного. К ним относятся олефины, у которых двойная связь находится в боковой цени, как, например, изобутен, трпметилэтилен. [c.168]

    При смешении жидкого изобутена при —80° с небольшим количеством фтористого бора, растворенного в жидком этилене, практически мгновенно и почти количественно происходит полимеризация изобутена с образованием каучукообразного вещества (оппанол В) [65]. В случае применения очень чистого изобутена полимер имеет молекулярный вес около 200000, т. е. в нем соединяется примерно 3500 молекул изобутена. При добавлении высших олефинов, нанример ди- и триизобутена, молекулярный вес полимера снижается. Добавка же 0,015% диизобутепа понижает молекулярный вес на 50000 единиц. Поэтому для регулирования молекулярного веса получаемого полимера к изобутену добавляют большее или меньшее количество ди-изобутена. Освобождающееся тепло реакции отводится за счет испарения этилена, пары которого затем конденсируются и жидкий этилен возвращается в процесс. [c.224]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]

    Установлено, что молекулы обладают колебательным спектром, зависящим от конфигурации их ядер и электронов. На основании изучения колебательного и вращательного спектров часто пытаются точно установить детали этой конфигурации. Для малых молекул во многих случаях можно применить точную математическую обработку, дающую значения межъядерных расстояний, сил, действующих между ядрами, и моментов инерции. Это сделано, например, для таких углеводородов, как метан, отан, ацетилен и этилен. [c.317]

    Стэйвли [42] измерил среднюю длину цепи радикальной реакции с помощью окиси азота. Найденные им величины меняются от 20,6 при давлении 50 мм рт. ст. до 6,4 при давлении 500 мм рт. ст. при температуре 620° С. Это не может быть истинной длиной цепи, так как эти данные совершенно несовместимы с приведенными выше величинами констант скорости. Действительная длина цепи, измеренная по относительным скоростям реакций развития и обрыва цепи, должна составлять песколько тысяч единиц. Если ингибированная реакция является молекулярной, то эти результаты могут быть объяснены допущением, что непосредственная молекулярная перегруппировка в этилен и водорода должна происходить значительно чаще, чем расщепление молекулы этана на два метил-радикала. [c.26]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Простейшие олефины так же действуют, как диенофилы, по требуют сравнительно более высоких температур. Например этилен и бутадиен при 200° дают циклогексен с выходом 18% [31]. С другими диенами были получены лучшие выходы, например с 2,3-диметилбутадиеном (50%) и циклопентадиеном (74%) [31]. При более высокой температуре такие реакции обратимы и пиролиз циклогексена является одним иа хороших лабораторных методов получения бутадиена. Винилацетат, хлористый винил, другие хлорзамещенные этилены и различные аллильные производные такн е вступают в реакцию конденсации с реакционноспособными диенами при 100—200°, однако известно, что все эти реакции должны проводиться при сравнительно высоких давлениях [27]. Стирол и другие фенилзамещенные этилены, по-видимому, в некоторых случаях вступают в реакцию, и, как будет показано ниже, молекулы диенов могут конденсироваться одна с другой, например, при димеризации бутадиена в ви-нилциклогексен [35]. Эта специфическая реакция весьма услон няет работу с бутадиеном. Конденсации такого рода в качестве побочной реакции возможны при любой из реакций Дильса-Альдера  [c.177]

    Дигалоидалкилы. Дигалоидалкилы, содержаш,ие в молекуле, по крайней мере, один-четвертичный атом углерода, могут быть получены путем конденсации этилена с дигалоидалкилами, у которых хотя бы один атом галогена находится у третичного углеродного атома [20]. Например, при реакции 1,3-дихлор-3-метилбутана (дигидрохлорид изопрена) с этиленом в присутствии А1С1д образуется 1,5-дихлор-3,3-диметилпентан. Ясно, что атом хлора, соединенный с третичным атомом углерода, значительно реакционноспособнее, чем атом хлора, находяш,ийся у первичного атома углерода  [c.231]

    Облучение к-гептапа силой в 8,7 10 электронвольт (эв) дает смесь, содержащую 16 соединений, включающих к-пептан и 3-метилпентан наиболее тяжелый — н-додекан циклогексан да ет н-гексан и дициклогексан. Интересно, что электронная иррадиация этана и дейтероэтана показывает, что молекулы водорода могут внутримолекулярно разрываться [763]. Образование полимеров сопровождает эту парафиновую иррадиацию этилен, бутадиен образуются от этана вместе с небольшим количеством ацетилена, который в конце выделяется как твердое тело. Реакция, вероятно, представляет собой полимеризацию прибавления, инициированную радикалами. Полиэтиленовые синтетические смолы могут образовываться гамма-лучевой иррадиацией этилена [764,, 765]. [c.151]

    Образование активного центра включает две основные последовательные реакции окислительно-восстановительное взаимодействие соединения переходного металла и алюминийалкила и присоединение мономера к образованному комплексу. Так как процесс сополимеризации проводится на гомогенных или псевдогомо-генных каталитических системах, а определяющим во второй реакции является взаимодействие комплекса с этиленом, скорость которого тоже достаточно велика, то можно считать, что образование активного центра протекает мгновенно [14], а их число прямо пропорционально числу молекул переходного металла [16, с. 46—68]. [c.298]

    В случае, например, молекулы этилена или бензола оси электронных облаков, образующих л-связи, расположены перпендикулярно плоскости двойной связи в этилене или плоскому кольцу атомов углерода в бензоле. При адсорбции этилена и бензола их молекулы располагаются на поверхности плоско. Если поверхность адсорбента обладает гидроксильными группами (поверхность силикагеля, алюмосилнкагеля или гидроокиси магния) или выдвинутыми катионами (поверхность каналов цеолита), то на близких расстояниях возникает специфическое взаимодействие между этими гидроксильными группами или катионами и тс-электронами этилена или бензола, которое в известной степени Аналогично водородной связи  [c.499]

    В первой части пой работы вы познакомитесь с молекулами углеводородов, в которых углерод связан не с четырьмя, а с тремя другими атомами. Такие углеводороды называются алкенами. Первый член ряда алкенов — этилен С2Н4. . [c.213]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Структура молекул, в которых к центральному атому присоединены неодинаковые атомы, несколько отличается от идеальных структур, показанных на рис. 11-3. Так, в молекуле СН3С1 углы НСН равны 110,5°, а угол С1СН равен 108,5° и то, и другое значение отличается от идеального тетраэдрического угла 109,5°. В качестве других примеров подобных отклонений от идеальной геометрии приведем этилен и формальдегид. В обеих молекулах атомы углерода имеют СЧ = 3, которому должны отвечать идеальные валентные углы 120°. Однако экспериментально наблюдаются такие структуры  [c.493]

    В ненасыщенных органических молекулах по крайней мере некоторые атомы углерода используют только две или три валентные орбитали для соединения с другими атомами посредством а-связей. Одним из простейших примеров ненасыщенных молекул является этилен, С2Н4, льюисова структура которого предполагает наличие двойной связи между атомами углерода  [c.566]


Смотреть страницы где упоминается термин Этилен, молекула: [c.186]    [c.15]    [c.50]    [c.67]    [c.94]    [c.521]    [c.31]    [c.90]    [c.84]    [c.228]    [c.231]    [c.141]    [c.144]    [c.220]   
Физическая и коллоидная химия (1960) -- [ c.36 ]




ПОИСК







© 2025 chem21.info Реклама на сайте