Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород магнитная восприимчивость

    Все платиновые металлы поглощают водород. Палладий по отношению к водороду занимает особое место, 1 объем Рс1 поглощает до 900 объемов Н- . При поглощении водорода палладий теряет блеск, увеличивается его хрупкость, изменяется сопротивление, уменьшается магнитная восприимчивость. Один объем платины при 450 °С поглощает - 70 объемов Но. Меньше всего поглощает водорода осмий. [c.403]

    Создание газоанализатора для определения основных газообразных компонентов продуктов сгорания на основе различия численных значений теплопроводности или магнитной восприимчивости практически невозможно. Поэтому различного рода приборы, использующие этот принцип, создаются, как правило, для определения какого-либо одного компонента (обычно На, СОд, О ). Так, например, в автоматическом газоанализаторе ГЭ К-21, предназначенном для определения СО в топочных газах используется принцип непрерывного сравнения теплопроводности анализируемой смеси газов и воздуха при помощи измерительного моста. Так как теплопроводности остальных компонентов топочных газов (кроме водорода) сравнительно мало отличаются от теплопроводности воздуха и их концентрация незначительна, то изменение содержания СО о будет основным фактором, определяющим разбалансировку моста. Содержание водорода в анализируемой смеси даже в небольших количествах приводит к значительным погрешностям измерения СО а- Для устранения этой погрешности водород, содержащийся в смеси, удаляется путем дожигания его в электрической печи. Этот же принцип сравнения теплопроводности используется в электрическом газоанализаторе ТП-1110, предназначенном для непрерывного измерения кон- [c.262]


    Этот результат показывает принципиальную техническую возможность реализации магнитного способа очистки жидкого водорода от парамагнитных частиц твердого кислорода. В случае применения для улавливания парамагнитных частиц гиперпроводящих или сверхпроводящих соленоидных магнитных устройств, создающих более сильные магнитные поля и крутые градиенты, магнитное устройство может быть выполнено более компактным. Следует отметить, что длина магнитного устройства сильно зависит от радиуса улавливаемых частиц I 1/о , поэтому для частиц очень малых размеров, приближающихся к броуновским, выбранный метод окажется неэффективным.. Кроме того, для очень малых частиц магнитная восприимчивость уменьшается, что не учитывалось в решении задачи. Разумеется, что наиболее эффективны магнитные методы очистки от примесей с ферромагнитными свойствами [36]. [c.138]

    Однако изменять свои спины в магнитном поле способны лишь неспаренные электроны. При наличии же на данной орбитали или зонном уровне двух спаренных электронов их магнитные моменты будут направлены в противоположные стороны и взаимно погасят друг друга. Магнитная восприимчивость подобной пары электронов будет отрицательной величиной, т. е. заполненные электронные орбитали создают диамагнитный эффект. С этой точки зрения диамагнитными свойствами будут обладать в какой-то мере любые микрочастицы, содержащие в своей структуре заполненные электронные орбитали. Что касается простых веществ, то ярко выраженной диамагнитной восприимчивостью будут обладать лишь те из них, атомы, молекулы или ионы которых имеют только заполненные электронные орбитали. Примерами подобных веществ могут служить благородные газы, газообразные водород и азот, кристаллы галогенидов и щелочноземельных металлов, алмаз и кремний. [c.301]

    Вследствие этого парамагнетизм палладия уменьшается и при полном заполнении свободных 5— -уровней сводится к нулю. При полном спаривании всех электронных спинов, электронное взаимодействие катализатора с реагирующими веществами прекращается и катализатор теряет свою активность, что наблюдается в случав введения водорода. Ад и Си в Рё. Однако спарившиеся электронные сПины при поглощении достаточного количества энергии могут быть возбуждены и распарены, что особенно легко будет происходить, если это требует небольшого возбуждения. Возможно, с таким явлением мы встречаемся при введении Аи в Рё. При введении Аи в Рё магнитная восприимчивость палладия уменьшается и при определенном соотношении Аи Рё становится равной нулю. Это говорит о спаривании электрон-спинов. Однако при этом каталитическая активность не [c.131]


    Влияние водорода, серебра, меди и золота на палладий и платину в металлическом состоянии можно было связать с наличием овободных электронных уровней (дырок) в металлическом палладии и платине. Наличие дырок способствует, а отсутствие их препятствует реакции гидрирования. С этим находятся в согласии многие данные, полученные нами. Действительно, по мере введения водорода, серебра,, меди и золота в палладий парамагнетизм последнего уменьшается, а при известных соотношениях палладия и назва.нных элементов становится равным нулю. Аналогично действуют водород, серебро и медь на каталитическую активность палладия в отношении гидрирования бензола. Примерно при тех же составах каталитическая активность систем Pd-Ag и Pd- u становится равной нулю. Золото на магнитные свойства палладия действует так же, как водород, серебро и медь, однако на каталитическую активность палладия в отношении реакции гидрирования бензола не влияет. Вместе с тем золото, а также серебро и медь аналогично влияют как на магнитную восприимчивость/ так и на каталитическую активность платины. Парамагнитная восприимчивость и каталитическая активность платины в отношении гидрирования бензола становится равной нулю при примерно одних и тех же составах Pt-Au, Pt-Ag, Pt- u. [c.139]

    Измерений магнитной восприимчивости парообразной перекиси водорода не производилось. Можно считать, что, как и для других диамагнитных веществ, удельная восприимчивость не изменяется при испарении. [c.227]

    Симбатная зависимость между величинами энергий связи водорода с катализатором (у н-к и магнитной восприимчивостью попов в окислах переходных металлов наблюдалась нами на большом экспериментальном материале — рис. 1 и таблица, в которой для сравнения приведены данные и для других окислов. Для энергии связи с-к наблюдается антибатная зависимость от (Л. Энергии связи Qo-к в большей степени зависят от различных факторов [2], и здесь получается менее четкая зависимость от р. Для окислов РЗЭ величины взяты из [6) эти данные близки к данным, определенным для наших катализаторов А. А. Слинкиным для других окислов значения ,1 взяты из [7]. [c.37]

    В результате адсорбции металлами серы происходит модификация поверхностных свойств металлов. Адсорбция серы на больщинстве металлов характеризуется очень высокой энергией взаимодействия и изменением электронных и структурных свойств поверхности. Один из наиболее плодотворных методов экспериментального определения энергии связи Ме—5 состоит в вычислении тепловых эффектов на основании изотерм адсорбции сероводорода из потока водорода при разных температурах с помощью уравнения Вант-Гоффа. Уровень тепловых эффектов адсорбции показывает, что взаимодействие серы с поверхностью достаточно велико для проникновения ее атомов в кристаллическую решетку металла. Следует отметить, что еще в конце 40-х годов с помощью измерений магнитной восприимчивости было показано, что электроны из сульфида металла вступают в -зону металла, образуя при адсорбции прочную координационную связь [401]. Процесс может сопровождаться заполнением частичного дефицита или дырок в -зоне металла вследствие перекрытия с х-зоной. [c.148]

    Изменение энтальпии при образовании атома из молекулярного водорода ДЯ° 298 кДж/моль Стандартное значение энтропии >5 8, кДж/(моль К) Атомный инкремент магнитной восприимчивости м г-атом [c.85]

    Магнитная восприимчивость газообразного водорода при 20 °С и 1,013-105 Па (700 им т.) характеризуется следующими данными  [c.163]

    Обнаружено, что с повышением содержания водорода магнитная восприимчивость слабо парамагнитного лантана.непрерывно уменьшается, причем это уменьшение имеет очень резкий характер в области существования фаз гидридов ЬаНг и ЬаНз (см. рис. 5.10). Фазы, более богатые водородом, чем ЬаНг,7, диамагнитны. [c.151]

    Растворимость водорода в различных модификацийх марганца различна она достигает 70—100 см на 100 г металла при температуре плавления марганца. В электролитичесжом марганце содержание водорода достигает 250 см на 100 г металла. В присутствии водорода магнитная восприимчивость уменьшается, выше температуры 1200 С аозра стает [c.179]

    При действии фторида водорода на титан при нагреаании образуется фторид титана. Согласно рентгеноструктурному исследованию кристаллы его относятся к структурному типу ReOs-Исследование магнитной восприимчивости свидетельствует о том, что соединение парамагнитно (один неспаренный электрон на один атом Т1). Какой фторид титана образовался Напишите уравнение реакции. [c.123]

    Механизм реакции Этара неясен [255]. При смешении реагентов получается нерастворимый комплекс, который гидролизуется до альдегида. Этот комплекс, по-видимому, представляет собой некий вид ацилаля, но структура его до конца не установлена, хотя высказано много предположений и о структуре этого комплекса, и о путях его гидролиза. Известно, что АгСНгС не является интермедиатом (см. реакцию 19-20), поскольку с хромилхлоридом он взаимодействует очень медленно. Измерения магнитной восприимчивости [256] указывают на то, что из толуола образуется комплекс 29, структура которого впервые была предложена Этаром. В соответствии с таким предположением реакция останавливается после того, как заместятся два атома водорода. Это происходит потому, что комплекс 29 нерастворим. Даже если согласиться с тем, что [c.295]


    В настоящее время для ряда реакций гидрирования [2—4], дегидрирования [5], орто — пара-конверсии водорода [6] установлено, что каталитическая активность металлов и сплавов уменьшается с уменьшением их магнитной восприимчивости, т. е. с заполнением -зоны катализатора. Д. Дауден и П. Рейнольдс [7], исследовавшие реакции гидрирования стирола, разложения муравьиной кислоты и метанола, распад перекиси водорода на железо-никелевых и медно-никелевых сплавах, установили, что каталитическая активность в случае первых трех реакций снижается параллельно заполнению -зоны. Для реакции распада перекиси водорода наблюдалась обратная зависимость. Значительный интерес представляет работа Г. Кунца и Л. Ринекера [8] по гидрированию ацетона на железо-никелевых сплавах. Максимум каталитической активности в этой реакции имеют сплавы, содержащие от 75 до 90% никеля. Если в сплаве, содержащем меньше 75% никеля и имеющем большое число -вакансий, заменить часть никеля на медь, т. е. уменьшить число -вакансий, можно добиться значительного повышения каталитическогг активности сплава. [c.193]

    Приведенные схемы объясняют также магнитные свойства веществ. Вещества делятся на диамагнитные и парамагнитные. Первые оказывают сопротивление прохождению магнитного поля большее, чем вакуум, вторые — меньшее, чем вакуум. Поэтому внешнее магнитное поле выталкивает диамагнитные вещества и втягивает парамагнитные. Столь различное поведение веществ объясняется характером их внутренних магнитных полей, складывающихся из собственных магнитных моментов нуклонов и электронов. Но магнитный момент атома определяется главным образом суммарным спиновым магнитным моментом Электронов, так как могнитные моменты протонов и нейтронов примерно на три порядка меньше моментов электронов. Если два электрона находятся в одной орбитали, то их магнитные поля замыкаются. Если в веществе магнитные моменты всех электронов взаимно скомпенсированы, т. е. все электроны спарены, то это вещество диамагнитное. Напротив, если в орбиталях имеются одиночные электроны, то вещество проявляет парамагнетизм. Примерами диамагнитных веществ могут служить молекулярные водород, азот, фтор, углерод и литий (в газообразном состоянии). К парамагнитным относятся молекулярный бор, кислород, оксид азота). Вещества с аномально в .1сокой магнитной восприимчивостью (например, железо) называются ферромагнитными. Ферромагнетизм проявляется ими только в твердом состоянии. [c.70]

    Все металлоподобные гидриды обладают собственным кристаллохимическим строением (в отличие от твердых растворов водорода в металлах) и свойствами, типичными для металлов металлическим блеском, значительной твердостью. Многие из них являются жаропрочными и коррозионностойкими веществами. По механическим свойствам металлоподобные гидриды уступают металлам, так как они более хрупки. Плотность этих гидридов меньше плотности исходных металлов, а энтальпии образования больше, чем у солеобразных гидридов, например для 2гН АН", oos = =—169,6 кДж/моль. В металлоподобных гидридах часть атомов водорода отдает электроны в зону проводимости металла, а электроны остальных атомов образуют с неспаренными электронами металла ковалентные связи. Последние и являются причиной увеличения твердости при образовании металлоподобных гидридов по сравнению с исходными металлами. Эти представления хорошо согласуются с фактом миграции водорода к катоду при длительном пропускании постоянного электрического тока, а также с уменьшением магнитной восприимчивости гидридиых фаз из парамагнитных металлов. [c.104]

    Для постоянного контроля содержания кислорода в продуктах сгорания все крупные парогенераторы оснащаются термомагнитными газоанализаторами (кислородоме-рами), которые используются для определения относительного объемного содержания кислорода в газовых смесях. Принцип действия термомагнитных газоанализаторов основан на магнитных свойствах кислорода, резко отличающихся от магнитных свойств других газов. Объемная магнитная восприимчивость кислорода в 190 раз больше, чем двуокиси углерода, и почти в 230 раз больше, чем водорода. Однако построить технический газоанализатор, основанный на непосредственном измерении Магнитной восприимчивости газовых смесей, оказалось затруднительным, так как абсолютные величины магнитной восприимчивости очень малы и могут быть точно измерены только высокочувствительными приборами. Наряду с этим оказалось возможным использовать для целей газового анализа вторичные физические явления, связанные с парамагнит-ностью кислорода [Л. 69]. К их числу следует отнести уменьшение магнитной восприимчивости парамагнитного газа с увеличением его температуры, причем магнитная восприимчивость обратно пропорциональна квадрату температуры. [c.191]

    В процессе травления низкоуглеродистых сталей с целью удаления с них окалины 5 % кислоты расходуется на собственно растворение окалины и 55 % на растворение стали. Считают, что травлении теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 4—6 т. Снижение потерь металла при травлении — важнейший резерв экономии. Поэтому травление сталей в серной и соляной кислотах должно осуществляться обязательно с применением ингибиторов. Но не только это диктует необходимость использования ингибиторов. Дело в том, что процесс травления сопровождается обычно побочными явлениями, такими как неравномерность растворения металла, перетравлнвание его (особенно в серной кислоте), что приводит к увеличению микрошероховатости поверхности и, в конечном счете, к снижению качества стали. Неравномерность травления, растравливание поверхности способствует появлению будущих очагов локальных коррозионных процессов. Поглощение металлом выделяющегося при травлении водорода вызывает изменение физико-механических и физико-химических свойств электропроводности, магнитной восприимчивости, микротвердости, пластических и прочностных свойств и т. п. Все эти нежелательные явления могут быть эффективно предотвращены введением в травильные растворы ингибиторов. Большинство ингибиторов разработаны преимущественно для серной кислоты. [c.101]

    Разный характер действия контактов I и П можно объяснить тем, что в одном случае никель связан с трибутилфосфинным лигандом, в другом — с трифенилфосфинным. Следовательно, и продукты, получающиеся при восстановлении в токе водорода, различны. Мы получили данные по магнитной восприимчивости и адсорбции кислорода, показавшие полное отсутствие металлической поверхности, на восстановленных при 350° С контактах I и П. Косвенным доказательством того, что металлический N1 не является ответственной за катализ фазой, служат результаты исследования каталитической активности системы N1/5102 (из нитрата) при отравлении РРЬз. [c.172]

    Свойства (см. также табл. 28) — белый с красным оттенком, хрупкий, блестящий металл. Обладает наименьшей для металлов диамагнитностью (магнитной восприимчивостью). Благороднее, чем водород, поэтому не вытесняет На из разбавленных растворов кислот (хлороводородной, серной). Бйскгут можно перевести в раствор только действием умеренно разбавленной азотной кислоты или горячей концентрированной серной кислоты  [c.359]

    По данным одних работ, с ростом дисперсности металла магнитная восприимчивость увеличивалась в случае платины на силикагеле и угле [45, 46], палладия на силикагеле [47], палладиевой черни [48], в то же время, согласно результатам других работ, для палладиевой черни [49] и нанесенного палладия [50, 51] наблюдалась противоположная зависимость. Особенно сильно различаются данные, полученные для палладия, тогда как для платины наблюдается по крайней мере полуколичественное соответствие. Образцы платины тщательно восстанавливали водородом, после чего обезгаживали в вакууме, а образцы палладия не обрабатывали водородом. Вряд ли поверхность платины становилась совершенно чистой при такой обработке, однако, несомненно, что содержание примесей в палладии значительно выше, чем в платине. В принципе можно считать, что тенденция к увеличению восприимчивости с ростом дисперсности, наблюдаемая для платины, является истинной, но надежность данных для палладия сомнительна. Как предполагалось в работах [47, 48], отмеченная тенденция является, вероятно, следствием заселенности поверхностных состояний неспаренными электронами. Теоретические исследования парамагнитных свойств дисперсных металлических частиц [37, 43, 52, 53] пока еще недостаточно хорошо объясняют свойства, наблюдаемые экспериментально, ввиду неполноты сведений о действительных квантовых состояниях, в том числе о поверхностных состояниях. [c.275]

    Изучение смешанных металлических Р(1- (А , Си, Аи, Р1) и Р1-(А , Си, Рс1, Аи) кат лизаторов без носителя нр носителях приобретает особый интерес в связи с магнитными свойствами Рс1 и Р1 в этих системах. Действительно, поведение катализатора должно определяться его электронным состоянием, а катализ — возможностью электронного взаимодействия реагирующих веществ с катализатором. Палладий и платина являются катализаторами в отношении реакции гидрирования бензола. Эти металлы обладают свободными электронными спинами, которые могут быть заполнены электронами воДорода, серебра, меди, золота. Известно, что по мере растворения водорода в палладии, как и введения серебра, меди, золота в палладий, парамагнитная восприимчивость последнего постепенно уменьшается и достигает нуля. Аналогичное явление имеет место, например, при введении золота в платину [1, 2, 3, 4]. Это объясняется [5] наличием свободных электронных спинов (в среднем 0,6 спина на атом металла), которые и спариваются с 5-элек-тронами водорода, серебра, меди, золота, вследствие чего при содержании 0,6 атома водорода на атом палладия (а в случае Ад, Си и Аи —при содержании 53—55 ат. %) магнитная восприимчивость становится равной нулю. Магнитная восприимчивость Р1-Аи систем становится равной нулю при содержании 68 — 70% Аи [4]. [c.128]

    Было установлено, что губчатый палладий при длительном хранении в атмосфере водорода при обыкновенных температурах или кратковременной обработке водородом (— 2 часов) при 300—350° С в зависимости от режима обработки частично или полностью дезактивируется. Такая дезактивация является обратимой, и при удалении поглощенного палладием водорода активность катализатора вновь возрастает. Полнота восстановления активности катализатора зависит от полноты удаления водорода из палладия. Удаление его может быть произведено изменением режима хранения палладия в атмосфере водорода, гидрированием бензола на дезактивированном водородом палладии или обработкой такого пайла да воздухом. Было высказано мнение, что уменьшение или полное исчезновение активности палладия при растворении в нем водорода следует объяснить заполнением 5 — -электронных уровней палладия, оставшихся свободными после образования кристаллического пйлладия из атомов палладия в результате перераспределения 5 и 4(/-электронов, аналогично тому, как объясняется исчезновение парамагнетизма палладия при растворении в нем бодорода [1]. Если такое предположение верно, то взедение в Р(1 серебра, меди и золота также должно было привести к снижению и полному уничтожению каталитической активности палладия. Такой вывод напрашивался потому, что при введении этих металлов в Рс1, по мере увеличения их содержания в соответствующих системах, парамагнетизм системы снижается и наконец достигает нуля (при 53— 55 ат.% Ад, Си или Аи). Подробно часть соответствующих материалов опубликована в работах [10]. Наиболее общим выводом из этих работ является то, что по мере увеличения содержания серебра и/меди в Рс1-А и Рд-С Ц каз ализаторах,, катадатическая активность последних уменьшается, и при содержаний 65—70 ат. % Ад или Си в Р(1-Ад и Рб-Сй твердых растворах достигает нуля . Эти результаты приведены в виде кривых на рис. 2. Нам не удалось определить магнитные восприимчивости, наших катализаторов, и мы вынуждены пользоваться данными о магнитных свойствах изученных нами систем по литературным данным. Отдавая себе отчет в недостатках такого метода сравнения, тем не менее следует указать, что по мере увеличения Ag и Си в соответствующих твердых растворах парамагнетизм их постепенно снижается и достигает минимума при 53— 55 ат.% Ag и Си. Такое совпадение следует считать хорошим, учитывая методику пашей работы. [c.130]

    Гаррисон с сотрудниками [221] исследовал гидрирование этилена на окислах металлов IV периода аналогично работам Даудена [54], который изучал Нг—Ог-об-мен на тех же катализаторах при температуре 20° С и получил два пика активности один — на СгзОд, другой — на С03О4. Гидрирование этилена проводили в широком интервале температур (от —120 до 400° С) при пониженном давлении Рн, = 30 торр, Рс И = 15 торр). В окислах по магнитной восприимчивости определялось наличие следов металлов, которые хорошо катализируют процессы гидрирования и могут легко образовываться во время реакции. Сравнивалась удельная активность исследуемых катализаторов. Как и в реакции гомомолекулярного обмена водорода, при гидрировании этилена наибольшую активность проявил СгдОд (—120° С) и С03О4, причем активность первого в несколько раз выше активности второго. Авторы считают, что столь высокая активность этих окислов обусловлена нестабильной электронной конфигурацией ионов Сг + (3d ) и Со +—Со + в СодС)4 (3d и 3d соответственно), связанной с отсутствием сильных электронных взаимодействий с соседними ионами металлов в этих окислах. [c.90]

    Строение слоя металла на носителе можно изучать различными методами рентгенографическим, электронографическим, методом электронной микроскопии и т. п. Измерение магнитной восприимчивости удобно использовать для тех случаев, когда восприимчивость кристаллической решетки достаточно сильно отличается от восприимчивости атомизированного слоя металла. Для оценки дипсерс-ности кристаллических слоев металлов можно воспользоваться адсорбционными методами. Они удобны, когда хемосорбируемый газ, например водород или кислород, поглощается металлом, но не поверхностью адсорбента. [c.99]

    Носитель в виде у-АЬОз приготовлялся осаждением гидроокиси алюминия [7]. Первые порции гидроокиси алюминия, которые могли содержать железо, отброшены. Продукт идентифицирован рс Нтгеногра( )ически как гидроокись алюминия. Спектральный анализ препарата показал, что из тяжелых металлов имеется только железо, как правило, в количествах, меньших, чем 10 %, максимум 1 10 2%. Определение магнитной восприимчивости дало % = —0,385-10" , или 0,36 10" , независимо от напряженности магнитного поля. Измерения при низких температурах подтвердили этот вывод. Таким образом, доказано, что железо, содержащееся в препарате, пе ферромагнитно. Измерения магнитной восприимчивости носителя, который подвергался восстановлению водородом в тех же условиях, в каких приготовлялись контакты, тоже ие обнаружили изменений магнитной восприимчивости. Это указывает на то, что имеющиеся в контактах следы железа не влияют на результаты измерений магнитной восприимчивости. [c.156]

    Магнитные измерения палладиевых контактов (табл. 1) показали, что содержавшийся в них палладий обладал меньшей магнитной восприимчивостью, чем компактный металл. Магнитная восприимчивость уменьшалась с понижением содержания металла в контакте и при 2% РЛ она составляла только 0,03—10 в пересчете на чистый металл против 5-17-10 — для компактного металла. Это явление нельзя объяснить ни окислением палладия до окиси палладия, что показано дебаеграмма-ми, ни содержанием водорода, который, как известно, значительно уменьшает парамагнетизм палладия. Последнему противоречат специальные опыты по обезгаживанию контактов в условиях высокого вакуума при 200° в течение 20 час. Содержание водорода в палладии, которое вызвало бы значительное попижеиие магнитной восприимчивости, должно соответствовать нескольким десяткам ат. % Нг. Эго привело бы к образованию бета-фазы системы палладий — водород, которая, однако, рентгенографически не была обнаружена. [c.157]

    Для исследования состояния молекул газа в хиноловых клатратах был использован метод ядерного магнитного резонанса. При комнатной температуре кислород, цианистый водород и окись азота ведут себя как свободные газы [54, 56]. Однако при низких температурах методом измерения магнитной восприимчивости для кислорода были получены [33] указания на то, что вращательные колебания молекул газа же невозможны. Это ограничение было подтверждено дополнительными измерениями магнитной восприимчивости, проведенными на кисло- [c.106]

    Природа этого соединения еще не установлена, но показано, что сделанные наблюдения нельзя объяснить на основании предположения о равновесном фазовом превращении. При калориметрических измерениях [28, 34], проведенных с перекисью водорода при температурах до 12° К, фазового превращения не обнарух<ено. Нейдинг и Казарновский [62] также не обнаружили превращения при этих температурах, проводя измерения магнитной восприимчивости с перекисью водорода, которую они охлаждали от комнатной температуры. Боун и Хогг [63] произвели качественные калориметрические измерения этого эффекта при — 115° и обнаружили тепловой эффект величиной несколько сот калорий. Они предполагают, что величина этого теплового эффекта доказывает существование фазового изменения. Однако более правдоподобно предположение, что действительной причиной этого теплового эффекта является десорбция газа или химическая реакция. [c.187]

    Удельная восприимчивость диамагнитного вещества в соответствии с теорией не зависит от температуры. Для воды обиаружеи лишь небольшой температурный эффект, для перекиси водорода можно считать, что в пределах точности данных этот эффект ничтожгю мал. Измерения магнитной восприимчивости копцептрированпой перекиси водорода как функции температуры, принадлежащие Нейдингу и Казарновскому, приведены в табл. 41. Данные пе указывают на наличие действительного изменения даже в области переохлаждения. При кристаллизации восприимчивость увеличивается иа 2,4/о в сторону положительных значений. Для сравнения укажем, что для воды восприимчивость возрастает в сторону положительных значений на 2,2%. Мы не приводим значений плотности, по которым были вычислены величины табл. 41. [c.226]

    Магнитная восприимчивость перекиси водорода при разных температурах, по Нейдингу и Казарновскому 62  [c.226]


Смотреть страницы где упоминается термин Водород магнитная восприимчивость: [c.448]    [c.299]    [c.34]    [c.68]    [c.299]    [c.525]    [c.140]    [c.38]    [c.89]    [c.95]    [c.22]    [c.237]    [c.47]    [c.466]    [c.512]    [c.225]    [c.226]    [c.226]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Восприимчивость

Восприимчивость магнитна

Магнитная восприимчивост



© 2025 chem21.info Реклама на сайте