Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные валентности

    V 3. Описание комплексных соединений с позиций теории валентных связей [c.97]

    Описание комплексных соединений с позиций ТВС было дано на с. 97. В настоящее время теория валентных связей применительно к комплексным соединениям потеряла свое былое значение. При всех своих достоинствах она не объясняет ряд важных свойств соединений, в частности их спектры поглощения, детали магнитных свойств и др. [c.504]


    В чем отличие способов, которыми теория валентных связей и теория кристаллического поля объясняют магнитные свойства комплексных ионов  [c.248]

    По методу валентных связей предполагается, что между лигандами и комплексообразователем образуется донорно-акцепторная связь. за счет пар электронов, поставляемых лигандами. С помощью этого метода было объяснено строение и многие свойства (в том числе и магнитные) большого числа комплексных соединений. Этот метод является очень приближенным он мало пригоден для расчета энергии связи и других характеристик комплексных соединений. [c.121]

    Тетраэдрическое строение комплексного иона [Ве1 4р обусловлено / -гибридизацией валентных орбиталей бериллия. [c.98]

    Механизм действия. Деактиватор металла облегчает задачу антиокислителя, устраняя причину дополнительного возникновения радикалов он образует с ионами металла неионные комплексные соединения, в которых металл сохраняет только одно валентное состояние, т. е. деактиватор металла действует по принципиально иному механизму, чем антиокислитель. Таким образом деактиватор металла выводит из сферы реакции значительную часть металлического катализатора. [c.123]

    Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (метод ВС). Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная а-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т. е. содержащими не-поделенные пары электронов, орбиталями лигандов (доноров). Максимальное возможное число с-связей определяет координационное число комплексообразователя. [c.209]

    Первоначально к комплексным (координационным) соединениям относили только те соединения, в которых была превышена стехиометрическая валентность (степень окисления элемента) центрального атома. По этим представлениям комплекс состоит из центрального атома А, окруженного непосредственно связанными с ним отдельными атомами (или ионами) В и электронейтральными группами (молекулами) С остальные (не связанные непосредственно с А) ионы образуют внешнюю сферу комплексного соединения. Атомы (или ионы) В и группы С называются лигандами, а их суммарное число — координационным числом центрального атома А. Координационное число всегда больше числа, определяющего стехиометрическую валентность (степень окисления элемента) атома А. [c.33]


    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    Донорно-акцепторные связи могут образовываться между молекулами, в которых все атомы валентно насыщены и которые не содержат неспаренных электронов. Такие связи широко распространены в комплексных соединениях, кристаллогидратах солей и и др. Так, NHз, соединяясь с ВРз, образует ЫНз ВРз благодаря наличию свободных орбит в атоме бора и неподеленных электронных пар в атоме азота. Прочность таких связей может достигать прочности обычных ковалентных связей. При этом часто играет роль то, что из двух нейтральных частиц при образовании между ними донорно-акцепторной связи одна (донор) становится [c.69]

    Точно установленный состав этого соединения никак ие мог быть объяснен с точки зрения обычных представлений о валентности азота, хлора и водорода. Были известны и другие более сложные соединения, для установления природы которых первоначальное понятие о валентности оказалось явно недостаточным. Альфред Вернер (1866—1919) в 1891 г. для случаев, когда к молекулам соедииений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (1893) Вернер разработал координационную теорию для объяснения природы этих молекулярных соединений, которые в дальнейшем были названы комплексными соединениями. В настоящее время механизм образования химических связей в комплексных соединениях вскрыт на основе электронных представлений. Рассмотрим этот механизм на примере образования соединения аммиака с хлороводородом. [c.65]

    Полимеризация этилена при высоком давлении (100—350 МПа,, или 1000—3500 кгс/см ) протекает при 200—300°С в расплаве в присутствии инициаторов (кислорода, органических перекисей). Полиэтилен низкого давления получают полимеризацией этилена под давлением 0,2—0,5 МПа (2—5 кгс/см ) и температуре 50— 80 °С в присутствии комплексных металлоорганических катализаторов (триэтилалюминия, диэтилалюминийхлорида и триизобутил-алюминия). Полиэтилен среднего давления получают полимеризацией этилена в растворителе при давлении 3,5—4,0 МПа (35— 40 кгс/см ) и температуре 130—170 °С в присутствии окислов металлов переменной валентности, являющихся катализаторами (окислы хрома, молибдена, ванадия). В качестве растворителей применяют бензин, ксилол, циклогексан и др. [c.104]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]


    Металлическое состояние, казалось бы, трудно описать, пользуясь понятиями комплексной химии. Однако, согласно простейшим представлениям Друде [11], металлический кристалл состоит из правильной решетки положительных ионов (ядер), окруженных облаком валентных электронов, играющих роль как бы отрицательных ионов ионных кристаллов. [c.30]

    Для объяснения образования и свойств комплексных соединений в настояш,ее время применяют ряд теорий, в том числе теорию валентных связей. Основные положения этой теории применительно к описанию ко.мплексов уже были рассмотрены выше (с. 65). Образование комплексов теория валентных связей относит за счет донор-но-акнепторного взаимодействия комплексообразователя и лигандов. Так, образование тетраэдрического иона 1Вер4Р можно объяснить следуюш,им образом. Ион Ве " , имеюш,ий свободные 2 - и 2р-орбитали [c.97]

    Этот прием оказывается недостаточным, если элемент может существовать в более чем двух валентных состояниях он неприменим для написания названий комплексных соединений и соединений редко встречающихся элементов. Комиссия ШРАС считает этот прием допустимым к использованию, но нежелательным. [c.32]

    В правилах ШРАС 1957 г. первоначальное ограничение понятия комплексные соединения обязательным превышением координационного числа над стехиометрической валентностью было опущено. В результате этого номенклатурные названия большого числа неорганических соединений стали строиться по системе, принятой для комплексных соединений. [c.33]

    Анод должен растворяться количественно с образованием акваионов (или комплексных ионов) одной определенной валентности. Таким требованиям должны удовлетворять аноды при получении некоторых гальванических покрытий, например в процессах меднения, никелирования или цинкования. Если проводить меднение в кислых ваннах, то необходимо, чтобы медь растворялась в виде двухвалентных ионов. Реакция [c.474]

    Валентность центрального атома в комплексных нейтральных молекулах (неэлектролитах) специально не указывается, так как ее легко определить по формуле соединения. [c.10]

    На с. 54 на основе метода валентных связей был рассмотрен тип гибридизации орбиталей ионов Ag+, 2п +, Со +, а также пространственная структура образующихся при этом комплексных ионов — линейная для [Ag(NHз)2l , тетраэдрическая для [Zn(NHз)4] + и октаэдрическая для [Со(ЫНз)б] +. Соединения с координационным числом 4 могут, кроме того, иметь структуру плоскостного квадрата, которому отвечает iisp -гибpидизaция орбиталей центрального иона. [c.181]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Способность данного элемента к образованию комплексных соединений зависит от строения валентной электронной оболочки [c.111]

    Согласно теории валентных связей к комплексным соединениям относятся соединения с так называемыми донорно-акцепторными и дативными связями. Донорно-акцепторной связью называется парная связь, делокализованная в одной плоскости, когда оба электрона для ее образования поставляются лигандом (донором), а металл выступает в качестве акцептора этой электронной пары, участвуя в связи своими пустыми атомными орбиталями. [c.44]

    Брей и Брэнч приняли, что валентное число атома отличается от полярного числа и комплексного валентного числа. Следует также упомянуть о работах Джонса , Хэнка и Косслера Гарри Шипли Фрая и О. Гинсберга [c.323]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    К этому времени появилось уже несколько терминов, предложенных другими химиками для обозначения дополнительных валентностей комплексные валентности)), скрытые вадентностш, нейтральные валентности , по все эти иа.эвапия Вернер считает меиео подходящими [там же, стр. 271]. [c.232]

    Пространственная конфигурация молекул и комплексов. Характер ги-бридишции валентных орбиталей центрального атома и их пространственное расположение определяют пространственную конфигурацию 1юлекул и комплексных ионов. Так, при комбинации одной 5- и одной р-орбитали возникают две р-гибридные орбитали, расположенные симметрично под углом 180° (рис. 48). Отсюда и связи, образуемые с участием электронов этих орбиталей, также располагаются юд углом 180°. Например, у атома бериллия ер-гибридизация орбитллей проявляется в молекуле ВеСЬ, которая вследствие этого имеет линейную форму  [c.73]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Кгльций Са, стронций Sr, барий Ва и радий Ra в отличие от ранее рассмотренных элементов имеют относительно большие атомные радиусы и низкие значения потенциалов ионизации (см. с. 470). Поэтому в условиях химического взаимодействия кальций и его аналоги легко терякт валентные электроны и образуют простые ионы Поскольку ионы имеют электронную конфигурацию и большие размеры (т. е. слабо поляризуют), комплексные ионы с неорганическими ли-гандали у элементов подгруппы кальция неустойчивы. [c.479]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Из шести атомов кобальта с нулевой валентностью в карбониле четыре включаются в моновалентный анион, а два дают катион Со " . Так как часть дикобальтоктакарбонила окисляется за счет другой части, эта реакция называется реакцией гомомолекулярного диспропорционирования. Попытки выделить комплексную соль кобальта (11) карбонилкобальта окончились неудачей, так как процесс сопровождается частичной потерей метанола [5]. При использовании в оксосинтезах метанола образующиеся альдегиды частично превращаются в ацетали. Однако метанол и этанол используются в качестве растворителей в реакциях гидрогенизации, относящихся к оксосинтезам [16], вследствие наибольшей скорости реакции в присутствии этих растворителей. Очень вероятно, что соли, подобные [Со(Х)в] [Со(СО) ]2, под действием синтез-газа под давлением легче других солей кобальта превращаются в дикобальтоктакарбонил и кобальт-гидрокарбонил. Изучение скорости абсорбции синтез-газа различными типами солей кобальта должно бы иметь большую ценность. [c.291]

    Метод валентных связей в приложении к комплексным соединениям базируется на тех же представлениях, что и в простых соединениях (см. 39—44). При этом принимается во внимание, что химические связи, возникающие ирн комплексо-образованин, нмеют доиорно-акцепторное нроисхождение, т. е. образуются за счет неподеленной электронной пары одного из взаимодействующих атомов и свободной орбитали другого атома. Рассмотрим с этнх позиций строение некоторых комплексных со-едпиеннй. [c.598]

    Метод отталкивания валентных электронных пар (ОВЭП) позволяет предсказать геометрическое строение (форму) молекул и комплексных ионов. Основное правило метода ОВЭП заключается в том, что атомы и неподеленные пары, окружающие центральный атом молекулы, располагаются вокруг него так, чтобы свести к минимуму отталкивание всех электронных пар. Стерическим числом (СЧ) называется суммарное число атомов и неподеленных пар, окружающих центральный атом. Расположение всех электронных пар вокруг центрального атома в зависимости от их числа таково при СЧ = 2 оно линейное, при СЧ = 3-плоское тригональное, при СЧ = 4 - тетраэдрическое, при СЧ = 5-тригонально-бипи-рамидальное и при СЧ = 6-октаэдрическое (см. рис. 11-2). [c.503]

    Со(1П) образует комплексный ион Со(ЫНз)б . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Со используются для образования связей с лигандами, б) Дайте номенклатурное название хлоридной соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите возможные варианты -электронной конфигурации этого иона. Охарактеризуйте каждую конфигурацию как высокоспиновую или низкоспиновую, парамагнитную или диамагнитную. Какие две из этих характеристик применимы к гексамминному комплексу г) Добавление электрона к иону Со(ННз)й приводит к его восстановлению в ион Со(НПз)й . Укажите предпочтительную -электронную конфигурацию для этого восстановленного иона. Почему она является предпочтительной  [c.251]

    Р1(П) образует комплексный ион Р1С14 . а) Какова геометрия этого иона Пользуясь теорией валентных связей, укажите, какие орбитали Р1 используются для образования связей с ионами С1 б) Дайте номенклатурное название натриевой соли этого комплексного иона, в) Пользуясь теорией кристаллического поля, схематически изобразите -электронную конфигурацию данного иона. Парамагнитен или диамагнитен этот ион г) Р1(П) может быть окислена до Р1(1У). Укажите -электронную конфигурацию хлоридного комплексного иона Р1(1У). Объясните различие между этой конфигурацией и конфигурацией хлоридного комплекса Р1(П). Парамагнитен или диамагнитен хлоридный комплекс Р1(1У)  [c.251]

    В состав природных силикатов, кроме кремния и кислорода, входят различные другие элементы. Из них важнейшую роль играет алюминий, так как он входит в состав наиболее распространенных силикатов. Алюминий может содержаться в силикатах в двух формах. В одних он находится в виде катиона (силикаты алюминия), в других — входит в состав аниона (алюмосиликаты). В последнем случае (наиболее распространенном) атомы алюминия замещают собой атомы кремния в тетраэдрах 810 . При этом вследствие того, что у атома алюминия меньше валентных электронов, чем у атома кремния, число свободных отрицательных валентностей тетраэдра возрастает до пяти —АЮ ". При замещении кремния на алюминий увеличивается отрицательный заряд комплексного аниона на единицу в каждом тетраэдре, что приводит к увеличению и общего заряда катионов. Это можно видеть, например, сопоставляя состав кварца 8140в и альбита Ыа[А181з08]. Замена одного атома кремния на алюминий привела к введению эквивалентного количества катиона. [c.135]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    В окислительно-восстановительных реакциях промежуточными активными частицами являются радикалоподобные нейтральные образования, связанные с активными центрами катализатора го-меополяр ными связями, и каталитическое воздействие связано с переходом электрона от молекулы катализатора к молекуле реагента и обратно. Эти реакции катализируются металлами и полупроводниками— окислами, сульфидами и комплексными соединениями. Активными центрами этих катализаторов являются обычно неполностью координированные атомы или катионы переходных металлов, у которых имеется незаполненная -орбиталь. Эта орбиталь образует координационные связи с молекулами, являющимися донорами пары электронов. С молекулами, имеющими незанятые орбитали, такие активные центры образуют п-связь. -Орбиталь с неспаренным электроном действует как свободная валентность в значительной степени подобно свободному радикалу. [c.134]

    Более 100 лет назад немецкие химики Цейзе, а затем Бирнбаум синтезировали и выделили твердые комплексные соединения олефиновых углеводородов Сз—Св с платиной (соли Цейзе). В последующий период многими исследователями было установлено, что способностью к образованию твердых и жидких комплексов с непредельными соединениями обладают также медь, серебро, железо н ряд других металлов переменной валентности. В основе комплексообразования лежит взаимодействие я-электронов двойных связей олефннового компонента (лиганда) с незаполненными орбиталями атома (иона) металла. Например, структура соединения (так называемого л-комплекса) ди- винила с хлористой платиной состава (Р1С12 )2-(С4Н )2 может быть представлена в виде  [c.302]

    В условиях сгорания все примеси остаточных топлив подвергаются термическому разложению и окислению с образованием новых соединений. При определенном соотношении натрия и ванадия в топливе получается, например, комплексное соединение Ыа20-У204-5У205— ванадилванадат натрия. Это вещество имеет относительно низкую температуру плавления (625 °С) и может отлагаться на слабо нагретых деталях. Механизм коррозионного действия окислов ванадия связывают с его способностью проявлять переменную валентность в зависимости от условий среды. Коррозия стали в присут- [c.55]


Смотреть страницы где упоминается термин Комплексные валентности: [c.12]    [c.169]    [c.66]    [c.67]    [c.145]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Валентность комплексных ионов

Комплексные ионы валентность

Комплексные соединения метод валентных связе

Комплексные соединения побочная валентность

Описание комплексных соединений по методу валентных связей

Описание комплексных соединений с позиций теории валентных связей

Применение метода валентных связей для описания комплексных соединений

Число Авогадро комплексное, валентное

Число постоянная Авогадро комплексное, валентное



© 2025 chem21.info Реклама на сайте