Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол аниониты

    Ионообменная хроматография служит для разделения ионов и основана на различной способности разных ионов в растворе к обмену с ионитом (ионообменником), служащим неподвижной фазой. Обычно синтетический ионообменник представляет собой высокополимер (смолу), например поперечно-сшитый полистирол, содержащий различные функциональные фуппы. Для разделения катионов используют катиониты, анионов - аниониты. [c.294]


    В ряде случаев влияние загрязнения раствора продуктами растворения стекла на протекание электродных процессов было зафиксировано экспериментально. На рис. 1.1 воспроизведены полярографические кривые, полученные при электровосстановлении анионов феррицианида в растворах, которые находились в контакте с порошками стекол различных марок. Процесс электровосстановления этого иона в разбавленных растворах чрезвычайно чувствителен к небольшим концентрациям поливалентных катионов, что позволяет использовать данную реакцию для контроля степени загрязнения растворов при контакте со стеклом. Видно, что наибольшее искажение результатов получено после контакта с порошком так называемого молибденового стекла, которое легко плавится, а потому часто применяется для изготовления электрохимических ячеек. Наглядный пример влияния материала ячейки на результаты измерений — реакция разложения амальгам щелочных металлов. В стеклянных ячейках получить правильные и воспроизводимые результаты не удается, так как продукты растворения стекла катализируют процесс разложения амальгам. Поэтому при изучении данного процесса были использованы электрохимические ячейки из полистирола. [c.6]

    В анионообменных смолах (анионитах) на матрице полимера закреплен катион. В катионитах, например в сульфированном полистироле, неподвижным оказывается анион (507). [c.382]

    В ближайшие годы предстоит широкое внедрение овых марок ионита на ионитных установках электростанций. Из катионитов наряду с сульфоуглем получит применение сильнокислотный катионит КУ-2, синтезированный на основе дивинилбензола и полистирола. В отдельных случаях возможно использование катионита суль-фо-фенольного типа (катионит КУ-1). Из слабоосновных анионитов главным образом будут применять анионит АН-31. Для обескремнивания воды в цикле ее химического обессоливания получит применение сильноосновный анионит первого типа (анионИт АВ- 17-8, приготовленный с использованием метилаля для набухания сополимера) (продолжение см. стр. 58, 60 и 62). [c.49]

    Анионной полимеризацией можно получать полимеры, близкие к монодисперсным (полистирол, полидиметилсилоксан, полиэтиленоксид). Для них величина М.м. не зависит от способа усреднения. [c.113]

    В табл. 2.7.21 приведены результаты, полученные при анионной сополимеризации различных мономеров с живым полистиролом [c.548]


    Анионная полимеризация катализируется сильными основаниями щелочными металлами, амидом калия или н-бутиллитием. Она особенно характерна для мономеров, способных реагировать с образованием стабилизированных анионов, например, для винил-хлорида, стирола, бутадиена-1,3, акрилонитрила и метилметакри-лата. Когда полимеризация доходит до конца (т. е. до полного исчезновения мономера), к образовавшемуся живому полимеру добавляют кислоту или другие электрофилы, способные реагировать с карбанионом, например эпоксиды или алкилгалогениды. Интересной практической модификацией такого способа обрыва цепи является связывание анионных центров живого полистирола сложноэфирными группами полиметилметакрилата При этом образуется так называемый гребнеобразный полимер (5 М = = звенья полиметилметакрилата, М = звенья полистирола). [c.306]

    Полистирол. Стирол относится к немногим мономерам, которые могут быть подвергнуты радикальной, катионной, анионной или же координационной полимеризации. Однако промышленное значение имеет только радикальная полимеризация, которая осуш ествляется прежде всего непрерывными методами полимеризации в массе или в растворителях, а также методом периодической суспензионной полимеризации. [c.722]

    При изучении адсорбции полистирола из растворов в циклогек-сане на поверхности хрома использовали стирол, меченный тритием, который полимеризовали по анионному механизму [49, 501. Кон- [c.7]

    И сополимера этилена с винилацетатом. И,зменение е варьировалось путем пластификации слабополярного полистирола полярным ацетофеноном, а также за счет изменения содержания, полярного винилацетата в сополимере. Для расчета концентрации ионов по соотношению (86) помимо электрической проводимости были определены независимым методом значения подвижности анионов и катионов. Концентрация ионов при незначительном увеличении диэлектрической проницаемости (от 2,3 . 0,0 3,8) возрастает более чем на 2 порядка ио экспоненциальному закону (рис. 13). Рассчитанное ио соотношению (86) значение Го одинаково для полистирола и сополимера этилена с винилацетатом и составляет 0,7 нм, что хорошо согласуется, с данными для низкомолекулярных органических жидкостей [28, с. 9] и растворов полимеров [29]. Следовательно, экспериментальные данные об электрической проводимости полимерных диэлектриков описываются теорией электролитической диссоциации ионогенных веществ, всегда имеющихся в полимере. Концентрация свободных ионов очень мала и по данным работы [27] составляет 10 —м , т. е. 10 °—10 г/г полимера. [c.47]

    Измерение осмотического давления раствора полимера определенной концентрации с известным МВ ( эталонного раствора ) является наиболее надежным способом проверки осмометра. В качестве эталона используют или монодисперсный полимер с УИ = 1 10 2-10 , например полистирол или поли-а-метил-стирол, полученный анионной полимеризацией по методу Шварца (см. Дополнение 3 к главе V, стр. 139), или узкую фракцию полимера приблизительно того же МВ. Отсутствие низкомолекулярных фракций в таких эталонных образцах гарантирует получение надежных и воспроизводимых результатов. Осмотическое давление растворов эталонного образца должно быть надежно установлено в предварительных опытах с проверенными осмометрами. [c.63]

    Осаждение ПАВ в виде нерастворимых соединений экономически целесообразно при относительно небольшом объеме сточных вод. Этот метод не нашел широкого примеиеиия нз-за ие-обходимостн подбирать для каждой группы ПАВ специфические реагенты—осадители. В качестве осадителей можно использовать катионные высокомолекулярные флокулянты типа ВА-2 амипоироизводное полистирола), четвертичных азотистых и пиридиновых оснований для осаждения анионных ПАВ. [c.222]

    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]

    Методом анионной полимеризации с помощью литийорганических катализаторов осуществлен синтез ряда блоксополимеров, в которых эластомерные блоки (полибутадиена, полиизопрена и др.) чередуются со стеклоподобными блоками (полистирола, поли-а-метилстирола, поли-а-фенилстирола, поливинилтолуола и др.) [1]. Указанные блоксополимеры обладают термоэластопластичными свойствами при условии, что число блоков в молекуле полимера не менее трех, причем крайними являются блоки стеклоподобного полимера. [c.283]


    Неравновесная полимеризация циклотрисилоксанов на Живых полимерных цепях полистирола, поли-а-метилстирола и других полимеров, полученных анионной полимеризацией непредельных соединений позволяет синтезировать блоксополимеры типа ABA, в которых блоки А силоксановые, а блок В углеводородный. Структура ВАВ с силоксановым блоком посередине невозможна, так как силоксандиоляты не инициируют полимеризацию непредельных соединений [17]. [c.482]

    Введение различных примесей в раствор способствует изменению толщины ГС, а в некоторых случаях и их образованию [428]. А. И. Русанов и соавт. [498] проследили зависимость протяженности ГС на кварце от состава смеси полярной и неполярной жидкости и нашли, что максимальной толщине отвечает мольная доля полярного компонента, приближающаяся к единице. Введение электролита в воду также может влиять на структуру ГС. Это направление исследований представляет значительный интерес, поскольку затрагивает фундаментальный вопрос о влиянии гидратации ионов на структурирование воды. Так, сильное влияние иона МОз на коагуляцию положительно заряженных латексов полистирола было объяснено его слабой гидратацией [499]. Г. Пешель и П. Белоушек [479] приводят ряд 1 >Вг->С1 , в котором усиливается разрушающее влияние аниона. Согласно этим же авторам [479, 500], обнаруженная экстремальная зависимость структурной составляющей раскли- [c.172]

    На результат сополимеризации большое влияние оказывает вид инициирования. Так, при инициировании радикалами из смеси 1 мол. стирола и 1 мол. метакрилового эфира образуется сополимер с почти таким же соотношением основных структурных элементов. Напротив, при инициировании катионами получается почти чистый полистирол, а метакрилозый эфир не полимеризуется, тогда как прн инициировании анионами образуется почти чистый полиметакрилат, а стирол не изменяется. В со1 Лительных случаях это обстоятельство может быть использовано для того, чтобы установить механизм инициирования. [c.942]

    Полимерные молекулы могут быть электролитами, т. е. при растворении образовывать ионы. Ввести группы, способные к электролитической диссоциации, можно в ходе полимеризации. Например, при полимеризации акриловой кислоты СНа=СН—СООН можно получить полиакриловую кислоту, карбоксильные группы которой способны передать протон молекулам воды с образованием катионов оксония и карбоксилат-анионов. Можно превратить полимер в электролит и соответствующей химической обработкой. Например, обрабатывая полистирол сначала хлорсульфоновой КИСЛОТОЙ, а затем водой, можно ввести в его бензольные кольца сульфогруппы [c.146]

    Блок-сополимеры получают различными методами, но все они основаны на образовании реакционноспособных центров или функциональных групп на концах макромолекул одного мономера в присутствии полимеризующегося второго мономера. Один из методов их получения — синтез живых полимеров при анионной полимеризации с последующим добавлением второго мономера. Так, например, получают термоэластопласты — блок-сополимеры изопрена или бутадиена со стиролом. После полимеризации стирола с образованием на конце цепи макроаниона добавляют бутадиен, который сополимеризуется с таким блоком полистирола, а на конце цепи остается макроапион. При добавлении новой порции стирола происходит образование третьего блока в пределах одной макромолекулы. Полученные блок-сополимеры (в описанном случае типа СБС стирол — бутадиен — стирол) обладают ценными свойствами они прочны и эластичны при комнатной температуре и термопластичны при повышенной (80—100°С). Из них готовят изделия для медицинской промышленности, подошвы для обуви и [c.64]

    Полистирол получают полимеризацией стирола блочным или эмульсионным методами в присутствии инициаторов радикальной полимеризации. В последнее время найдены условия полимеризации стирола в присутствии нерастворимых катализаторов анионной полимеризации. В основном полистирол применяется для производства изделий электро- и радиотехнического назначения и для изготовления разнообразных деталей приборов общего назначения. Свойства стирола и метод его получения подробно описаны на стр. 620 и далее. Мономер применяют также в больших количествах для изготовления синтетического каучука СКС сополимеризацпей его с дивинилом. [c.805]

    Сильноосновными анионитами являются полистиролы с активными триалкиламмонийными группами, а слабоосновньши — полистиролы с активной аминогруппой. С помощью анионитов воду очищают от анионов кислот и солей. [c.125]

    НАТРИЯ ОЛЕАТ СНз(СН2)7СН=СН(СН2)7СООЫа, fnл 230—235 С раств. в сп., теплой воде. Анионное ПАВ, критич. конц. мицеллообразования 1,1-10 М при 25 °С. Получ. нейтрализация олеиновой к-ты р-ром NaOH омыление жиров. Компонент моющих ср-в, текстильно-вспомогат. в-в, напр, аппретов эмульгатор для систем типа масло — вода (напр., в проил-ве эмульсионного полистирола, пестицидных препаратов, мед. мазей) флотореагент. [c.363]

    Склонность ионов плутония образовывать отрицательно заряженные комплексы используется для ионообменного отделения плутония от сопутствующих элементов. Исследования анионо-обменного поведения ионов плутония и других металлов представлены в докладах Хайда [230], Крауса и Нельсона [123], в работах Райана и Уилрайта [623—627], Б. П. Никольского, А. Д. Гельман и др. (1956—1960 гг.). В этих исследованиях испытывались, как правило, сильноосновные аниониты отечественных (АМ-1 и АВ-17) и зарубежных (дауэкс-1 и -2, амберлит IRA-400, деацидит FF) марок. Они представляют собой сополимеры полистирола и дивинилбензола с введенными в рещетку ионита активными группами тетра метиламмония. [c.356]

    Важную роль в реакциях карбанионов играет ассоциация ионов, она была подробно изучена в связи с анионной полимеризацией [66]. В табл. 2.7.30 приведены данные о реакционной способности свободных карбанионов ( ) и ионных пар (к ) живых анионов полистирола на стадии роста цепи при полимеризации стирола в различных растворителях. Разделенные ионные пары и свободные карбанионы реагируют приблизительно с одинаковыми скоростями, однако реакционная способность тесных ионных пар значительно ниже одновременно наблюдается сложная зависимость от противоиона и от растворителя. Стереохимия анионной полимеризации также изменчива. Так, метилметакрилат в присутствии литийорганических инициаторов в растворителях с низкой диэлектрической проницаемостью, например в толуоле, полимеризуется с образованием изотактического полимера. Однако добавление небольших количеств тетрагидрофурана или диметоксиэтана при низких температурах приводит к преимущественному образованию синдиотакти-ческого полимера. [c.560]

    Из полиэлектролитов анионного типа наибольшее практическое применение нашли натриевые соли полиакриловой и полиметакриловой кислот и сополимеры малеинового ангидрида с винилацетатом, метилвини-ловым и другими простыми виниловыми эфирами [390]. Сульфированием полистирола получают водорастворимый катионит — полистиролсульфокислоту. К группе анионных полпэлектролитов условно можно отнести и полиакриламидные флокулянты, которые представляют собой частично гидролизованные полиакриламиды, содержащие от 0,8 до 30% карбоксильных групп. [c.159]

    В табл. 18 приводятся данные Силберберга для растворов анионного полистирола с узким молекулярно-весовым распределением для разных концентраций. Видно, что толщина адсорбционного слоя зависит от концентрации раствора и возрастает с молекулярным весом. Это можно рассматривать как подтверждение многослойной адсорбции. Большую роль в исследовании структуры адсорбционного слоя макромолекул на твердых поверхностях сыграла работа [611, в которой была изучена адсорбция полиэтиленгликолей молекулярного веса 6130 и 40 ООО из водных растворов и поливииил-пирролидона (мол. вес 38 ООО) из воды и метанола. В качестве адсорбента использовалось хромовое зеркало. Эллипсометрическим методом определены плотность и концентрация полимера в адсорбционном слое, откуда вычислялось количество полимера, сорбированного единицей поверхности. [c.94]

    В ряде случаев в условиях эксплуатации полимерная изоляция находится в контакте с органическими жидкостями или их парами, что приводит к молекулярной или межструктурной пластификации. Часто пластифицирующие низкомолекулярные добавки специально вводят в полимер с целью повышения его проводимости, например при изготовлении полимера и изделий из него с антистатическими свойствами. Если электрическая проводимость молекулярно пластифицированных полимеров изучена достаточно подробно [27 39, с. 129], то влияние на проводимость межструктурной пластификации исследовано мало. Увеличение электрической проводимости у полимера при его пластификации в общем случае может быть связано с ростом как подвижности % ионов, так и их концентрации п. Для оценки вклада каждого из этих факторов необходимо одновременно располагать данными по у, к и е, как это сделано для случая молекулярной пластификации в работе [27] для полистирола. В пластифицированные образцы вводили в качестве ионогенной добавки 0,1% (масс.) кристаллогидрата нитрата меди, диссоциирующего на анион N0 и катион [СиНОз-ЗН20]+. Были исследованы две системы полистирол (кп = 2,5) — диоксан (еж = 2,4) и полистирол — ацетофенон (полярный пластификатор, бж = 18,3). Поскольку для первой системы значения диэлектрической проницаемости полимера и пластификатора практически совпадают, то следовало ожидать, что электрическая проводимость этой системы будет однозначно определяться подвижностью ионов, так как, согласно соотношению (86), изменение концентрации ионов должно быть малым (Де = е — Еп 0). Действительно, как видцо нз рис. 25. а, электрическая проводимость и подвижность иона МОз" изменяются совершенно симбатно, т. е. [c.60]

    Обрыв цепи при анионной полимеризации может не сходить (образуются так называемые живые полиме- ипи происходить за счет нейтрализации анионного а протоном (примеси), передачи цепи Анионная полимеризация в последние годы находит более широкое применение, поскольку в результате об-я полимеры более высокого качества Так получа-синтетические каучуки, полистирол, полиакрилонит-полиакрилаты и др [c.293]

    Изотактические и синдиотактические полимеры называ-стереорегулярными, то есть полимерами с регулярным, ядоченным расположением заместителей относительно дной полимерной цепи Полимеры, полученные сво-орадикальной полимеризацией, например, поливиюш-, полистирол, поливинилфторид, полиметилакрилат, являются атактическими с малой степенью кристал-ости и высокой степенью аморфности Такие полиме-вследствие пониженных межмолекулярных взаимодей-обладают малой прочностью при разрыве и повы-ой пластичностью Методами координационной и анионной полимериза- [c.295]

    В качестве носителей металлов платиновой группы используют также ионообменные смолы [179, 180] как в катионной, так и в анионной формах. Соответствующие данные можно почерпнуть из полезного обзора Вольфа [181] и проспектов фнрм-изготовнтелей, выпускающих смолы с самой разной удельной поверхностью и норами самого разного диаметра. Например, смола амберлит Ш-120, представляющая собой катионит типа полистирол-50зН с большой кислотностью, имеет низкую пористость н удельную поверхность менее 0,1 м /г. В то же время смолы с развитой пористой структурой (макросетчатые ионооб-менники) характеризуются удельной поверхностью 50—500 м г при среднем диаметре пор 10—100 нм. [c.99]

    В ранней публикации описано получение стабилизатора-нолн-(вннилтолуол-б-метилметакрилата) с использованием натрий-нафталинового комплекса, который, вероятно, должен давать блоксополимеры типа А—Б—А. Полученные недавно при инициировании бутиллитием полимеры изопрена, бутадиена и гпрет-бутилстирола использованы как растворимые компоненты, связанные с якорными компонентами из стирола или метилметакрилата [104]. А—Б блоксополимеры этого типа оказались эффективными стабилизаторами как в анионной, так и в свободнорадикальной дисперсионной полимеризации. Найдено, что растворимые группы поли(трет-бутилстирола) или полиизопрена с молекулярной массой в интервале 5000—10 ООО, соединенные с якорными цепями полистирола (молекулярная масса 10 ООО — 20 ООО), дают баланс якорного и растворимого компонентов, необходимый для дисперсионной полимеризации в алифатическом углеводороде при комнатной температуре. [c.122]


Смотреть страницы где упоминается термин Полистирол аниониты: [c.184]    [c.355]    [c.361]    [c.40]    [c.176]    [c.48]    [c.106]    [c.124]    [c.251]    [c.301]    [c.62]    [c.144]    [c.100]    [c.192]    [c.48]    [c.322]    [c.535]    [c.334]   
Равнозвенность полимеров (1977) -- [ c.177 ]




ПОИСК







© 2025 chem21.info Реклама на сайте