Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавиковая кислота, растворение стекла

    Подложки очищают до и после помещения в вакуумную камеру. Наиболее детально исследованы способы очистки стеклянных подложек. До помещения в вакуумную камеру стеклянные подложки обрабатывают кислотами или специальными растворителями [Л. 6] или промывают в растворе едкого кали или едкого натра с последующей обработкой в смеси, состоящей из размельченного двухромовокислого калия, растворенного в концентрированной серной кислоте (хромпике). Более эффективная очистка достигается промывкой в течение 1—2 мин в 1—2%-ном растворе плавиковой кислоты с последующей многократной промывкой в воде. Перед установкой подложки в вакуумную камеру иногда применяют дополнительную очистку активированным углем. Для этого стекло в течение 1—2 мин протирают порошком активированного угля, нанесенного на фильтровальную бумагу или ватный тампон [Л. 4]. Кроме этих способов, применяется травление в соляной кислоте, обработка в парах изопропилового спирта, очистка с помощью ультразвука в растворе перекиси водорода и др. [c.37]


    Закончить уравнение реакции растворения стекла в плавиковой кислоте  [c.236]

    Растворение и разложение веществ кислотами производят в стеклянной, кварцевой, фарфоровой или платиновой посуде. При применении фтористоводородной кислоты можно пользоваться только платиновой или свинцовой посудой. Стекло, кварц, и фарфор в этих случаях непригодны, так как они вступают во взаимодействие с плавиковой кислотой. Платиновую посуду нельзя применять для работы с царской водкой или со смесью кислот с окислителями, выделяющими в результате реакции свободные галогены. [c.123]

    Какой объем раствора плавиковой кислоты с массовой долей НР 20% О = 1,070 г/мл) потребуется для растворения 1 кг стекла следующего состава  [c.241]

    ТРАВЛЁННЕ — химическая и электрохимическая обработка поверхиости твердых материалов. Используется для удаления загрязнений, окислов (в частности, ржавчины), окалины, для выявления структуры материала (металла, минерала) или придания поверхности желаемой микрогеометрии, для снятия нарушенного мех. обработкой поверхностного слоя и получения структурно и химически однородной поверхностп при произ-ве полупроводниковых материалов, для придания матового вида стеклу и др. Часто применяется перед нанесением защитных покрытий, эмалированием, лужением и пайкой. Химическое Т. стали, меди, цинка и магния осуществляют в водных растворах серной, соляной или азотной кислоты стекла — в плавиковой кислоте алюминия — в водных растворах едких щелочей нержавеющих и жаростойких сталей, титана — в щелочных расплавах. Из-за неоднородности поверхиости (наличия пор, трещин и т. п.) химическое Т. металлов сопровождается действием гальванических микроэлементов. Электрохимическое Т. проводят в тех же средах, а также в растворах солен с применением катодного, анодного или переменного тока. При Т. на поверхности происходят хим. взаимодействие окисной пленки или материала основы с раствором или расплавом электрохим. растворение металла (на анодных участках микроэлементов или нри анодном травлении) электрохим. выделение водорода (на катодных участках микроэлементов или при катодном травлении) электрохим. выделение кислорода (при анодном травлении). Хим. очистке поверхности способствуют разрыхление и отрыв окалины под мех. воздействием [c.582]

    Под химической полировкой понимают устранение неровностей на поверхности стекла для придания ей гладкости путем растворения этих неровностей фтористоводородной (плавиковой) кислотой, обычно в смеси с серной кислотой. [c.5]


    Растворение стекла в плавиковой кислоте [c.110]

    Фтороводород в отличие от других галогеноводородов при растворении в воде образует более слабую плавиковую кислоту (до 10% НГ). Меньшая активность плавиковой кислоты связана с образованием ассоциированных молекул НзГз за счет водородных связей. Однако в некоторых случаях плавиковая кислота вступает в реакции, не характерные для других галогеноводородов. Так, она разъедает стекло, взаимодействуя с кремнеземом  [c.109]

    Интерференционный метод служит для измерения глубины разрушения поверхности стекла в результате воздействия реагентов, приводящих к растворению стекла, например растворов щелочей, плавиковой кислоты. Часть образца защищается с помощью резиновых прокладок, а в случае воздействия растворов при комнатной температуре покрывается воском либо парафином. После этого образец помещается в раствор, где незащищенная [c.54]

    Способность жидкой среды вызывать деструкцию полимерного связующего и (или) разрушение наполнителя определяется ее природой, концентрацией и температурой. Например, щелочные среды вызывают омыление полиэфиров, растворение компонентов стекла плавиковая кислота разрушает стеклонаполнитель с выделением газообразных силанов разбавленные растворы минеральных кислот (серной, азотной, соляной) интенсивно разрушают стеклонаполнитель и в то же время не действуют на связующее концентрированные кислоты, не вызывая разрушения стекла, [c.118]

    Если порода содержит большие количества кальцита, навеску пробы 0,25—2,0 г помещают в жаростойкий стакан емкостью 250 мл, приливают 10 мл соляной кислоты й 1,19), накрывают часовым стеклом и кипятят в течение 10—15 мин. Добавляют 50—70 мл горячей воды, нагревают до кипения и по растворении пробы фильтруют (фильтр с белой лентой) в стакан емкостью 250 мл. Осадок на фильтре промывают 3—4 раза горячей соляной кислотой (1 9) и 1—2 раза горячей водой. Если при обработке пробы соляной кислотой не достигается полноты извлечения свинца, нерастворимый остаток прокаливают в муфеле прн температуре темно-красного каления и разлагают плавиковой кислотой (см. дополнений 1). [c.78]

    В кристаллических и аморфных телах всегда имеются внутренние и внешние дефекты, которые существенно снижают их прочность. В местах, где имеются дефекты структуры или микротрещины, происходит концентрация напряжений и такие места становятся очагами разрушения тела. Этим объясняется и тот факт, что прочность реальных тел в сотни раз меньше теоретически рассчитанной прочности. Академик А. Ф. Иоффе поставил очень изящный опыт, демонстрирующий роль поверхностных дефектов в процессе разрушения кристалла. Он погружал на короткое время кристалл поваренной соли в горячую воду. При этом происходило быстрое растворение поверхностного слоя кристалла, в результате чего исчезали микротрещины и выравнивалась поверхность. Прочность кристалла после такой обработки достигала 80% теоретической. Позднее аналогичный эффект наблюдали на стеклянных волокнах, предварительно обработанных плавиковой кислотой, которая хорошо растворяет стекло. [c.41]

    Органические вещества можно разрушить сухим сжиганием или мокрым окислением, но предпочтительнее последний метод. В первом методе для лучшего окисления после обугливания часто добавляют азотную или серную кислоту или нитрат магния. Температура прокаливания не должна превышать 500°, иногда рекомендуют более низкую температуру. Неполное выделение всей меди после сухого озоления является, вероятно, следствием не улетучивания а скорее частичного превращения меди в нерастворимую в кислотах форму вследствие реакции с другими компонентами золы или с материалом сосуда, в котором велось прокаливание. Обнаружилось что при озолении органического вещества с серной кислотой в старой разъеденной кварцевой чашке терялось заметное количество меди, особенно если, золы было мало. Для увеличения объема золы рекомендуют добавлять к образцу нитрат магния и перед растворением в кислоте переносить золу в колбу из стекла пирекс. Было показано что при сухом озолении может образоваться металлическая медь, особенно если температура превышает 500°. Металл остается в значительной степени незатронутым, если для обработки золы используют соляную кислоту, как это обычно и бывает. Если зола извлекается смесью соляной и азотной кислот, вся медь переходит в раствор и получающиеся результаты оказываются идентичными с теми, которые имеют место при мокром окислении, даже если прокаливание проводить при 600—850°. Любое количество кремния, остающегося после обработки прокаленного остатка кислотой, должно быть подвергнуто воздействию плавиковой кислоты, так как наблюдается заметная тенденция к удержанию меди кремнием. Обычно для биологических образцов с высоким содержанием кремния предпочитают применять мокрое окисление. [c.414]


    Плавиковая кислота служит для удаления (растворения) поверхностного слоя стекла вместе со всеми содержащимися в нем загрязнениями и для придания стеклу требуемой степени шероховатости. [c.120]

    Выделяющийся при растворении стекла газ — фтористый кремний придает его поверхности шероховатость. Шероховатая поверхность имеет большую площадь соприкосновения с наносимыми на стекло покрытиями (люминофор, аквадаг, серебряная паста и т. д.), чем гладкая поверхность стекла до обработки плавиковой кислотой. Это повышает прочность сцепления покрытий со стеклом и уменьшает брак вида сползания и просветы покрытий. [c.120]

    Растворение газов и связывание их стеклом в основном происходит в процессе его изготовления. Насыщение стекла водой наблюдается при длительном хранении его во влажной среде. Такая вода находится в основном в поверхностном слое и при нагревании до 450 °С удаляется из него. Выделение воды при нагревании резко снижается, если стекло предварительно протравить плавиковой (фтористоводородной) кислотой. [c.18]

    Рассмотрим самый простой пример — растворение твердого реагента. Утверждение, что скорость данного процесса прямо пропорциональна свободной поверхности твердого тела, не совсем точно отражает действительность. Помимо зависимости от значения свободной поверхности, скорость растворения определяется еще и характеристикой поверхности, способом щ)иготовления дисперсного порошка, структурой вещества и рядом других параметров процесса. Например, считается, что скорость растворения кремнезема в плавиковой кислоте определяется скоростью реакции ЗЮг + НР, которая является функцией состояния кремнезема. Для кристаллического кварца скорость реакции будет минимальной, для кварцевого стекла — средней, для аморфного кремнезема, осажденного из раствора, — выше средней и для рентгено-аморфного кварца, полученного сверхтонким измельчением, — максимальной. [c.810]

    Химическое стекло устойчиво в органических, а также в нейтральных и большинстве кислых водных растворов. Растворы фосфорной и плавиковой кислот разрушают его. Резко понижена стойкость стекла в щелочных растворах. Так называемое молибденовое стекло довольно быстро разъедается растворами, содержащими иод (в частности, при кристаллизации КЮз). Нужно заметить,что скорость растворения стекла резко растет с увеличением температуры. Интенсивность разрушения увеличивается в 1,5—2,5 раза на каждые 10° С в интервалетемператур до 100°С. Совершенно непригодно стекло для температур свыше 150—200° С при повышенном давлении паров воды. В этом случае растворение сопровождается быстрой раскристаллизацией стекла, фиксируемой по его помутнению. Характеристика устойчивости лабораторного стекла имеется у С. К. Дуброво [1965 г.]. [c.183]

    Плавиковая кислота служит эффективным реагентом для растворения природных и искусственных силикатных материалов (силикатных минералов и пород, стекла, керамики и пр.). Это действие обусловлено связыванием и устранением кремния из пробы в форме летучего Sip4. Обычно HF используют в смеси с концент рированной H2SO4 последняя после завершения растворения устраняет избыток HF, поскольку в противном случае плавиковая кислота может осадить некоторые нерастворимые фториды. [c.446]

    Второй вид разрушения стекла — результат воздействия щелочей, плавиковой кислоты, которые растворяют кремнезем, что препятствует образованию на стекле защитного слоя. При больпшх количествах агрессивной среды или при поступлении свежих ее порций разрушение стекла происходит по линейному закону (продукты разрушения полностью переходят в раствор, скорость стравливания почти постоянна, толщина стравливаемого слоя пропорциональна времени воздействия на стекло лгрессивпой среды). При недостаточном количестве агрессивной среды в ней накапливаются продукты коррозии, замедляющие растворение стекла. [c.10]

    В этой работе мы не имеем возможности останавливаться подробно на некоторых неадсорбционных методах определения удельной поверхности, поэтому ограничимся только кратким упоминанием некоторых более новых из них . Мы уже говорили о микроскопических и электронномикроскопических методах определения внешней поверхности адсорбентов. Предложены методы определения поверхности адсорбентов сравнением скоростей растворения непористых пластинок и высокодисперсного материала. Пальмер и Клэрк э определили, таким образом, поверхность порошка кварцевого стекла, сравнивая скорости его растворения в плавиковой кислоте со скоростью растворения кварцевого стекла с известной поверхностью, и нашли для порошка величину равной 4690 см /г. Они исследовали изотермы адсорбции различных паров этим образцом. Позже Брунауер, Эмметт и Теллер обработали эти результаты предложенным ими методом и нашли для удельной поверхности величину в 5640 см /г, т. е. близкую к полученной сравнением скоростей растворения. Это [c.193]

    Стеклянные изделия практически устойчивы во всех химически активных средах, за исключением плавиковой кислоты, фтористого водорода и кремнефтористоводород-ной кислоты. Скорость растворения стекла в щелочных средах несколько выше, чем в кислых. [c.68]

    Ход определения. 0,1 г анализируемой пробы стекла, тонко растертой и высушенной при 110°, смачивают в платиновой чашке 5 мл 40%-ного раствора плавиковой кислоты и 5 мл 72%-ного раствора хлорной кислоты. Умеренно нагревают на водяной бане и после растворения стекла выпаривают раствор дссуха. По охлаждении ополаскивают стенки чашки 1—2 мл воды и 0,5 мл хлорной кислоты и раствор снова выпаривают досуха. Затем остаток прокаливают при 500° в течение 5 мин. Остаток еще горячим растворяют в 1 мл соляной кислоты (1 4). Полученный раствор вносят в мерный цилиндр емкостью 100 мл и разбавляют водой примерно до 40 мл. К полученному раствору добавляют 10 мл 5%-ного хлороформного раствора 8-оксихинолина, 10 мл 10%-ного раствора ацетата натрия и взбалтывают в течение [c.454]

    В природном кремнеземе два его видоизменения выраяеиы явно. Опалы и трепел (инфузорная земля) имеют уд. вес около 2,2 и сравнительно легко растворяются в щелочах и плавиковой кислоте. Халцедоны и кремни (окрашенные кварцевые желваки в водных породах), агат и тому подобные виды кремнезема, несомненно, водного происхождения, даже содержащие еще некоторое количество воды, имеют уд. вес 2,6 и по трудной растворимости отвечают кварцу. Это же видоизменение кремнезема пропитывает иногда клетчатку дерева и определяет одну из обычных форм окаменелого дерева. Растворяя в плавиковой кислоте, можно из него извлечь кремнезем, и остается клетчатка, явно показывающая, что кремнезем в растворенном виде проник в клетки, отложил гидрат, и он, теряя воду, дал кремнезем уд. веса 2,6. Кварцевые сталактиты некоторых пещер, очевидно, того же водного происхождения и, однако, имеют уд. вес 2,6. Так как среди халцедонов часто находятся кристаллы аметиста и так как Фридель и Сарразен (1879) получили искусственно кристалл горного хрусталя при нагревании в замкнутом сосуде растворимого стекла с избытком гидрата кремнезема, то несомненно, что сам горный хрусталь может образоваться водным путем из студенистого гидрата. Хрущов получил его прямо из растворимого кремнезема. Поэтому такой гидрат может образовать как видоизменение уд. веса 2,2, так и более прочное, уд. веса 2,6 и оба существуют как с малыми содержанием воды, так и без нее, и безводны или аморфны, или кристалличны. Все это выражается. признав кремнезем диморфным, причину чего, повидимому, должно искать в различной мере полимеризации. [c.456]

    Очистка растворителями. Реагентами, используемыми для очистки подложек, служат водные растворы кислот и щелочей, а также такие органические растворители, как спирты, кетоны и хлористые углеводороды. Эффект очистки кислотами обусловлен превращением некоторых окислов и жиров в растворимые в воде соединения. Щелочные агенты растворяют жиры омыливанием, что делает их смачиваемыми в воде. Однако использование кислот и щелочей имеет свои ограничения. Их способность реагировать со стеклами была обсуждена в разд. 4В. Для химически инертных и слабо травящихся подложек нужно принимать меры против образования осадков и адсорбции молекул растворителя. Неорганические соединения часто бывают нелетучими и, следовательно, последующим нагревом в вакууме не могут быть удалены. Примером может служить удержание адсорбированного хрома на поверхностях стекла, очищенного "в горячих смесях серной и хромовой кислот. В растворах плавиковой кислоты, часто используемых для удаления нерастворимых осадков путем растворения тонкого слоя нижележащего стекла, образуются загрязнения в виде сильно адсорбированного фтора [97]. Индикатором этого является фтор, наблюдаемый в масс-спектрометре даже после того, как обработанное стекло было прогрето в вакууме при 325° С в течение 36 ч [98]. Проблема выпадения осадка может возникнуть и при использовании органических растворителей. Патнер [99] наблюдал слабую адгезию пленки на стеклянных подложках, очищенных четыреххлористым углеродом и трихлорэти-леном. После очистки поверхность покрывалась беловатым осадком, который не мог быть удален нагревом. Именно поэтому установлено, что хлоридные пленки образуются реакцией стекла с растворителями. [c.538]

    Переход примесей в трихлорсилан происходит на следующих за синтезом стадиях технологического процесса. Кварцевое стекло (колбы, сосуды для хранения, дистил-ляционная аппаратура) являются источниками загрязнения трихлорсилана. Энгельгарт с сотр. [258] показали, что после обработки кварца 50%-ным едким натром, а затем 20%-ной плавиковой кислотой на поверхности кварца образуется рыхлый слой и реакция с трихлорсиланом идет более интенсивно. Обработанные таким образом пробы в течение 1—3 суток выдерживали в трихлорсилане при 25 и 32 С. При этом из кварца в трихлорсилан переходило 2-10 —2-10 вес. % фосфора. Растворение охва тывает только поверхностный слой образцов и не зависит рт длительности опыта и температуры. [c.56]

    Навеску стекла разлагали в смеси серной и плавиковой кислот трехкратным выпариванием досуха в платиновых чашках. К сухому остатку приливали 20 мл горячей воды и нагревали до растворения солей. Переводили раствор в мерную колбу емкостью 50 мл, добавляли 5—6 капель 10% раствора аскорбиновой кислоты, приливали 2 мл насыщенного раствора фтористого натрия для связывания алюминия, нейтрализовали едким натром до pH 5, добавляли 10 мл ацетатного буферного раствора и доливали водой до метки. После перемешивания отбирали аликвотную порцию раствора в электролизер и проводили амперометрическое титрование ванадия (IV) глицинтимоловым синим по току реагента при потенциале П-О.75 в на вращающемся платиновом электроде. [c.89]

    Получение реплик с порошкообразных [ препаратов. На стеклянную пластинку наносят каплю 1 %-го раствора коллодия в амилацетате. Наклоном пластинки капле дают стечь и высохнуть следу. На это место помещают каплю водной суспензии цеолита такой концентрации, чтобы после испарения воды коллодиевая пленка была покрыта плотным слоем частиц. Затем кристаллы покрывают слоем распыленного в вакууме углерода толщиной 200—300 А. Поверх всего наносят несколько капель нагретого концентрированного раствора желатины. После застывания раствора желатиновую пленку вместе с захваченным ею препаратом отделяют от стекла, желатину растворяют в горячей воде, коллодиево-угле-родпую пленку промывают и переносят в смесь концентрированных соляной и плавиковой кислот (1 1) для растворения цеолитов. Промытые в воде пленки вылавливают на сетку, высушивают, растворяют коллодие-вую пленку в ацетоне и оставшуюся углеродную реплику оттеняют хромом или платиной. Успех всей этой довольно сложной операции в значительной степени обусловлен тем, что почти во все время препарирования хрупкая углеродная реплика укреплена коллодиевой пленкой. [c.122]

    Не более 100 мг смеси окисей обрабатывают в платиновом тигле 5 мл концентриро-ваипой плавиковой кислоты, накрывают тигель часовым стеклом и нагревают 15— 30 мин на плитке до полного растворения. Затем к раствору добавляют точно 3 мл 50%-пой серной кислоты. Смесь нагревают до появления белых паров и после охлаждения прибавляют 2 мл концентрированной плавиковой кислоты для полного растворения осадка. Раствор переносят в полиэтиленовый стакан на 400 мл, который содержит 185 мл воды и 2 мл 4 М плавиковой кислоты. Платиновый тигель промывают 5 М плавиковой кислотой порциями по 0,5 мл так, чтобы общий объем HF в стакане составлял 5 мл, и медленно осаждают тантал кипящим раствором БФГА. Затем стакан помещают в холодную воду и оставляют па 2,5 ч. Осадок отфильтровывают через бумажный фильтр, помещенный в платиновую или полиэтилеповую воронку, промывают 8 раз промывным раствором н прокаливают при 900 °С до получения TajOs. [c.189]

    Летучесть металлических примесей в зависимости от температуры и продолжительности прокаливания проверяли на примере кадмия как наиболее летучего элемента из числа определяемых [2], для чего использовали его радиоактивный изотоп d . В качестве элемента-основы был взят металлический порошок вольфрама. Металлический dii вводили в порошок W следующим образом. Радиоактивную окись кадмия помещали в трубку из тугоплавкого стекла, которую, в свою очередь, помещали в трубчатую печь. Печь нагревали до 450—500° и через трубку с GdO пропускали водород. В этих условиях [2] кадмий восстанавливался до металла и испарялся. Пары кадмия концентрировались в приемнике, куда помещали порошок металлического вольфрама. Смесь W и Gd тщательно перетирали в ступке до дости кения равномерного распределения d в порошке вольфрама. Это проверяли растворением равных навесок смеси в азотной и плавиковой кислотах с последующим измерением удельной активности каждой. Для измерения активности образцов после прокаливания окись вольфрама растворяли в 20%-пом NaOH и брали аликвотные части этих растворов, которые наносили на мишени. [c.86]

    На позициях VIII, IX и X в колбу подается водопроводная вода для отмывки поверхности от плавиковой кислоты и ее солей, образующихся при растворении стекла. Неотмытые остатки плавиковой кислоты и ее солей могут привести к браку вида сползания, шелушения покрытий, к ржавлению металлических выводов, вваренных в колбы, ухудшению вакуума в приборе и [c.120]

    Вышеописанная технология мойки колб ЭЛТ обеспечивает качественную химическую очистку стекла, но имеет ряд недостатков. Плавиковая кислота и особенно ее пары вступают в химическое взаимодействие с металлическими анодными выводами, вызывают разъедание (неравномерное растворение) и коррозию металла. Анодные выводы, изготовленные из сплавов фуродита и феррохрома, при высокой температуре, необходимой для ввар-ки выводов в колбу, приобретают крупнокристаллическую структуру. Это значит, что толща металла состоит из отдельных крупных зерен, на границах между которыми скапливаются углеродистые соединения — карбиды (рис. 46). [c.121]

    Как известно, стекло состоит из взаимосвязанных щелочных (К2О, РЬО, СаО, MgO и т. д.) и кислотных (S1O2, Р2О5, В2О3) окислов, находящихся в строго определенном и постоянном соотношении в любом слое стекла. Следовательно, в слое стекла, из которого растворилось большое количество двуокиси кремния (в результате избирательного растворения плавиковой кислотой), содержится избыток свободных, несвязанных щелочных окислов. По мере растворения поверхностного слоя стекла внутренний слой, обедненный двуокисью кремния и обогащенный свободными щелочными окислами, становится наружным — внешним. Свободные щелочные окислы усиленно поглощают из воздуха влагу и углекислоту. При этом на поверхности стекла образуются белесоватые налеты углекислых солей натрия и калия, резко уменьшающие прозрачность стекла такой вид брака называется разъедом (углекислые соли имеют матовый оттенок). [c.123]

    Кварцевое стекло представляет собой переплавленный чистый кремнезем с незначительными (около 0,01 %) добавками AI2O3, СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой и фосфорной кислот. Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые лучи. Широкое внедрение кварцевого стекла в практику ограничивается трудоемкостью и энергоемкостью его изготовления и обработки. Кварцевое стекло, имея высокую температуру плавления (более 2000°С), начинает размягчаться только после 1650°С. Большая вязкость расплава в значительной степени усложняет удаление из него растворенных газов. [c.40]

    Этим методом определялись и другие труднорастворимые соли основной нитрат висмута, сульфат кальция, хлорид свинца [13]. Смит и Сайм [98] применили описанный метод для определения сульфата бария, полученного при сжигании органических серусо-дерн ащих соединений но Кариусу. Метод применялся также для определения фосфата, осажденного в виде фосфата уранила для растворения осадка его встряхивали с катионитом в Н-форме, и выделяющуюся кислоту определяли титрованием [5]. Ионообменное растворение сульфата кальция ири 90° С применялось для анализа гниса и алебастра [70]. Флагака и Амии [26] предложили метод быстрого определения кремнезема в стекле кремнезем удаляют обработкой смесью плавиковой и серной кислот до постоянного веса остатка затем остаток в течение 10 мин обрабатывают водной суспензией катионита в Н-форме при 70° С, чтобы перевестп в раствор сульфат кальция. В заключение пропускают суспензию через колонку и определяют серную кислоту титрованием. Потеря в весе при обработке кислотами, исправленная на содержание ЗОд в остатке, позволяет вычислить концентрацию кремиезема в исходной пробе. [c.236]

    Штуккерт также исследовал причины помутнения, образовавшегося под действием двуокиси олова в керамических глазурях, для которых справедливы закономерности, аналогичные таковым для эмалей. Практически особенно важно иметь в виду, что большая часть двуокиси олова растворяется во фритте и полностью—в расплавленных глазурях, но при охлаждении вновь выкристаллизовывается из них. Это явление известно как девитрификация двуокиси олова из вязкого пересыщенного расплава. Для этой реакции важен состав расплава стекла из глазурей, богатых окисью свинца, при охлаждении двуокись свинца выкристаллизовывается полностью, в то время как некоторое количество ЗпОг остается растворенной в глазури, главным образом в виде станнатов, если присутствует большое количество щелочей. С другой стороны, двуокись олова влияет на плавкость и химическую стойкость глазурей по отношению к кислотам. Повышение содержания глинозема вызывает увеличение помутнения глазури, так же, как и у эмалей, о чем говорилось выше. Плавиковый шпат и фосфат кальция (см. Е. I, 190) также бла- [c.919]


Смотреть страницы где упоминается термин Плавиковая кислота, растворение стекла: [c.146]    [c.40]    [c.376]    [c.137]    [c.194]    [c.231]    [c.65]    [c.122]    [c.194]    [c.39]   
Смотреть главы в:

Лабораторные работы по неорганической химии -> Плавиковая кислота, растворение стекла


Лабораторные работы по неорганической химии (1948) -- [ c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота плавиковая



© 2025 chem21.info Реклама на сайте