Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калия обнаружение ртути

    При обнаружении ртути в смеси сульфидов их обрабатывают бромной водой избыток брома удаляют фенолом в разбавленной серной кислоте, затем прибавляют каплю реактива и каплю раствора едкого кали. Появляется красное окрашивание, обусловленное цветом реактива в щелочной среде, но, вследствие кислотности анализируемого раствора, наблюдается образование синих жилок, появление которых обусловлено реакцией со ртутью. [c.18]


    Поскольку при хроматографировании происходит разделение компонентов анализируемой смеси, то в ряде случаев обычные качественные реакции на ионы неорганических соединений в условиях получения осадочных хроматограмм становятся высоко селективными. Например, обнаружение ионов Hg2+ в виде иодида ртути красного цвета на колонке или бумаге, содержащей иодид калия в качестве осадителя, является абсолютно селективным. Такая же высокая селективность характерна для обнаружения ионов по реакции с диметилглиоксимом на хроматографической бумаге. [c.231]

    Обнаружение ионов ртути (1, II) и свинца в отсутствие висмута в растворе смеси катионов. Через окись алюминия пропускают 3—5 капель раствора, хроматограмму промывают 2—3 каплями воды и проявляют раствором иодида калия. [c.195]

    Она образуется при смешивании водного раствора солей двухвалентного кобальта с водным раствором цианата калия. Реакция лучше удается при добавлении к исследуемому раствору сухого цианата калия. Чувствительность обнаружения возрастает при добавлении ацетона (можно обнаружить 0,02 мг Со) или при экстракции окрашенного соединения изоамиловым спиртом. Цианат позволяет обнаруживать кобальт в присутствии ионов трехвалентного железа, которые не дают окрашенных соединений с реагентом. Не влияют на чувствительность обнаружения ионы ртути, мышьяка, сурьмы, олова, золота, родия,, палладия, осмия, платины, селена, теллура, молибдена, вольфрама, ванадия, алюминия, хрома, урана, титана, бериллия, цинка, марганца, рения, никеля, щелочных и щелочноземельных металлов. Несколько затрудняют обнаружение кобальта большие количества ионов с собственной окраской— меди, ванадия, хрома, платины. Ионы серебра, свинца, висмута, кадмия, редкоземельных элементов, церия, циркония и тория образуют осадки белого цвета. [c.49]

    В зависимости от количества ртути, задержанной в коллекторе, ее определение проводят двумя различными методами. Если задержано свыше 200 нг ртути, то ее направляют потоком газа-носителя в поглотительные сосуды, заполненные раствором серной кислоты и перманганата калия. Затем анализируют поглотительную смесь на содержание ртути. Если в коллекторе задержано меньше 200 нг ртути, то ее потоком инертного газа направляют непосредственно в абсорбционную кювету СФМ для измерения сип а-ла методом холодного пара. При содержании свыше 200 нг ртути наклон графика уменьшается и точность анализа ухудшается. Если в газе содержится очень мало ртути, то через коллектор необходимо пропустить больше газа (несколько кубических метров). Это удлиняет анализ, так как скорость потока газа через коллектор ограничена. В таком случае параллельно используют несколько коллекторов. Затем из них ртуть десорбируют нагреванием и всю ртуть собирают в одном коллекторе, а из него направляют на анализ. Прн этом предел обнаружения соответственно снижается. [c.172]


    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    Высокое перенапряжение процесса восстановления хроматов и бихроматов на ртути связывают с образованием на поверхности пленок из гидроокиси хрома или основного хромата, которые затрудняют процесс восстановления. Поэтому полное восстановление хромат-ионов даже до Сг + не начинается, пока потенциал не достигнет значения —0,76 В. Очевидно, что на твердых электродах, и 3 особенности на железном катоде, склонном к пассивации, в условиях, когда исходная поверхность катода не обновляется, пленки из гидроокиси хрома или основных хроматов будут более устойчивыми и возникнут гораздо легче, чем на капле ртути, живущей доли секунды. Все это должно привести к увеличению перенапряжения, необходимого для полного восстановления хромат-или бихромат-ионов на железном катоде. Кажущееся на первый взгляд противоречие между этим утверждением и обнаружением в некоторых случаях в защитной пленке ионов трехвалентного хрома объясняется следующим. По-видимому, в начальный момент погружения железного электрода в электролит происходит некоторое восстановление хромат-ионов. Однако как только на поверхности железа образуется пленка из гидратов окиси хрома и железа, дальнейшее восстановление хромат-ионов прекращается. Таким образом, такой сильный окислитель, как бихромат калия, не только не увеличивает эффективность катодного процесса в нейтральном электролите, а уменьшает ее. [c.39]

    Обнаружение ионов свинца и ртути (II). В колонку вносят три капли смеси растворов солей РЬ и Hg и одну каплю 2 н. раствора иодида калия. Вверху колонки образуется желтая зона (РЬ " ), внизу—красная зона (Н ), исчезающая при избытке реактива. [c.53]

    Обнаружение ионов таллия в присутствии Н -ионов проводят при помощи избытка иодида калия. При пропускании проявителя образуется красно-оранжевая зона иодида ртути (П), исчезающая при добавлении избытка реактива желтая зона иодида таллия остается вверху колонки. [c.80]

    Обнаружение ионов цирконила. Анализ смеси ионов цирконила и ртути (II). Через колонку пропускают две-три капли 2 н. раствора соляной кислоты, затем две-три капли раствора ализарина и две-три капли исследуемого раствора, при этом образуется розово-фиолетовая зона, содержащая цирконил-иопы, которая быстро перемещается вниз. Затем в эту же колонку вносят раствор иодида калия. Вверху колонки образуется оранжево-красная зона, содержащая ионы окисной ртути. Через несколько минут хроматограмма имеет следующий вид вверху—белая зона, затем—оранжевая, ниже—розово-фиолетовая зона. [c.81]

    Взаимодействие иода с фторидами. Наилучшим способом получения пентафторида иода является прямое взаимодействие составляющих его галогенов [1 ]. Между тем, еще задолго до открытия Муассаном свободного фтора, внимание исследователей привлекали реакции между галогенами и фтористыми солями. Так, Каммерер [2] проводил реакцию между иодом и фторидом серебра. Сухие исходные препараты нагревали в эвакуированной запаянной стеклянной ампуле при 70—80° С до исчезновения цвета иода (фторид серебра в исходной смеси находился в избыточном количестве). Газообразные продукты реакции после вскрытия ампулы собирались под слоем ртути и далее поглощались раствором едкого кали. Иод не мог быть обнаружен простыми качественными реакциями, так как в растворе он находился в виде перйодата калия, что послужило причиной ошибочного заключения о выделении в этой реакции свободного фтора. Позднее предполагали [3], что в этом случае происходило образование нентафторида иода. Однако и это утверждение было ошибочным. В настоящее время известно [4], что в указанных условиях получается гептафторид иода  [c.256]

    Наблюдение проводят после внесения 1—2 капель раствора иодида калия. Не рекомендуется вначале вводить избыток иодида калия, так как иодид ртути образует с избытком реактива растворимый бесцветный комплекс и может быть не обнаружен. После того как Hg -иoны обнаружены, пропускают через колонку избыток раствора иодида калия. Р1одид ртути (И) переходит в бесцветный комплекс, а через 2—3 мин появляется желтая зона иодида свинца. [c.58]

    Соли бария, серебра, ртути-1, свинца, висмута и сурьмы при взаимодействии с бихрома трм калия дают нерастворимые в воде осадки хроматов. Из этих осадков при рассматривании под ультрафиолетовым микроскопом окрашены в красный цвет только осадки висмута и бария. К капле исследуемого раствора объемом 0,05 мл на часовом стекле добавляют 1—2 капли 5%-ного раствора аммиака (необходимо избегать избытка, так как высокая концентрация гидроксильных ионов мешает проведе-нию реакции). При эт ом элементы, образующие осадки с бихроматом калия (серебро, ртуть-1, свинец, висмут и сурьма), выпадают в виде гидроксидов. Барий остается в растворе. После удаления раствора с осадка каплю раствора помещают на предметное кварцевое стекло и смешивают с каплей 2 н. раствора уксусной кислоты рядом помещают каплю бихромата калия. При соединении капель выпадае-я осадок хромата бария, красный при рассматривании под ультрафиолетовым микроскопом. Чтобы сделать реакцию более отчетливой (бихромат калия сам интенсивно окрашен в поле зрения микроскопа в красный цвет, и красная окраска осадка сливается с окраской бихромата), следует после взаимодействия раствора с бихроматом калия снять кусочком фильтровальной бумаги жидкость с осадка хромата бария и промыть его 1—2 каплями дистиллированной воды, а затем уже рассматривать под микроскопом. Предел обнаружения 0,15 мкг иона Ба2+. Предельное разбавление 1 33 ООО. Предельные соотношения других катионов (при 0,30 мкг иона Ва +) следующие В1 + HgГ  [c.120]


    Обнаружение ртути. Насыпают в пробирку немного порошка пестищ1да, приливают двойной объем разбавленной азотной кислоты, размешивают стеклянной палочкой, нагревают до кипения и после охлаждения отфильтровывают. К фильтрату прибавляют немного раствора подпетого калия — выпадет бурый осадок, исчезающий при нагревании. [c.193]

    До последнего времени были известны лишь качественные реакции обнаружения ртути При добавлении к раствору ртути хлорида олова и бромида калия выпадает осадок HgaBrg, флуоресцирующий оранжево-красным цветом. Предельное разбавление ртути при этой реакции 1 100000, что соответствует чувствительности 10 мкг в 1 мл. [c.272]

    Анализ. Обнаружение ртути обрабатывают смесью серной и азотной кислот и нитрата калия. Разбавляют и добавляют марганцевокислый калий до тех пор, пока не установится цвет, обесцвечивают перекисью водорода и титруют 0,05N раствором тиоцианата калия, используя в качестве индикатора железные квасцы. Прямой превращают в дитизонат и определяют в растворе хлороформа при 480 ммк (РоПеу D. and Aliller V. L., J. Agr. Food hem., 1954, 2, 1030). [c.158]

    В отличие от рассмотренных выше элементов определение общего содержания ртути методом ААС основано на измерении поглощения света ее парами, которые вьщеляются потоком воздуха из водного раствора после восстановления ионов до атомного состояния, при длине волны 253,7 нм в газовой кювете при комнатной температуре ( метод холодн()го пара ). В качестве восстановителей применяют хлорид олова, станнит натрия, аскорбиновую кислоту и др. [3,8]. Предел обнаружения состав.гтя-ет 0,2 мкг/л, диапазон измеряемых концентраций 0,2 - 10 мкг/л [И] Для устранения мешающего влияния органических веществ, поглощаюшцх свет при данной длине волны, к пробе добавляют кислый раствор перманганата или бихромата калия. [c.249]

    Обнаружение i g -uoнoв при помощи иодида калия. Первичную хроматограмму обрабатывают по зонам раствором иодида калия. В месте соприкосновения раствора иодида калия с зоной свинца образуется ярко-желтая окраска, с зоной висмута — черное пятно (при дальнейшем прибавлении иодида калия переходящее в светло-желтое), с зоной соединений ртути (И) — ярко-красная окраска. [c.202]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    N H I, немного ксантогената калия, 0,5—1 мл диэтилового эфира и взбалтывают. При этом в эфир переходят вследствие растворения и флотации ксан-тогенатиые соединения молибдена, железа, кобальта, никеля, меди и др. эфирная фаза окрашивается в темный, почти черный цвет. Водную фазу удаляют через край, к эфирной фазе прибавляют 1—2 мл 2 М NaOH и взбалтывают. При этом в водный раствор переходят молибдат и ксантогенат, а осадки гид роокисей тяжелых металлов флотируются и сорбируются на границе раздела фаз. Водный раствор фильтруют через маленький фильтр для удаления гидроокисей. Фильтрат подкисляют 2 N НС1. В присутствии молибдена раствор окрашен в более или менее интенсивный розовый или красно-фиолетовый цвет. В отсутствие молибдена раствор остается бесцветным. Таким путем удается обнар у Жить 3 мкг Мо в S мл раствора в присутствии вольфрама при предельном отношении Мо W = 1 1300. Обнаружению молибдена (10—30 мкг) не мешают значительно большие количества железа (1 1500), серебра (1 750), никеля (1 1500), меди (1 1500), висмута (1 1500), свинца (1 350), пятивалентного ванадия (1 3000), трехвалентного хрома (1 4000), двувалентной ртути (1 200) (в скобках указаны предельные отношения). [c.108]

    Нитрозо-2-нафтол. Свойства соединения кобальта с этим реагентом были уже рассмотрены на стр. 31. Обнаружение кобальта 1-нитрозо-2-нафтолом описывается во многих работах [13, 131 — 133, 232, 405, 406, 408, 443, 495, 559, 587, 642, 666, 683, 689, 792, 793, 1047. 1261, 1338, 1360, 1410, 1435]. Реагент образует осадки не только с ионами кобальта, а также с ионами уранила, церия(1 /), ртути(1), ванадия(У), титана(И1), никеля, ртути (И), меди и железа, однако большинство этих осадков растворимо в кислотах, и поэтому обнаружение кобальта с использованием 1-нитрозо-2-нафтола достаточно селективно. Влияние железа и меди устраняют, осаждая ионы трехваленг-ного железа фосфатом натрия, приче.м таким путем устраняется также влияние уранил-ионов медь восстанавливают иодидом калия, а выделившийся иод удаляют прибавлением сульфита натрия. [c.54]

    Известно [351, 409, 1525] много производных и-диметиламино-бензилиденроданина или родственных ему соединений, предложенных в качестве чувствительных реагентов на серебро. Так, и-диметиламинобензилиден-2-тиогидантоин [810] образует с ионами серебра в кислой среде красно-оранжевый осадок. и-Диметил-аминобензилидентиобарбитуровая кислота [1315] и некоторые ее производные, растворенные в ацетоне или в уксусной кислоте, также являются чувствительными реагентами на серебро, образуя с ним соединения красно-фиолетового цвета. Открытие серебра проводится из слабокислого азотнокислого раствора, чувствительность реакции составляет при выполнении капельным методом 0,02 мкг, предельное разбавление — 5-10 . Обнаружению серебра этой реакцией мешают Hg, РЬ, Ан, Pd, РЬ, Кн и Ой. Влияние ртути можно устранить прибавлением цианида калия. [c.50]

    Качественное обнаружение. 1. Промедол образует аморфные осадки с общеалкалоидными реактивами танином и раствором йода в йодиде калия — при разведении 1 1000, фосфорно-вольфрамовой и кремнефосфорновольфрамовой кислотами — при разведении 1 3000, растворами пикриновой кислоты, йодида кадмия в йодиде калия и йодида ртути в йодиде калия —при разведениях 1 10 000, с фосфорно-молибденовой кислотой — при разведении 1 30 000, а с раствором йодида висмута в йодиде калия— при разведении 1 60 ООО. [c.206]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Блок и Даме [370] при обнаружении микроэлементов в топливе применили в качестве растворов сравнения оргапометалли-ческие соединения магния, алюминия, хлора, ванадия, брома, натрия, калия, хрома, железа, кобальта, никеля, меди, цинка, молибдена, сурьмы, бария, лантана и водные растворы сравнения для скандия, мышьяка, селена, ртути, тория. Они предлагают четыре схемы анализа, которые приведены в табл. 1.21. [c.92]

    Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, л<елеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]

    Обнаружение ионов ртути (I, 1 ) и свинца в отсутствие ионов висмута, а) В отсутствие В -ионов [Hg2] " -, Hg -, РЬ -ионы обнаруживают по следующей методике. Через окись алюминия пропускают исследуемый раствор, хроматограмму промывают водой и проявляют раствором иодида калия. Сверху образуется темно-зеленая зона иодида ртути (Hg2Jз), затем желтая зона иоди- [c.58]

    Анализ смеси ионов индия, ртути (I, II) и свинца. Ионы [Hgal , Hg " " и не мешают хроматографическому обнаружению ионов In " реакцией с ализарином ионы In не мешают обнаружению ионов Hg " , РЬ " действием иодида калия. Ионы [Hga] " обнаруживают реакцией с тиомочевиной. [c.78]

    Анализ смеси ионов уранила, ртути (I и II) и железа (III). Ионы Hg обнаруживают действием раствора иодида калия по образованию в колонке характерной красной зоны, ионы Ре по бурой зоне. Ионы U0 —реакцией с ферроцианидом калия однако этой реакции мешают Fe -ионы. Поэтому для обнаружения ионов иоГ следует поступать следующим образом. Через колонку пропускают исследуемый раствор и в каплях фильтрата обнаруживают иОГ действием ферроцианида калия. Фильтрат для определения UOI -hohob можно собрать до момента выхода из колонки бурой зоны, содержащей Ре -ионы. [c.79]

    Жидкостной бро.мид-селективный электрод, наготовленный на основе нитробензольного раствора кристалличесиаго фиолетового (5- Ю М) имеет прямолинейный участок градуировочного графика при относительно больших концентрациях от 10 до 10 моль/л. Описанный ранее электрод с мембраной из раствора бромида ртути в трибутил-фосфате имеет значительно меньшнй предел обнаружения (рВг=4,5), но в области больших концентраций (рВт=4—2,5) наблюдаются отклонения от линейности и Появление катионной функции [1]. Лучшими характеристиками обладает электрод со смесью кристаллического фиолетового (5-10- М) и бромида ртути (нас.) в нитробензоле в качестве мембраны. Линейность градуировочнаго графика сохраняется в пределах рВт от 2 до 5,5, предел обнаружения рВг р =5,7, крутизна электродной функции 45 м В/рС, коэффициент селективности к хлоридам, определенный методам смешанных растворов, равен 0,01. Присутствующие в растворе ионы калия, кальц(ия, бария, М агния, меди, железа, хро.ма не оказывают влияния на электродный потенциал. [c.28]

    Все триэфиры фосфористой кислоты в большей или меньшей степени окисляются кислородом воздуха. Этот процесс обычно является осложняющим, а не полезным обстоятельством, поскольку делает необходимым очистку фосфитов перед их использованием в синтезе эфиров кислот фосфора (V) эта реакция применяется редко. В то же время реакции фосфитов с пероксидом водорода, органическими пероксидами (трет-бутилгидропероксид и дибензо-илпероксид), а также с другими реагентами, например N2O4, оксидом ртути (II), активным диоксидом марганца, перманганатом калия, тетраацетатом свинца, йодной кислоты (упомянутые реагенты далеко не исчерпывают список окислителей) имеют огромное значение, однако успешное использование этих реакций зависит от точного соблюдения условий эксперимента и от устойчивости фосфита и соответствующего фосфата в водных средах, необходимых для применения этих реагентов [24, 25]. Показано, что N264, удобный из-за легкости его обнаружения в органических растворителях, и грег-бутилгидропероксид (см. уравнения 49, 50) стереоспе-цифично окисляют циклические фосфиты, давая продукты с сохранением конфигурации у атома фосфора. [c.687]

    Микрокристаллоскопическое обнаружение алюминия 195 бария 118 бихромат-иона 202 висмута 266 кадмия 264 калия 65 кальция 121 кобальта 217 магния 75 марганца 210 меди 262 мышьяка(Ш) 288 натрия 69 никеля 218 нитрат-иона 345 ннтрит-иона 345, 347 олова 294, 295 ртути(П) 260 свинца 257 силикат-иона 332 стронция 119 сульфат-иона 318 сурьмы 291 фторид-иона 330 цинка 214 Микрометод качественного анализа 10 [c.418]

    Обнаружение Hg++. Осадок 7 обработайте смесью соляной кислоты и перекиси водорода или царской водкой (см. стр. 359— 360). Сульфид ртути окисляется, и Hg++ переходит при этом в раствор. Для проверки присутствия ионов ртути избыток перекиси водорода удалите кипячением, выделившуюся серу отфильтруйте и проделайте поверочные реакции на Hg++ с раствором Sn l.j, медной пластинкой, иодидом калия (см. 5). [c.400]

    Обнаружение [Hg2p+-иoнoв. При добавлении к раствору, содержащему ионы ртути (I), хлорида олова (И) и бромида калия, выпадает осадок Hg2Br2, флуоресцирующей оранжево-красным цветом. Ионы ртути (II) должны быть предварительно восстановлены, например, раствором хлорида олова (II). [c.235]

    Метод тонкослойной хроматографии определения, основанный на экстракции ртути из деструктата дитизоном, переэкстракции бромидом калия, последующем хроматографическом определении в виде дитизоната в тонком слое Си-луфола или окиси алюминия. Подвижный растворитель — смесь гексана и ацетона (4 1). Предел обнаружения составляет 0,25 мкг, или 0,02 мг/кг. Метрологическая характеристика метода дана в таблице 43. [c.241]

    Ферроцианид калия в присутствии Sn lg в солянокислой среде образует с технецием желто-коричневый комплекс, который хорошо экстрагируется амиловым спиртом. При использовании в качестве восстановителей амальгамы висмута, ртути, конц. НС1 образуется комплекс синего цвета, также растворимый в спиртах. В растворах H2SO4 образуется комплекс красно-фиолетового цвета. Реакция технеция с K4[Fe( N)e] лежит в основе его обнаружения капельным методом. Метод позволяет обнаружить до 0,15 мкг Тс. [c.37]


Смотреть страницы где упоминается термин Калия обнаружение ртути: [c.504]    [c.172]    [c.378]    [c.158]    [c.190]    [c.150]    [c.137]    [c.111]    [c.211]    [c.200]    [c.149]    [c.390]   
Основы аналитической химии Издание 2 (1965) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

Ртуть обнаружение



© 2024 chem21.info Реклама на сайте