Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активаторов взаимодействие

    Полимеризацию под действием первичного инициатора можно ускорить, применяя вторичный инициатор, называемый обычно активатором. Активатор взаимодействует с инициатором и ускоряет его распад, что приводит к образованию свободных радикалов. На этом принципе основана техника полимеризации с применением систем восстановительно-окислительного активирования. [c.246]


    Недостатки обеих схем преодолеваются без труда, если допустить, что в присутствии активаторов взаимодействие иизкомолекулярных компонентов происходит как гетерогенная (топохимическая) реакция [43 44]. Действительно, 2пО не растворяется в малополярных каучуках, а цинковые мыла в среде каучука скорее всего агрегируют с образованием мицелл. Большинство применяемых ускорителей вследствие полярного характера плохо растворяется в каучуках и, по-видимому, уже при смешении взаимодействуют с активатором. Это взаимодействие может иметь только сорбционный характер или приводить к образованию химических (чаще всего комплексных) соединений [3 66 71 73, 74]. Сорбция низкомолекулярных веществ на поверхности активатора или их агрегирование в мицеллах мыл способствует увеличению скорости реакции между ними [c.225]

    Ион металла является активатором. Взаимодействуя с различными субстратами, коферментами и белками, ионы металлов осуществляют окислительно-восстановительные реакции, обусловливают разнообразные поляризационные эффекты, вызывая смещение электронной плотности и снижение активационных барьеров. Трудно перечислить все формы действия ионов-активаторов, однако общим признаком функций этого типа является сравнительно малая специфичность по отношению к природе иона. [c.135]

    По современным данным, переходные слои формируются в ре зультате различных форм взаимодействия покрытия с основой, представляющих вторичные процессы, которые, как и первичные, ускоряются путем повышения температуры и с помощью активаторов. Сущность взаимодействия покрытия с основой зависит в немалой степени от активатора. Взаимодействие может иметь химический, электрохимический и физический характер. Активаторы сцепления могут вступать в химические реакции на границе ТЖ, отлагаться электрохимически или диффундировать из покрытия в субстрат и обратно, образуя растворы. [c.211]

    Реальные фосфоры в громадном большинстве случаев имеют не менее двух активаторов, так как даже при полном удалении посторонних примесей ири прокаливании шихты в кристалле образуются нейтральные атомы металла (основания), яв.ляющиеся добавочным активатором, неизбежно присутствующим в фосфоре. Каждых из активаторов даёт свою полосу излучения, причём, однако, оптические свойства фосфора с двумя активаторами отнюдь не получаются аддитивно из свойств свечения фосфоров с единичными активаторами. Взаимодействие активаторов, проявляющееся в изменении относительной интенсивности полос, а также температурных и других свойств излучения, подробно описывается ниже ( 60). Взаимодействие во многих случаях столь значительно, что заставляет предполагать возникновение сложных химических образований из ионов обоих активаторов, а также участие в этих образованиях анионов плавня. [c.293]


    Наконец, если молекула активатора взаимодействует с растущим концом цепи существенно сильнее, чем с рядовыми молекулами мономера и со звеньями макромолекул, то при росте цепи она будет удерживаться на ее конце и в рамках общепринятой интерпретации каталитических полимеризаций может рассматриваться как составная часть каталитического комплекса, который осуществляет цепной процесс. Именно так происходит, например, при литиевой полимеризации ММА, диенов и других соединений в присутствии органических доноров (тетрагидрофурана, аминов и т. д.). [c.66]

    Бактериальный белок-активатор взаимодействует с РНК-полимеразой и способствует инициации транскрипции [10] [c.186]

    Д. Неправильно. Сигма-факторы взаимодействуют со специфической последовательностью ДНК, но лишь тогда, когда они входят в состав РНК-полимеразы. Аналогичным образом белки-активаторы взаимодействуют с РНК-полимеразой, но лишь в том случае, когда они связаны со своими специфическими сайтами узнавания в ДНК. [c.410]

    Оба ингибитора или активатора взаимодействуют с одним и тем же участком активного центра. Такие ингибиторы или активаторы называют взаимозависимыми. [c.216]

    Механизм такого процесса окисления можно представить схемой, приведенной на рис. 2.11. На стадии I происходит адсорбция молекулы кислорода на активном центре (обозначен звездочкой). Стадия II характеризуется превращением адсорбированной молекулы кислорода в поверхностный ион Ог и одновременным взаимодействием данной ячейки активатора с полярной молекулой углеводорода, дающего слабую водородную связь с поверхностью, в результате чего ослабляется связь водорода с углеводородным радикалом. На стадии III поверхностный ион кислорода соединяется с ядром водорода с разрывом связи Н—К. При этом образуются поверхностный комплекс [5 --ООН] и свободный радикал К, которые на стадии IV в [c.60]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]

    Если взаимодействие на поверхности катализатора является локализованным процессом, в результате которого не наблюдается энергетического возмущения атомов поверхности и объемной фазы катализатора, то такое взаимодействие можно считать обычной химической реакцией. Но, вероятно, это первое приближение будет далеко от действительности. По крайней мере можно твердо утверждать, что, вводя в катализатор некоторые компоненты (активаторы), можно существенно изменять активность катализатора. [c.660]

    Регуляторы применяют для регулирования избирательного действия коллекторов. В одних случаях регулятор, действуя непосредственно на поверхность минерала, облегчает взаимодействие с ним коллектора и тем улучшает флотацию. Такой регулятор является активатором флотации. В других случаях, наоборот, регулятор затрудняет взаимодействие минерала с коллектором, что подавляет флотацию этого минерала. В этом случае регулятор можно назвать депрессором. Примером активатора прн флотации является сульфид натрия, улучшающий флотацию сернистых металлов с помощью ксантогенатов. В качестве депрессора может служить жидкое стекло, ухудшающее флотацию силикатных минералов. [c.167]

    Резкое отличие в получении алмаза и p-BN относится к выбору катализаторов и, по-видимому, к механизму превращения а-ВЫ в р-ВЫ. Естественно, что с химической точки зрения нитрид бора гораздо более сложное вещество (соединение двух элементов), чем графит или алмаз. Поэтому для нитрида бора следует ожидать гораздо большего разнообразия химических реакций при взаимодействии его с какими-либо веществами. Каталитический синтез р-ВЫ и до настоящего времени служит предметом тщательных исследований, и здесь проблема много сложней, чем при синтезе алмаза. Далеко не полный список веществ-активаторов синтеза кубического нитрида бора включает следующие соединения нитриды, гидриды, амиды щелочных и щелочноземельных металлов, сурьма, олово, вода, мочевина. Поэтому взгляды на механизм каталитического превращения весьма различны. Предполагается, например, образование комплексов между катализатором и нитридом бора, которые имеют относительно низкую температуру плавления. Один из таких комплексов ЫзЫ-ВЫ выделен из реакционной шихты и хорошо изучен. В полученном расплаве растворяется а-ВЫ и, распадаясь на молекулярные фрагменты, превращается в р-ВЫ, так как давления и температуры процесса соответствуют термодинамической устойчивости последнего. [c.146]


    В более сложном варианте шихту готовят из веществ, которые только при прокаливании превращаются в соединения, служащие основой люминофора. Например, галофосфатные люминофоры синтезируют не из готового галофосфата кальция, а из смеси порошков кислого фосфата, карбоната, фторидов и хлоридов кальция (с добавками солей марганца и сурьмы, служащими активаторами), взаимодействующих при прокаливании с образованием галофосфата (см. стр. 42, 79). [c.59]

    На процесс образования комплексов отрицательно сказывается присутствие во взаимодействующих веществах примесей и загрязнений. Так, А. В. Топчиев с сотрудниками установили, что к-октадекан высокой степени чистоты способен образовывать комплексы с чистым карбамидом без растворителей-активаторов [47]. Недостаточно же очищенный к-октадекан комплексов с карбамидом при непосредственном контакте не дает, и для образования комплекса требуется добавка активатора. Выло отмечено отрицательное влияние па процесс комплексообразования смолистых веществ [48]. Кроме них, отрицательно действуют на процесс комплексообразования также нафтеновые кислоты и продукты окисления обрабатываемого сырья воздухом [38, 49]. Препятствуют комплексообразовапию и продукты разложения карбамида, образующиеся при его регенерации. [c.147]

    При взаимодействии окислителя (инициатора) с восстановителем (активатором) образуется высокая концентрация промежуточных лабильных свободных радикалов, позволяюших проводить полимеризацию при низкой температуре с высокой скоростью. Как правило, наибольшая скорость полимеризации достигается при эквимолекулярном соотношении окислителя и восстановителя. Энергия активации реакции полимеризации в присутствии восстановителя понижается со 126 до 42 кДж/моль. Способность снижать энергию активации полимеризации — одно из основных и характерных особенностей окислительно-восстановительных систем, инициирующих эти процессы. [c.136]

    При взаимодействии глины с серной кислотой во время ее распускания концентрация кислоты за счет влажности глпны (5—6%) снижается с 35 до 29—30 ь. Поэтому количестви воды для разбавления кислотной пульпы до 20%-ной концентрации подсчитывают следующим образом. Пз активатора отбирают пробу на определение содержания свободной серной кислоты в пульпе. Например, лабораторный анализ показал, что после распускания бентонита в образо- [c.74]

    Деактиваторы металлов, взаимодействуя с ионами металлов и образуя с ними растворимые комплексные соединения, выводят из сферы действия основную часть катализатора. При этом гетерогенный катализ окисления ювенильными поверхностями металлов не подавляется деактиваторами металлов. К де= активаторам металлов относятся салицилидены, аминофенолы и др. С антиокислительными присадками они ооразуют ШнёрпГ-ческие пары [206]. Эффективность деактиваторов металла при окислении в присутствии медной пластинки при 100 °С приведена в табл. 6.7. За рубежом для реактивных топлив разрешен к применению К,Ы -дисалицилиден-1,2-пропилендиамин (см. табл. 6.4), но добавление его не является обязательным. [c.197]

    Наиболее вероятный механизм действия активаторов [27] заключается в том, что, являясь полярными веществами, они способствуют уменьшению межмолекулярных сил взаимодействия молекул твердых и жидких углеводородов. При этом твердые углеводороды высвобождаются из раствора, что благоприятствует образованию спиралеобразной гексагональной структуры карбамида и, следовательно, комплексообразованию. Эта гипотеза объясняет и тот фа кт, что полярные растворители (иекоторые спирты, кетоны и хлорорганические соединения) в условиях комплексообразования легко растворяют жидкие и не растворяют твердые углеводороды, выполняя одновременно функции растворителя и активатора. [c.203]

    Сульфиды, как уже указано, легко образуются при непосредственном взаимодействии металлов с серой, а также в результате обменных реакции между солями этих металлов н растворимыми сульфидами, в том числе и сероводородом. Сульфиды цинка ZnS— белого, кадмия dS — желтого и ртути HgS — красного и черного цвета в поде нерастворимы. Кристаллический сульфид цинка, содержащий небольшие количества активаторов (медь, марганец, таллий), способен после освещения длительно светиться. [c.332]

    Свойства и структура частиц комплекса, о(5разупцих-ся при взаимодействии карбамида с н-алканами и находящихся в нефтяных фракциях, зависят от состояния карбамида, качества и количества растворителя и активатора, температуры и от других условий. При использовании водного раствора карбамида комплекс сос--оит из нескольких твердых и жидких фаз. К твердым относятся кристаллы карбамида и комплекса к жидким -депарафинированный продукт, растворитель, активатор и вода. При использовании кристаллического карбамида комплекс состоит из твердой фазы (комплекс и карбамид) и жидкой (депарафинированная фракция, растворитель и активатор). [c.53]

    Активаторы. Для образования комплекса непосредственное механическое смешение депарафинируемого нефтяного продукта с карбамидом и поверхностный контакт недостаточно эффективны. Необходим теСный контакт реагирующих продуктов. Это объясняется нерастворимостью карбамида в нефтепродуктах. Очень тонкое и интенсивное истирание карбамида с нефтепродуктом такке не дало положительного результата - образовавшийся комплекс разлагался. Хорошее взаимодействие карбамида с парафином возможно лишь при создании для них гомогенной среды. Однако основные растворители, хорошо растворяющие парафин (например, углеводородное), не растворяют карбамад, а растворители, хорошо растворяющие карбамид (вода, низшие спирты), не растворяют парафин. Растворителями, которые одновременно растворяют парафин и карбамид, могут в известной мере служить изопропиловый спирт, метил-этилкетон, метилизобутилкетон, хлористый метилен, дихлорэтан и другие. Однако удовлетворительная растворяющая способность этих растворителей для нефтяных продуктов и содержащегося в них парафина остается невысокой для карбамида. [c.73]

    Активаторы или промоторы — такие вещества, которые сами по себе могут быть неактивными для данной реакции, но сильно повышают активность собственно катализаторов. Механизм действия активаторов сложен, разнообразен и во многих случаях еще не полностью выяснен. Активация может происходить вследствие химического взаимодействия активатора с каталитическим веществом, в результате которого образуется новое соединение повышенной активности. Активирующие добавки могут образовать с катализатором твердые растворы, обладающие электронной структурой, которая соответствует большей активности. В других композициях активатор увеличивает поверхность каталитически актмного вещества или повышает теплостойкость контактной массы. Он может служить защитой основного катализатора от отравления. Активатор может быть сам по себе каталитически активным для данной реакции, поэтому деление на сложные и активированные катализаторы носит лишь ориентировочный характер. [c.123]

    Активаторы или промоторы — вещества, которые сами по себе могут быть неактивными для данной реакции, но сильно повышают активность собственно катализатора. Механизм действия активаторов сложен, разнообразен и во многих случаях еще не полностью выяснен [1]. Активация может происходить вследствие химического взаимодействия активатора с каталитическим веществом, в результате чего образуется новое соединение повышенной активности. Активирующие добавки могут образовывать с катализатдром твердые растворы при этом повышается актиВноСТБ Тсатализатора, В других композициях добавки увеличивают поверхность [c.61]

    К исходной смеси добавляют еще и растворитель для снижения вязкости, обеспечения тесного контг.кта взаимодействующих соединений, облегчения транспортирования образующихся суспензий. Проведение процесса с растворите.)гем повышает чистоту выделяемых алканов. Применяемые растворители можно подразделить на три группы 1) растворяющие углеводороды и плохо растворяющие карбамид (бензин, толуол, некоторые спирты, кетоны) 2) растворяющие карбамид и плохо растворяющие углеводороды (вода, водные растворы низших спиртоз) 3) растворяющие как углеводороды, так и карбамид (изопропиловый и пзобутиловый спирты, метилизобутилкетон и др.). Некоторые соединения (ацетон, метилэтилкетон, изопропиловый спирт, метиленхлорид, смеси нитроалканов) могут служить одновременно растворителями и активаторами. [c.116]

    Имеются две различные экспериментальные методики получения кристаллических комплексов парафинов с карбамидом. В первом / случае компоненты взаимодействуют в виде растворов (если углево- дород является жидкостью, то в виде раствора берется только карбамид), причем нередко растворитель является одновременно и активатором реакции [90, 91]. По второму варианту жидкий или твердый углеводороды взаимодействуют с кристаллическим карбамидом в присутствии небольшого количества активатора [83]. Без активаторов даже индивидуальные парафины крайне трудно взаимодействуют с карбамидом, не говоря же о не тяных фрак-цШГГ брсгятн(Г,ТГ5риамид значительно" легче взаимодействует с углеводородами, когда он растворен в активаторе. Каждая нз методик [c.68]

    Введением ускорителей, активаторов и нассиваторов регулируют скорость проиесса вулканизации. Ускорители повышают скорость вулканизации. В присутствии активаторов они более активно проявляют свое действие. При введет1и пасс1И аторов, наоборот, предотвращается преждевременная вулканизация, обусловливаемая взаимодействием каучука с серой и другими компонентами. [c.80]

    При необходимости ограничения в коксе минеральной части коксованию рекомендуется подвергать смеси нейтрализованного гудрона и обычного нефтяного остатка в соответствующих пропорциях. Для снижения количества минеральных примесей в коксе нами рекомендуется нейтрализация с применением аммонийных солей, в частности аммонийных стоков нефтехимических произт водств, позволяющих получать углеродистое вещество с высокой удельной поверхностью и значительной реакционной способностью Если требуется получить кокс с низкой реакционной способностью, гудрон следует нейтрализовать алюминийсодержащими соединениями, образующими при взаимодействии с серной кислотой сульфат алюминия, который является ингибитором реакционной способности углеродистых веществ [18]. Регулировать реакционную способность коксов можно также путем микродобавки более сильных ингибиторов (соединения бора, титана, фосфора и др.) и активаторов (соединения натрия, калия и другие соли, дающие при разложении газообразные продукты). [c.73]

    Карбамид взаимодействует с соответствующими органическими соединениями, находясь в кристаллическом состоянии (в присутствии небольших количеств активаторов — спиртов, кетонов и др.), в виде растворов в воде или других растворителях, либо в виде пульпИ. В результате взаимодействия карбамида и соединений с прямой цепью образуется белый сметанообразный продукт — комплекс (точнее комплекс-сырец). Образование его сопровождается выделением некоторого количества тепла После отделения комплекса-сырца от жидкой фазы, промывки и сушки он имеет вид твердой кристаллической массы. Полученный комплекс моя ет быть легко разрушен паггреванием или растворением в воде нли в каком-либо другом растворителе с выделением исходных компонентов — карбамида и органических соединений. Таким образом, процесс разделения, основанный на образовании карбамидного комплекса, состоит из следующих стадий реакция между карбамидом и органическим соединением с прямой цепью с образованием кристаллического комплекса отделение комплекса от жидкой фазы промывка комплекса растворителем и сушка комплекса разрушение комплекса. [c.8]

    Имеется также возможность при соответствующих условиях проводить комплексообразование и без активаторов. Образование карбамидного комплекса с н-парафпнами, тщательно очищенными силикагелем, осуществлено без активатора Циммершидом [201. А, В. Топчиев и Л. М. Розенберг с сотр. [18, 631 на примере к-октадекана и других индивидуальных углеводородов показали, что карбамид взаимодействует при комнатной температуре с углеводородами высокой степени чистоты и без активатора, однако такое взаимодействие возможно лишь для углеводородов от до 654. Начиная с Сза ни высокая степень чистоты углеводородов, ни тщательное измельчение их и карбамида не позволили получить карбамидный комплекс без активатора. Показано, что в случае применения карбамида с повышенной активностью реакция комплексообразования протекает без активаторов [64]. Карбамид с повышенной активностью можно получить при разложении карбамидного комплекса, образованного одновременно на базе углеводородов нормального строения и жирных кислот с длинной парафиновой цепочкой. О разработке процесса комплексообразования без активаторов с водным раствором карбамида сообщается в ряде работ Б. В. Клименка с сотр. [65, 66 и др.]. [c.38]

    Механизм действия активаторов объясняется, по-видимому, образованием в ходе процесса неустойчивых ннтеркалированньк соединений графита, распад которых расщепляет фафитовую матрицу, за счет чего увеличивается эффективная площадь взаимодействия. [c.150]

    Кроме того, можно предположить, что ускорение окисления может быть вызвано не только расщеплением фафита в ходе процесса, но и стабилизацией пористой структуры образца после испарения воды за счет активатора, а также ускорением взаимодействия за счет электрохимической коррозии фафита (значение потенциалов разных частей углефафитового материала несколько различны), причем расплав активатора является ионным проводником. [c.150]

    Активаторы. Очень часто (галогенарилы, высшие галогеналкилы) реакция не начинается даже после длительного прогревания реакционной массы. В таких случаях следует применять активаторы. В качестве активатора чаще всего применяют иод. Иногда для начала реакции достаточно прибавить к реакционной смеси кристаллик иода. Можно также нагревать магниевые стружки с небольшим (порядка нескольких сотых грамма) количеством иода при 300—400° С. Каталитическое влияние иода объясняется его взаимодействием с магнием с образованием одновалентного радикала MgI, который является переносчиком электрона  [c.209]

    К недостаткам цианидных электролитов относятся токсичность и неустойчивость состава вследствие взаимодействия цианида натрия (калия) с СО2 воздуха и выделения циановодо-рода необходимость частой корректировки электролита по цианиду натрия (калия) меньшая допустимая катодная плотность тока н более низкий выход по току, чем в кислом электролите склонност ) анодов к пассивации. В цианидных электролитах необходим избыток свободного цианида натрия (калия) для обеспечения устойчивости комплексного соединения, улучшения структуры осадков, увеличения рассеивающей способности электролита и устранения пассивации анодов. Однако большой избыток цианида допускать не следует, так как резко снижается катодный выход но току меди. В качестве активатора анодов в электролит вводят согнетову соль и роданиды. [c.33]

    Увеличение активности катализатора часто наблюдается и при добавлении к катализатору веществ, которые сами по себе являются неактивными. Подобные веихества называются промоторами или активаторами. Так, каталитическая активность никелевого катализатора по отношению к реакции взаимодействия оксида углерода с водородом с образованием метана повышается в сотни раз при добавлении небольших количеств церия, а каталитическая активность 205 по отношеинго к окислению 50о также повышается во много раз при добавлении небольших количеств щелочи или сульфатов щелочных металлов, В настоящее время смешанные и [c.159]


Смотреть страницы где упоминается термин Активаторов взаимодействие: [c.43]    [c.143]    [c.301]    [c.217]    [c.382]    [c.150]    [c.91]    [c.129]    [c.407]    [c.366]   
Фотолюминесценция жидких и твердых веществ (1951) -- [ c.321 , c.373 ]




ПОИСК





Смотрите так же термины и статьи:

Активаторы



© 2025 chem21.info Реклама на сайте