Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы роль носителя

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рё, N1, Со, Ад). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь. [c.83]


    Для катализаторов, работающих в кипящем и движущемся слоях, особую роль играет прочность к абразивному воздействию соседних частиц. В связи с этим структура, а также форма таких катализаторов в значительной степени определяются требованиями прочности. Широко распространен метод приготовления прочных к истиранию катализаторов путем коагуляции в капле, описанный подробно выше. В этом случае гранулы катализатора приобретают сферическую форму, гладкую поверхность и мало поддаются истиранию. Имеются сведения о производстве катализаторов для кипящего слоя сушкой гелевых суспензий или специальных масс в распылительных сушилках с получением микросферических частиц [45]. Наконец, при производстве катализаторов для кипящего слоя применяют высокопрочные носители типа корунда, алюмосиликагеля. Заполняя поры носителя активными компонентами путем пропитки раствором, расплавом или высокодисперсной суспензией, получают армированные катализаторы , роль носителя в которых сводится только к роли скелета, препятствующего разрушению собственно контактной массы. [c.198]

    Какова роль носителей гетерогенных катализаторов  [c.499]

    Исключение представляет процесс полимеризации на окисных катализаторах. Химический состав катализатора, роль носителя, взаимодействие олефина с катализатором остаются до сих пор мало изученными, а имеющиеся некоторые литературные данные по механизму реакции полимеризации на окислах металлов носят пока что гипотетический характер, часто не подкрепленный экспериментальными данными. [c.35]

    Б. А. Казанский, И. Б. Лосик, Н. Д. Зелинский [101] изучали окись алюминия в роли носителя окиси хрома, так как было известно, что окись алюминия является прекрасным носителем для катализаторов, применяющихся при гидрогенизации и дегидрогенизации в качестве промотора для синтеза аммиака на никелевом катализаторе Н. Д. Зелинского и др. Исходя из этого, был приготовлен ряд катализаторов с различным содержанием обоих окислов, испытанный на фракциях синтеза. [c.288]

    Рассматривая приведенные выше ряды активностей катализаторов, можно сделать очень важный вывод, что гидрирующая, изомеризующая и расщепляющая активности окисных катализаторов ниже активностей сульфидных катализаторов, а расщепляющая активность металлических катализаторов может быть даже выше, чем активность сульфидных катализаторов. Чтобы оценить роль носителя, целесообразно определить удельную активность различных катализаторов — отношение степени превращения веществ в реакциях гидрирования, изомеризации и расщепления к одинаковому числу атомов Мо или W на поверхности катализатора, условно принимая во всех случаях мономолекулярный слой. Полученные дан-. ные приведены в табл. 70. [c.265]


    Специфика адсорбции компонентов гетерогенно-каталитических процессов сказывается и на специфике соответствия катализаторов данной реакции, т. е. затрагивает вопросы их подбора. В случае катализатора на носителе (например, Pt на угле) последний играет роль адсорбционного резервуара для расположенных на его поверхности активных центров (атомов и кристаллов металла). Поэтому гидрирующие катализаторы на активном угле (уголь хорошо адсорбирует водород) высокоактивны в отличие от катализаторов Pt на силикагеле, который хорошо адсорбирует непредельные углеводороды и потому более подходит в качестве носителя Pt для обратного процесса — дегидрирования. [c.311]

    Носителем каталитической активности служит атомная (до-кристаллическая) фаза катализатора поверхность носителя выполняет, как правило, роль инертной подложки. [c.105]

    Таким образом, меняя носители или модифицируя их, получают ПЭНД с различной полидисперсностью. Это связано с преимущественной ролью различных реакций ограничения цепи, что и подтверждается перераспределением макромолекулярной ненасыщенности и числа ответвлений у ПЭНД, полученного с катализаторами на, носителях и без них (см. табл. 3.1). [c.99]

    Синтез катализатора и роль носителей 89 [c.236]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со, А ). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. На роль носителей бифункциональных катализаторов указывалось выше. [c.419]

    Д,алее излагаются основные принципы работы с катализаторами и методы их приготовления. Катализаторы на носителях. Роль носителей в катализе. Изменение активности катализаторов в процессе работы. Утомление катализаторов. Отравление и промотирование. Различные точки зрения на механизм этих явлений. Блокировка и модификация активных центров. Различные методы и варианты регенерации катализаторов. Н [c.232]

    Как особый класс представляют цеолитсодержащие алюмосили-катные катализаторы крекинга нефтяного сырья, в которых главную роль играют кристаллические цеолиты, имеющие каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров так, что все полости связаны между собой. В 1 г цеолита имеется около 1020 полостей и 800 м поверхности, способной к ионному обмену на металлы. Цеолиты диспергируются в аморфной матрице, которая выполняет роль носителя с крупными порами, и при крекинге способствует первичному распаду высокомолекулярного нефтяного сырья и тем самым готовит сырье для последующих вторичных реакций на цеолите. [c.199]

    Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее она полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией. [c.202]

    Выбор носителя является одним из важных этапов разработки нанесенных катализаторов. Следует иметь в виду, что роль носителя в составе катализатора очень редко ограничивается функциями инертной подложки. Во многих случаях между носителем и наносимым на него активным веществом происходит определенное физико-химическое взаимодействие, приводящее к изменению каталитических свойств наносимого вещества. [c.27]

    Роль носителя в катализе. Промотирование катализаторов. Смешанные катализаторы. Применение электронного микроскопа для исследования катализаторов (Шехтер, Рогинский). [c.218]

    Действие света на твердое вещество не всегда ведет к фотохимической реакции. Часто освещенные тела не обнаруживают химических изменений, но действуют как источник эмиссии электронов. Так называемый фотоэлектрический процесс может иметь место под действием ультрафиолетового света, в результате чего происходит освобождение электронов. При некоторых каталитических реакциях эти свободные фотоэлектроны могут сообщать каталитическую активность и тогда каталитические реакции, в которых участвует свет, следует относить к фотоэлектрическим процессам. Механизм разложения перекиси водорода на платине, подвергаемой ультрафиолетовой радиации, был списан Ройтером следующим образом. Во время каталитического процесса электронные токи идут от неактивных участков платины к активным центрам, последние играют роль носителя для электронов и переносят их от молекул перекиси водорода, находящихся в неактивном поле, к молекулам, которые удерживаются неактивных центрах. У очень слабых или очень сильных катализаторов радиация может замедлять процесс, затрудняя передачу электронов, например, моле кулами перекиси водорода поверхности платины в других случаях радиация повышает активность каталитического агента. [c.73]


    Фосфорную кислоту применяют или в жидком виде - на твердом инертном носителе, например на пемзе, силикагеле, кварце, активном угле, или в виде специально приготовленного катализатора в смеси с кизельгуром. Фосфорная кислота на кизельгуре представляет собой комплексное соединение, активным началом в котором является фосфорная кислота, а кизельгур играет роль носителя с высокоразвитой пористой поверхностью. Катализаторы этого типа транспортируют в герметически закрытых бочках, хранить их необходимо в сухих отапливаемых в зшлний период помещениях, так как они не терпят сырости и холода. Влага, попадающая из воздуха, нарушает структуру катализатора и приводит к потере каталитической активности. При низких температурах происходит разрушение комплекса, в результате вымораживания снижается содержание влаги, наблюдается механическое разрушение катализатора и потеря его каталитической активнос- [c.40]

    Отравление металлических и неметаллических, главным образом оксидных, катализаторов было рассмотрено в разделах 2.1.1 и 2.1,2. Многие катализаторы являются по своей природе смешанными, поскольку представляют собой очень маленькие жристаллиты металла на носителе с развитой поверхностью. В качестве носителей обычно используют чистые оксиды. Кроме увеличения поверхности катализатора роль носителя сводится к стабилизации металла в мелкодисперсном состоянии. В большинстве случаев носитель инертен по отношению к компонентам реакционной смеси. В других реакциях он, наоборот, активен в некоторых каталитических превращениях. Примером такого бифункционального катализатора являются катализаторы платформинга [2.10, 2.11]. Такие катализаторы содержат обычно от 0,3 до 1% (масс.) платины на у- или т]-оксиде алюминия. Составляющие процесс платформинга реакции дегидрирования и [c.27]

    Роль носителя в реакции гидрогенолиза циклопентана и его простейших гомологов в присутствии различных платиновых катализаторов исследована в работах [143, 151, 189—191]. Оказалось, что селективность гидрогенолиза метил- и этилциклопентанов по связям а, б и в (см. с. 123) и соответствующие им значения кажущихся энергий активации (Е) в значительной мере зависят от носителя. Наиболее низкие энергии активации получены нри применении (10% Pt)/Si02 [190], наиболее высокие —на (20% Pt)/ [143, 151]. На Pt/ энергии активации гидрогенолиза метил- и этилциклопентанов, а также самого циклопентана довольно близки (155—163 кДж/моль). При использовании в качестве носителей AI2O3, SIO2 и алюмосиликата энергии активации гидрогенолиза различаются сильнее метилциклопентан < этилциклопентан < циклопентан. Предполагают [190], что найденная закономерность связана с заметным проявлением электронодонорных свойств алкильных радикалов под влиянием кислотных свойств оксидных носителей использованных бифункциональных катализаторов. По-видимому, в случае СНз-группы это влияние сказывается сильнее, чем для СаНз-группы, что и приводит к найденным последовательностям энергий активации. Энергии активации гидрогенолиза этих трех углеводородов в присутствии названных катализаторов, а также относительные выходы продуктов гидрогенолиза [c.140]

    Роль дегидроизомеризации алкилциклопентанов при образовании аренов специально исследовалась на примерах метил-, этил- и 1,2-диметилциклопентанов [49]. В присутствии Р1/А120з эти углеводороды дегидроизо-меризуются с образованием аренов, подвергаются гидрогенолизу в алканы и частично дегидрируются с образованием циклопентенов и циклопентадиенов. Из метилциклопентана и н-гексана образуются примерно одинаковые количества бензола. Из 1,2-диметилциклопентана выход толуола значительно ниже, а из этилциклопентана примерно в два раза выше, чем из н-гептана. Таким образом, очевидно, что алкилциклопентаны в изученных условиях (Pt/AbOa, 350—520 °С) являются промежуточными продуктами при ароматизации н-алканов. При этом несомненно следует учитывать то обстоятельство, что вклад циклопентанового пути ароматизации алканов в значительной степени зависит от применяемого катализатора (кислотность носителя, природа модификаторов, дисперсность и содержание активной металлической фазы) и условий проведения опыта (температура, газ-носитель, давление и т. д.). [c.195]

    Г. К. Боресков указывает на стабилизирующую роль носителя в бифункциональном катализаторе, которая обусловлена химическим взаимодействием с металлом, проявляющимся в тем большей степени, чем дисперснее металл. Это означает, что каталитические свойства таких систем уже не определяются только металлом, а долхсны относиться ко всей химической системе металл - носитель и зависеть от природы носителя и характера его взаимодействия с металлом [51]. [c.41]

    Сильное улучшение селективности наблюдали при добавлении к описанному выше катализатору небольших количеств Р2О5. При этом были получены выходы малеинового ангидрида, равные 8С% по мере увеличения степени превращения выход уменьшается очень медленно, а это значит, что одновременно увеличиваются как отношение У1/У2, так и отношение у /Уз [1481. В патентной литературе подчеркивается роль носителя катализатора обычно это а-А1гОз, характеризующаяся небольшой величиной поверхности микропористости следует избегать. Повышение активности контакта можно вызвать также путем добавки небольших количеств окислов элементов УП1 группы (N1, Со) [1491. [c.175]

    Спекание. При высоких темиературах, применяемых в реакторах Синтол , на катализаторах образуются углистые отложения. Эти отложештя имеют большую площадь поверхности, так как общая поверхность, измеренная методом БЭТ, во время эксплуатации катализатора увеличивается. По этой причине трудно решить, в какой мере именно спекание катализатора обусловливает снижение активности. При более низких температурах в реакторах с неподвижным слоем катализатора углистые отложения невелики или вообще отсутствуют, поэтому здесь ситуация проще. Удельная поверхность свежеприготовленного катализатора обычно составляет около 200 м /г, а примерно через 100 сут работы она убывает до 50 м /г. Возросшая резкость рентгенограммы использованного катализатора указывает на рост его кристаллитов. Если приготовлен катализатор с более низким содержанием ЗЮд, то скорость снижения его активности оказывается выше. Это согласуется с представлениями о роли носителей. Считается, что оксид кремния стабилизирует мелкие кристаллиты карбида железа. [c.176]

    Y-AI2O3 получают прокаливанием А1(0Н)з при 500—700°С. По прочности он уступает корунду, но является более пористым материалом. Объем его составляет 50—70%, удельная поверхность — 120—150 м /г. Y-AI2O3 выступает не только в роли носителя, но и катализатора в ряде процессов конденсации, дегидратации, гидролиза (см. табл. 1). Известно большое число способов приготовления активной Y-AI2O3 [115—119]. Рассмотрим некоторые из них. [c.138]

    Интерес представляют также наблюдения о роли носителей. Так, А1гОз удерживает значительно больше порфирина, чем 8102. Очевидно, поэтому 8Ю2 уменьшает чувствительность катализатора к отравлению. Но с увеличением количества 810г глубина гидрообессеривания понижается. При изучении кинетики и влияния [c.258]

    Валитов Н.Х. Исследование в области сорбции реагентов и изучение роли носителя катализаторов гидрирования и окисления Автореф.. .. дис. докт. хим. наук М., 1978. С. 46. [c.94]

    Из всего возможного многообразия наибольшее применение нашли (и стали традиционными) алюмокобальтмолибденовый (АКМ) и алю-моникельмолибденовый (АНМ) катализаторы гидроочиетки. Гидрирующими компонентами являются кобальт, никель и молибден, находящиеся в свежем катализаторе в виде оксидов (СоО, NiO, МоО,), нанесенных на активный оксид алюминия (у-А1,0, или т)-А1,0,), выполняющий роль носителя. Кроме оксида алюминия, в качестве носителей используют также активные аморфные и кристаллические алюмосиликаты (цеолиты). [c.201]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    В создании иоверхностно-активных структур в гетерогенном катализе важную роль играет координация. Активность окионо-хромовых катализаторов иа носителях в реакции полимеризации этилена лропорциональна. концентрации ионов Сг +. Активными центрами полимеризации служат ионы Сг5+ в тетраэдрической ко- [c.170]

    Согласно либиховскоп гипотезе молекулярных ударов катализатор передает свои колебания реагирующему веществу. Ю. Либих видел общую причину катализа в повышении активности реагентов. Он различал химические соединения, неодипаковые по своей прочности. Устойчивые тела разлагаются нод влиянием теплоты па соединения с активными телами, а неустойчивые постепенно разлагаются сами. Но постепенно идущее разложение делается внезапным при соприкосновении с тонко распыленным углем, платиной и другими твердыми веществами, причем эти вещества не претерпевают при этом никакого изменения. Опи играют роль носителей усиленного движения составных частей , которые при соприкосновении передаются частицами реагентов. [c.353]

    На стереохимию гидрирования могут оказывать влияние функ-щюнальные заместители в восстанавливаемом соединении, способные взаимодействовать непосредственно с катализатором или носителем ( якорный эффект). Так, гидрирование двойной связи в 1 -бензилоксикарбонил-4-пропилиденпирролидин-2-карбоновой кислоте на платиновом катализаторе приводит в основном к образованию г/г/с-изомера. Следовательно, эта непредельная кислота в ходе реакции адсорбируется на катализаторе большей частью таким образом, что ее карбоксильная группа обращена в сторону, противоположную поверхности катализатора. Чтобы изменить положение молекулы кислоты на катализаторе при адсорбции и тем самым стереонаправленность гидрирования, используют в качестве носителя катализатора не нейтральный пористый материал, как обычно, а основную ионообменную смолу. Благодаря солеобразованию с такой подложкой карбоксильная группа начинает играть роль своего рода якоря, ориентирующего адсорбирующуюся молекулу карбоксильной группой вниз, к поверхности катализатора. Теперь уже атом водорода, перемещаясь от катализатора к С -атому гетероцикла, образует с ним связь с той стороны, в которую обращена карбоксильная группа, т. е. занимает по отношению к ней /1/с-положение, тогда как про пильный заместитель оказывается в трапс-иоШ жении  [c.32]

    Исследование роли носителей прн использовании катализатора с Ti U [95, 98] показали, что, хотя пористая Структура влияет на активность катализатора, основным фактором, повышающим эффективность катализатора в полимеризации этилена, является химическая природа носителя. Так, активность титана в катализаторе Ti U на носителе MgO в 40 раз выше по сравнению с чистым Ti U, а на алюмосиликатном носителе — [c.89]

    Требования к оптимальной дисперсности и структуре катализаторов для ТЭ и органического катализа имеют суш,ественные различия. Наиболее четко это различие видно на примере нанесенных платиновых катализаторов. В органическом катализе для снижения расхода драгоценных металлов были созданы высокодисперсные платиновые катализаторы на носителях, обладаюш,ие благодаря большому разбавлению (0,1 — 1%) очень высокой удельной поверхностью (100—300 м г) и большой нагревостойкость ю. В электродах ситуация более сложная. Токообразующие реакции и транспорт веществ протекают в среде электролита, п кроме диффузионного торможения велика роль омических потерь. Для создания активных электродов в первую очередь необходима достаточно высокая удельная поверхность катализагора в единице объема, а не на единицу массы активной составляющей. Поэтому очень разбавленные нанесенные платиновые катализаторы найти широкого применения в ТЭ, по-видимому, не должны. Довольно жесткие требования предъявляются к электрической проводимости катализаторов. Для реализации в электроде возможно большей активности проводимость катализатора (активной массы) должна быть ие ниже эффективной проводимости электролита в активном слое, составляющей обычно 1 —10% проводимости свободного электролита. Необходимость снижения диффузионных потерь предъявляет вполне определенные требования к размеру и микропористости гранул катализатора и структуре сформированного активного слоя (см. 3.2). [c.132]

    Перспективными катализаторами полимеризации этилена и а-олефинов являются Т1-М -каталитические системы, содержащие электронодонорные добавки (аллиловый спирт, акриловая кислота, бутилхлорид, хлорбензол и др.). Эти системы относятся к нанесенным (в роли носителя выступает МеС1а). [c.858]

    Такие образцы могут найти широкое применение в качестве катализаторов и носителей каталитически активных веществ. Метод вытеснения воды органической жидкостью с успехом использован для получения широкого набора пористых структур других гидрофильных адсорбентов (титаносиликагелей, титаногелей, алюмосиликагелей, фер-ригелей, гелей гидроокисей никеля и магния) [204, 205, 208, 209]. Благодаря этому представилась возможность проведения систематических исследований по изучению роли геометрической структуры катализаторов и носителей в каталитическом процессе. Впервые осуществлен безавтоклавный способ получения аэрогеля [184, 199], представляющего собой ценный теплоизоляционный материал. [c.87]

    Значительный прогресс достигнут в понимании роли носителя в катализе. Кислотные свойства носителя имеют важное значение для определения активности и селективности катализаторов гидрогенизационной очистки от соединений серы и азота [3, стр. 84 и далее]. Регулирование этих свойств посредством приготовления смешанных оксидов и изменения состава оксидов представляет благоприятную возможность оптимизации каталитического процесса. Это может иметь особо важное значение для гидрогенизационной нитроочистки, когда скорость процесса лимитируется разрывом связи N—С. Поэтому, сила взаимодействия атома азота, находящегося в основании, с атомами поверхности может в итоге определять каталитическую активность в установившемся режиме (см. разд. 7.3.2). [c.225]

    Весьма вероятно, что при осуществлении в промышленном масштабе гидрогенизации и многих других реакций возникают многообразные и часто не распознанные диффузионные эффекты. Это может быть одной из главных причин, приводящих к различию результатов, получаемых в лабораторных и промышленных установках. Внутри-диффузионные ограничения могут играть важную роль даже при работе с очень мелкозернистым катализатором. Иначе говоря, коэффициент эффективности может быть значительно ниже единицы, что приведет к существенному ухудшению селективности. Пример такой ситуации, относящийся также к гидрогенизации жиров, приводит Коэнен [75]. Гидрирование проводилось над никелевыми катализаторами на носителе с размерами частиц 6—7 мкм. Катализатор со средним радиусом пор 2,7-10 м (27 А) дал значительно худшие результаты по сравнению с образцами, имевшими радиусы пор 3,4-10" и 6,6-10" м (34 и 66 А). Исходя из сферической формы молекулы, Коэнен определил диаметр молекулы триглицерида равным 1,5-10 м (15 А), что несколько выше половины среднего диаметра поры. Очевидно, что в рассмотренном примере определяющую роль играет скорость диффузии в порах, подобно тому как это происходит в молекулярных ситах. [c.121]

    Изучению роли носителей (подкладок) в формировании активных катализаторов окисления сернистого газа, аммиака, расщепления метилового спирта и других реакций посвящено большое число работ И. Е. Ададурова и его сотрудников (Д. В. Гернет, В. А. Дзисько, П. Я- Крайний и др.). Влияние носителя оценивалось по изменению энергии активации соответствующих процессов. Исследования показали, что применение носителя нельзя рассматривать как простой физический прием, позволяющий создать развитую поверхность и предохранить [c.8]

    Ададуров [2] пытался выяснить роль носителя в каталитических процессах. Он считает носитель не безразличной подкладкой для катализатора, а приписывает ему функцию деформатора и поляризатора атсмсв и молекул, изменяя при этом свойства последних. Предполагают, что деформирующее действие тем больше, чем меньше атомный радиус и чем выше валентнссть элементов, образующих носитель. С другой стороны, деформируемость катализатора тем больше, чем больше атомный радиус элементов, образуюш 1х катализатор, и чем меньше их заряд. Чем больше деформирующее действие носителя, тем больше изменения, происходящие в энергии активации. [c.124]


Смотреть страницы где упоминается термин Катализаторы роль носителя: [c.199]    [c.4]    [c.84]    [c.140]    [c.23]    [c.83]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатора носители



© 2025 chem21.info Реклама на сайте