Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы крекинга, структура

    По-видимому, не существует единого ясного и однозначного представления о взаимосвязи структуры катализатора крекинга и механизма реакции. Хотя на основании механизма реакции с участием ионов карбония можно удачно предсказать продукты, которые получаются при крекинге [1], структура промежуточных комплексов катализатор — углеводород и структура самого катализатора пока остаются определенными недостаточно ясно. Активность в реакциях крекинга приписывалась кислоте Бренстеда [2], кислоте Льюиса [3] и другим образованиям. Независимо от приписываемой катализатору крекинга структуры в большинстве случаев при обсуждении механизма было принято указывать над стрелкой уравнения присутствие катализатора или же показывать образование комплекса катализатор углеводород только в самом общем виде. [c.631]


    Природные катализаторы крекинга. Структура и свойства кат-ров, [c.100]

    Увеличение радиуса пор. Гранулы катализатора имеют поры разных диаметров. Относительно крупные поры рассматриваются как артерии или каналы к порам меньшего диаметра. С увеличением количества крупных пор внутренняя поверхность гранул катализатора становится более доступной для молекул кислорода воздуха. Скорость выхода из гранул молекул продуктов сгорания при этом также возрастает. Недостаточная механическая прочность катализаторов крупнопористой структуры является препятствием на пути использования их в современных системах крекинга [25]. [c.45]

    Химические Характеристики и структура катализаторов крекинга. Скорость реакций и избирательность в порах катализатора. [c.418]

    Структура и спекаемость катализаторов крекинга и относящихся к ним веществ. [c.418]

    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]

    Селективная способность — одно из наиболее замечательных свойств цеолитов. В отличие от обычных катализаторов, цеолиты имеют два типа пор одни определяются размерами пор кристалла цеолита, другие — внутрикристаллической системой, существующей и в промышленных катализаторах крекинга. В зависимости от кристаллической структуры и формы пор цеолиты обеспечивают высокую селективность (избирательность) каталитического крекинга. Например, цеолиты с маленькими порами (4 и 5 А для типа А) эффективны в реакциях, в которых участвуют реагенты с небольшими размерами молекул такие цеолиты избирательно действуют только на пропилен, если, например, он находится в смеси с изобутиленом. При селективном крекинге смеси парафиновых углеводородов на цеолитах, размер пор которых ненамного превышает 5 А, крекинг изопарафинов незначителен. При каталитическом крекинге с использованием цеолитов типа X и У, диаметр пор которых от 9 до 10 А, углеводородные молекулы частично крекируются на внешней поверхности кристалла цеолита, а образующиеся фрагменты подвергаются дальнейшему крекингу внутри полостей. [c.101]


    Изучение процессов па зерне катализатора необходимо для создания эффективных каталитических систем. Расчеты химического нроцесса на зерне катализатора проводят на основе решения уравнений балансов масс компонентов и тепла. Поскольку, однако, ряд коэффициентов, входящих в уравнения балансов, определить одновременно крайне сложно, рассмотрим методы расчета для таких случаев, когда на основной химический процесс влияет ограниченное число физических явлений например, только внешний или только внутренний транспорт. Далее приведем универсальный итерационный метод расчета процессов в неоднородно-пористом зерне сложного катализатора и проиллюстрируем его применение для определения оптимальной структуры и состава катализаторов крекинга и гидрокрекинга. [c.267]

    Изложенная модель использована для анализа процессов нефтепереработки различного сырья в платиновых и цеолитсодержащих катализаторах [14]. Результаты расчета и эксперимента для катализаторов крекинга сопоставлены в табл- У1П-1. Из таблицы видно, что для различных размеров зерен катализатора, при различном содержании цеолита и для различного сырья результаты расчета и эксперимента согласуются удовлетворительно, что обосновывает использование предложенной модели для определения оптимальной пористой структуры. [c.289]

    Для приготовления катализаторов крекинга используют цеолиты типа X, имеющие х = 2,2—3,0, и типа V, у которых х = = 3,1—6,0. Эти цеолиты имеют кристаллическую структуру [c.212]

    По структуре скелета синтетические алюмосиликатные катализаторы делятся на аморфные и кристаллические. Последние появились лишь в шестидесятых годах. Высокая активность, селективность и стабильность способствовали быстрому распространению кристаллических, или цеолитсодержащих, катализаторов крекинга. [c.12]

    Действие высокой температуры и водяного пара на цеолитсодержащие катализаторы крекинга совершенно иное, чем их действие на аморфные алюмосиликатные катализаторы. Цеолитсодержащие катализаторы обладают высокой стабильностью при термической и термопаровой обработках. В режимах термопаровой обработки, когда начальная активность аморфных катализаторов снижается вдвое, активность некоторых цеолитсодержащих катализаторов даже несколько повышается. Это объясняется высокой стабильностью кристаллического каркаса цеолитного наполнителя. Ниже приведены максимальные температуры, при которых структура цеолитов сохраняется после прокаливания сухим воздухом в течение 3 ч [23]  [c.60]

    Катализаторы крекинга делятся на две группы природные и синтетические. Первыми природными катализаторами были различным образом обработанные природные глины. Глины типа флоридина обладают достаточной активностью даже без предварительной обработки и нуждаются лишь в формовании в частицы определенных размеров и формы. В отличие от этих глин, бентонитовые требуют предварительной обработки — активации. Активация осуществляется кислотами или некоторыми солями (сульфат алюминия, хлорид аммония), В результате такой обработки с поверхности катализатора удаляются избыточные катионы металлов, развивается пористая структура. Последующее прокаливание при 450—500° С приводит к удалению гигроскопической и частично структурной воды и дальнейшей полимеризации алюмосиликата. [c.230]

    Указанный метод состоит в том, что носитель (сорбент) растворяется в расплаве ванадатов щелочных металлов, меняя ири этом свою макроструктуру. Это было установлено при создании износоустойчивого ванадиевого катализатора КС для окисления сернистого ангидрида во взвешенном слое. Этот катализатор был получен путем пропитки носителя — алюмосиликатного катализатора крекинга — раствором солей ванадия с последующей его термической обработкой [89—94, 147—149, 153]. Как известно, алюмосиликатный катализатор крекинга — материал, имеющий вполне определенную, сформировавшуюся глобулярную пористую структуру [84, 122]. Радиус большинства иор составляет единицы и десятки ангстрем. При прокаливании пропитанного соединениями ванадия (например, КУОз) алюмосиликата, структура его изменяется следующим образом радиус иор увеличивается на 1—3 порядка при пропорциональном уменьшении удельной поверхности суммарный же объем изменяется очень незначительно. Результаты, свидетельствующие о трансформации структуры алюмосиликата, представлены на рис. 33. Данные отражают средние результаты многочисленных серий опытов. [c.86]

    Алюмосиликатные катализаторы приготавливаются из природных газов или синтетическим путем. Синтетические алюмосиликатные катализаторы по своей структуре делятся на аморфные и кристаллические (цеолитсодержащие). Цеолиты имеют ряд преимуществ по сравнению с аморфными алюмосиликатами более активны, селективны, устойчивы при высоких температурах (табл. 7.22). Они отличаются также способностью к легкому обмену катионов, что позволяет без особых сложностей получать их в виде наиболее активных форм (кальциевая, магниевая, редкоземельная и др.). Однако на практике цеолиты в чистом виде как катализаторы крекинга не используются. Цеолитсодержащие катализаторы представляют собой аморфные (природные или синтетические) алюмосиликаты, в которые введено 10—25% цеолита. [c.405]


    Первым рукотворным катализатором крекинга стал алюмо-силикатный формованный катализатор в виде шариков диаметром около 3 мм. В основе его был аморфный алюмосиликат, естественная пористость которого поначалу устраивала нефтепереработчиков. На смену ему пришел микросферический алюмосили-катный катализатор, частицы которого измерялись микронами. Этот пылевидный контакт положил начало использованию в каталитическом крекинге технологии взвешенного (его называют также кипящим или псевдоожиженным) слоя. Технологические усовершенствования позволили за короткий срок реализовать все преимущества, которые могли обеспечить алюмосиликатные катализаторы в части повышения селективности. А дальше дело стало из-за невозможности регулировать и определенным образом упорядочить структуру алюмосиликата. [c.83]

    Цеолиты — это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15—20%. [c.83]

    Цеолиты, используемые в составе катализаторов, должны иметь высокую активность и селективность в крекинге нефтяных фракций, стабильность при высокотемпературных воздействиях в среде воздуха и водяного пара, необходимые размеры входных окон в полости структуры. Таким требованиям в наибольшей степени соответствуют цеолиты типа X и V в редкоземельной обменной форме или в ультрастабильной форме, и поэтому они находят преимущественное применение при синтезе катализаторов крекинга. Матрица, в качестве которой применяют синтетический аморфный алюмосиликат, природные глины с низкой пористостью и смесь синтетического аморфного алюмосиликата с глиной (полусинтетическая матрица), выполняет в цеолитсодержащих катализаторах ряд важных функций [99, 113]  [c.97]

    В аморфных катализаторах носителем расщепляющих свойств, как правило, является аморфный алюмосиликат, структура и свойства которого аналогичны алюмосиликатам, используемым в некоторых катализаторах крекинга. [c.252]

    Как особый класс представляют цеолитсодержаш,ие алюмо — силикатные катализаторы крекинга нефтяного сырья, в которых главную роль играют кристаллические цеолиты, имеющие каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров так, что все полости связаны между собой. В 1 г цеолита имеется около 10 полостей и 800 поверхности, способной к ионному обмену на металлы. Цеолиты диспергируются в аморфной матрице, которая выполняет роль носителя с крупными порами, и при крекинге способствуют первичному распаду высокомолекулярного нефтяного сырья и тем самым готовит сырье для последующих вторичных реакций на цеолите. [c.84]

    Матрица катализаторов крекинга выполняет функции как носителя — поверхности, на которой затем диспергируют основной активный компонент — цеолит и вспомогательные добавки, так и слабого КИСЛ01Н0Г0 катализатора предварительного (первичного) крекирования высокомолекулярного исходного нефтяного сырья. В качестве материала матрицы современных катализаторов крекинга преимущественно применяют синтетический аморфный алюмоси — ликат с высокой удельной поверхностью и оптимальной норовой структурой, обеспечивающей доступ для крупных молекул креки — ру< мого сырья. [c.109]

    Реакционная способность углерода сильно зависит от его структуры и наличия в его составе примесей. Как показали эксперименты, проведенные в работе [3.49] с катализаторами крекинга, наибольшее влияние на выжиг коксовых отложений в диффузионной области горения оказывает добавление железа. На образце катализатора, содержащем 0.8% железа, отложенный кокс сгорал в два раза быстрее, чем на исходном катализаторе. В кинетической области присутствие железа мало влияет на скорость регенерации катализатора каталитического крекинга. Сгорание кокеа на образце, содержащем железо, обусловлено характером распределения кокса по сечению частицы катализатора. На таком катализаторе кокс в основном откладывается в периферийных областях частицы, а если учесть, что у используемого нами железоокисного катализатора объем пор и поверхность значительно меньше, чем у катализаторов крекинга, то необходимая глубина проникновения кислорода в зону горения уменьшается, в результате должно происходить ускорение выгорания отложений. [c.76]

    Катализатор крекинга для получения бензина описан в литс-ратуре . Растворы силиката натрия и сульфата алюминия смешиваются и разбрызгиваются в слое масла, где они образуют шарики. Эти шарики после обработки горячей водой (чтобы создать нужную структуру) подвергают реакции обмена с замещением натрия алюминием, промывают для удаления растворимых солей и затем сушат. Далее их выдерживают некоторое время при высокой температуре для снятия напряжений, возникающих в процессе сушки. На рис. 1Х-7 изображена упрощенная технологическая схема процесса. [c.322]

    Цеолитсодержащие катализаторы (цеолиты) характеризуются сочетанием высоких адсорбционных и каталитических свойств, большой избирательной способностью и стабильностью структуры, поэтому в настоящее время большое значение приобретают синтетические катализаторы с добавками цеолитов. При введении пх, например, в состав алюмосиликатного катализатора крекинга значительно повышается его активность, избирательность, адсорбционная способность и паротермостабильность. Цеолиты могут быть получены как шариковые, так п микросферические. [c.14]

    Наименьшая вязкость наблюдается при нсевдоЬжвнсенви легких частиц (например, полистирольных размером 250 мкм вязкость около 0,1 Па с). Вязкость слоев легких частиц неправильной формы (пробка, катализатор крекинга) невоаможно определить, так как в этом случае ила трения между частицами значительно превышает силу тяжести, и диаграмма сдвига сильно искажена. При очень низких скоростях сдвига структура слоя [c.249]

    Образование карбоний-иона (разд. IV.2) на кислотных катализаторах крекинга, например на Si02—AI2O3, и структура этих катализаторов (разд. И.З. Б) уже обсуждались выше. [c.123]

    Основными характеристиками катализаторов крекинга являются химический состав, насыпная плотность, пористая структура, стабильная активность, фракционный состав и прочность. Испытание отечественных микросферических катализаторов осуществляют по ОСТ 38.01161—78, зарубежных — по стандартам ASTM или фирм-разработчиков. Лучшие микросферические катализаторы характеризуются следующими свойствами  [c.114]

    Созданию высокоселективных, активных и стабильных катализаторов крекинга способствует также оптимизация состава и поровой структуры матрицы. В качестве матрицы чаще всего используют аморфный алюмосиликат с диаметром пор > 500A (50 нм), так называемы мезопор. При этом большие молек улы асфальтенов, смол и фракций, выкипающих выше 500 °С, подвергаются в крупных порах матрицы на опротонных центрах легкому крекингу с получением продуктов с молекулами меньших размеров без образования заметных количеств газа и кокса. Соотношение свойств матрицы и цеолита должно быть таким, чтобы на матрице подвергались крекингу фракции, кипящие выше 500 °С с образованием фракций тяжелого газойля, а на цеолите - фракции, кипящие в пределах 300-500 С с образованием бензина. Схематически это.можно изобразить следующим образом  [c.111]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    Все катализаторы крекинга различаются по структуре, форме, размерам частиц, методам приготовления, физико-химическим свойствам, уровню активности, селективности, стабильности, но все они обладают кислотными свойствами, что является основой их каталитической активности. Кроме того, практически все катализаторы крекинга содержат алюмосиликатные системы. Поэтому в настоящей монографии термин алюмосиликатные катализаторы относятся ко всем типам катализаторов крекинга, включая природные и синтетические, свежие и равновесные, аморфные и кристаллические (цеолитсодержащие), микросферические и щари-ковые и др. [c.8]

    Глины тина коалинита и галлуазита также применяют в качестве катализаторов крекинга. Эти глины состоят из двухслойной решетки чередующихся слоев октаэдров А1(0,0Н)б и тетраэдров 51(0, ОН)4, связанных между собой общими атомами кислорода. Структура галлуазита, представленная на рис. 5, помогает объяснению его свойств и, в первую очередь, отсутствия внутрикристаллического набухания, легкости частичного обезвоживания и реакционной способности кремния и алюминия [11]. Эти глины приме- [c.11]

    Изменение в зависимости от условий спекания активности алюмосиликатных катализаторов, пористой структуры, удельной поверхности изучалось рядом авторов. В работе [56] проводили крекинг фракции 200—400 °С ка алюмосиликатных катализаторах с разным диаметром пор и пришли к выводу, что поверхность пор диаметром 5—7 А и менее не используется в реакциях крекинга сырья из-за эффекта ультрапористости. Активность единицы доступной поверхности катализатора оказалась приблизительно постоянной. [c.41]

    Нами исследовались изменения структуры пор и удельной поверхности цеолитсодержащих катализаторов крекинга при закоксовании, а также характеристики кокса, вьщеленного с поверхности катализатора [28, 29]. Как установлено, преобладающая часть кокса на катализаторах крекинга представляет собой сферообразные частицы. Их размер достигает 30 нм и мало зависит от содержания образующегося кокса при его изменении в пределах 0,4 до 7,0% (масс.). Возможность образования крупных глобул получает логическое объяснение, если допустить, что углеводороды и продукты их уплотнения могут мигрировать по поверхности катализатора. Такое допущение основывается на том, что для миграции требуется существенно меньшая энергия, чем для перехода из адсорбированного состояния в газообразное (примерно на величину, равную теплоте испарения). Поскольку промежуточные продукты реакций уплотнения способны частично десорбироваться в газовую фазу, естественно, они способны и к диффузии по поверхности. Определенным подтверждением этого является ранее отмеченный факт пла-сти>шого состояния кокса, выделенного из катализатора крекинга, при температурах 450-500 °С. Предположение о диффузии было подтверждено также исследованиями по изучению влияния термообработки в токе гелия на распределение кокса по грануле аморфного алюмосиликатного катализатора крекинга. Как установлено, после прогрева наблюдается выравнивание распределения кокса. [c.10]

    Характеризуя теплоноситель, необходимо указывать его структуру частицы теплоносителя могут быть перистыми или без пор. Чем больше пористость, тем при данной плотности вещества частиц меньше их насыпная масса, т. с. масса единицы объема. С гюристостью частиц связано также понятие их кажущейся плотности. Под этим термином понимается плотность, при определении которой в объем частицы включен объем, занимаемый порами. Для непористого вещества кажущаяся плотность совпадает с истинной, т. е. с плотностью самого вещества для пористых веш,сств эти два показателя могут сильно различаться. Так, для типичных алюмосиликатных катализаторов крекинга кажущаяся плотность составляет около 1,2—1,3 г1см истинная плотиость равна 2,2—2,4 г/сл , а насыпная масса не превышает 0,7—0,8 г/см . [c.72]

    Цеолиты обладают исключительно большой активностью. Поэтому их применяют в смеси с аморфными катализаторами. В цеолитсодержащих катализаторах крекинга обычно содержится 15— 20% (масс.) цеолиМв. Но даже и в таком виде они значительно превосходят (по показателям работы установки) аморфные катализаторы, и применение их дает значительный экономический эффект. В промышленной практике применяют алюмосиликатные катализаторы. (в основном цеолитсодержащие) — микросферические или размолотые — порошкообразные — для процессов флюид или шарообразные размером 3—5 мм — для процессов с движущимся слоем катализатора. Учитывая непрочность, высокие стоимость и активность цеолитов, а также для обеспечения легкого проникновения молекул сырья к зернам цеолита и отвода продуктов крекинга и подачи воздуха к коксу, отложившемуся на катализаторе (с целью его окислительной регенерации), в цеолит вводят механически прочную матрицу. Хорошими матрицами служат синтетические аморфные алюмосиликаты, структура которых характеризуется широким диапазоном размеров пор. [c.55]

    Синтетические цеолиты типа X и по своей кристаллической структуре являются аналогами природного минерала фожазита. Последовательное замещение обменных катионов этих цеолитов ионами аммония и редкоземельными ионами дает возможность получить при последующем дезамминировании и дегидратации очень активный катализатор крекинга /9, 14, 15/. [c.51]

    Коксообразование. Кокс, отложившийся на катализаторе крекинга, состоит из агломератов с псевдографитовой структурой и [c.142]

    Возникающий первоначально золь кремнекислоты (или алю-мосиликазоль) коагулирует и образует гель (исходную коагуляционную структуру). В присутствии пересыщенной дисперсионной среды происходит срастание частиц геля — образование между ними фазовых контактов, т. е. развитие конденсащюнной структуры. Именно на таких процеа ах основано получение многих катализаторов, носителей и сорбентов, например катализаторов крекинга нефти. Конденсационное структурообразование твердеющих этилсиликатов используют при изготовлении форм для точного литья. [c.385]

    Многие из перечисленных выше целей достигается введением природных глин в структуру катализатора крекинга. Природный глинистый материал стоек к дезактивации под действием сухого нагрева или пропаривания, которые без таких добавок вызывают уменьшение размера пор, уменьшение удельной поверхности и увеличение плотности катализатора. Введение синтетических компонентов повышает активность и избирательность катализатора. Кроме того, становится возможным выпускать катализатор в более выгодной микросферической форме, что позволяет повысить стойкость к истиранию и, следовательно, уменьшить потери с дымовыми газами. Важным преимуществом полусиптетических катализаторов является и дешевизна их по сравнению с синтетическими алюмосиликатами. [c.177]

    Для других парафиновых углеводородов природа катализатора также сильно влияет на ход образования продуктов уплотнения и других веществ, причем это влияние здесь более разнообразно, чем при превращении метана, так как оно сводится не только к изменению условий частичного распада продуктов уплотнения (дегидрогенизация, деметанирование, отщепление различных других групп и фрагментов), но и к изменению условий образования промежуточных мономеров поликонденсации. Например, при введении металлических катализаторов, активных для дегидрогенизации, или введении специфических катализаторов крекинга облегчается образование промежуточных олефинов. Следовательно, будет облегчаться и получение продуктов уплотнения по низкотемпературному механизму. Введение специфических катализаторов ароматизации будет способствовать образованию продуктов уплотнения по высокотемпературному механизму. Кроме того, при поликонденсации олефинов и ароматических углеводородов природа катализатора может влиять и на структуру самого процесса поликонденсации, изменяя его элементарные стадии, а это может повлиять на состав и строение получающихся продуктов уплотнения. [c.183]

    ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ КАТАЛИЗАТОРА КРЕКИНГА, ПОЛУЧАЕМОГО ИЗ АСКАНСКОГО СУББЕНТОНИТА [c.98]

    Исследование кристаллической структуры катализаторов крекинга нефтяных фракций, получаемых при кислотной активации бентонитовых глин, представляет значительный интерес с точки зрения изучения процессов, происходящих при кислотной активации бентонитовых глин, а также при выяснении природы каталитической активности этих катализаторов. В настоящей работе представлены результаты исследования кристаллической структуры катализатора крекинга, полученного нри сернокислотной активации асканского суббентонита. [c.98]


Смотреть страницы где упоминается термин Катализаторы крекинга, структура: [c.114]    [c.145]    [c.11]    [c.262]    [c.96]    [c.281]    [c.323]    [c.342]   
Гетерогенный катализ в органической химии (1962) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы крекинга

Катализаторы структура



© 2024 chem21.info Реклама на сайте