Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение оптимальной структуры катализатора

    В процессе приготовления катализатора по разным причинам могут возникнуть трудности в приготовлении катализатора с заданной пористой структурой. Поэтому представляет интерес общая зависимость селективности и объемной производительности катализатора или всего реактора от параметров пористой структуры и размеров зерна. При этом определение оптимальной пористой структуры следует рассматривать как часть общего исследования взаимосвязи между пористой структурой катализатора и его объемной производительностью или селективностью. [c.120]


    Изучение процессов па зерне катализатора необходимо для создания эффективных каталитических систем. Расчеты химического нроцесса на зерне катализатора проводят на основе решения уравнений балансов масс компонентов и тепла. Поскольку, однако, ряд коэффициентов, входящих в уравнения балансов, определить одновременно крайне сложно, рассмотрим методы расчета для таких случаев, когда на основной химический процесс влияет ограниченное число физических явлений например, только внешний или только внутренний транспорт. Далее приведем универсальный итерационный метод расчета процессов в неоднородно-пористом зерне сложного катализатора и проиллюстрируем его применение для определения оптимальной структуры и состава катализаторов крекинга и гидрокрекинга. [c.267]

    Необходимо проведение исследований по влиянию структуры катализатора на процесс закоксования и по определению оптимальной структуры катализатора. [c.249]

    В последнее время значительно возрос интерес к катализаторам новых геометрических форм - сотовых , блочных и т.д. [194]. Сопоставим их с целью определения оптимальной формы и размера слоя зерен в виде таблеток, колец, таблеток с несколькими отверстиями ( сотовые ) и в виде блоков со сквозными отверстиями. Сравним гидравлическое сопротивление слоев катализаторов указанных форм, обеспечивающих одинаковое превращение реагентов (одинаковую производительность). Предполагается, что удельная активность и пористая структура для зерен различной формы одинакова. [c.140]

    Таким образом, оптимальное заполнение поверхности катализатора водородом является результатом действия эффектов противоположного характера. При этом следует особо подчеркнуть, что структура катализатора формируется в ходе реакции в результате его взаимодействия с компонентами реакционной среды. Следовательно, на формирование структуры реально действующего катализатора в процессе обсуждаемых реакций влияют и углеводороды, и водород. Селективность действия подобных каталитических систем можно в определенных пределах регулировать путем подбора парциального давления водорода. [c.229]

    Возникает необходимость в более совершенных подходах к идентификации параметров пористой структуры катализаторов, установлению адекватных кинетических моделей адсорбции, определению оптимальных условий протекания процесса на зерне катализатора. Более совершенная стратегия принятия решений ориентирована на применение современных принципов автоматизации научных исследований в катализе, в частности на использование универсальной автоматизированной комбинированной установки для изучения свойств адсорбентов и катализаторов, рассматриваемых в гл. 4. [c.163]


    Изложенная модель использована для анализа процессов нефтепереработки различного сырья в платиновых и цеолитсодержащих катализаторах [14]. Результаты расчета и эксперимента для катализаторов крекинга сопоставлены в табл- У1П-1. Из таблицы видно, что для различных размеров зерен катализатора, при различном содержании цеолита и для различного сырья результаты расчета и эксперимента согласуются удовлетворительно, что обосновывает использование предложенной модели для определения оптимальной пористой структуры. [c.289]

    При выборе исходных компонентов можно пользоваться методом распознавания, облегчающим анализ литературных данных. После выбора компонентов возникает задача исключения части из них и определение оптимального соотношения остальных. Для решения этой задачи эффективно применение симплекс-решет-чатых планов. Симплекс-решетчатый план позволяет дать оценку каталитической смеси п компонентов, реализовав (1/2)(п—1)х X (п—2) композиций, но его применение следует рассматривать лишь как первый этап определения оптимального состава, поскольку сравнение производится при фиксированных (и не обязательно оптимальных) условиях приготовления и испытания. Уже на этой стадии целесообразно использование данных ранее выполненных кинетических исследований для придания катализатору эффективной пористой структуры и механической прочности. Сегодня известны и хорошо отработаны в лабораториях методы, позволяющие создавать катализаторы заданной структуры и пористости, регулируя режимы смешения, синерезиса, формования, сушки, активации. Предполагаемая величина константы скорости необходима для расчета структуры катализатора, исключающей диффузионные затруднения. [c.292]

    После выбора температуры в реакторе или на отдельных его участках можно приступить к определению оптимального значения параметра пористой структуры катализатора (в нашем случае радиуса пор). Задача заключается в том, чтобы нри заданной температуре определить такое значение радиуса пор ( ), которое обеспечивало бы максимально развитую внутреннюю поверхность катализатора при условии, что реакции протекают во внутрикинетическом режиме. [c.191]

    Повышение активности единицы объема, характеризующей промышленную ценность катализатора, достигается увеличением работающей поверхности. Это может быть обеспечено увеличением внутренней поверхности и созданием оптимальной пористой структуры катализатора, обеспечивающей высокую степень использования его внутренней поверхности. При одновременном протекании нескольких реакций изменение пористой структуры позволяет в определенных пределах регулировать и избирательность действия катализаторов. [c.139]

    Катализатор с активным компонентом в виде жидкой пленки на поверхности носителя. Активный компонент может находиться на поверхности твердого носителя в виде жидкой пленки, в объеме и на поверхности которой протекает реакция. В таком катализаторе реагенты диффундируют внутри жидкой фазы. Последовательность определения оптимальной пористой структуры такова  [c.80]

    Оптимальный означает наилучший . И когда говорят оптимальный режим , оптимальный реактор , - следует пояснять в каком смысле наилучший, какой показатель имеет наилучшее значение. Поскольку такие показатели могут быть различны объем реактора, степень преврашения, выход продукта, селективность процесса и т.д., то и задач определения оптимального режима также может быть несколько в зависимости от того, какой показатель оптимизируют Задача оптимизации возникает почти на каждом этапе разработки процесса и реактора. Например, при разработке или выборе катализатора определяют такую оптимальную пористую структуру, которая могла бы обеспечить максимальную скорость преврашения на зерне катализатора при выборе реактора подбирают оптимальные конструктивные размеры, обеспечивающие минимизацию общих затрат на него, а затем определяют оптимальные концентрации и температуру, обеспечивающие максимальное превращение или выход продукта и т.д. Оптимизация химических процессов и реакторов - многовариантная задача. [c.203]

    В огромном числе публикаций приводятся данные об удельной поверхности, объеме и размере пор и их распределении для многих адсорбентов и катализаторов. Характеристика дисперсных и пористых тел через численные значения этих параметров, введенная несколько десятилетий назад, сыграла свою положительную роль и во многих случаях дала возможность четко разделить влияние геометрии и химии поверхности на поведение адсорбентов и катализаторов. Однако известная формальность такой характеристики ограничивает дальнейшее развитие науки о дисперсных и пористых телах и ее приложений. Эту формальность усиливает почти исключительное применение лишь одной модели цилиндрических пор. С позиций такого описания трудно понять механизм образования пористости в том или ином конкретном случае, а значит и построить теорию направленного синтеза пористых тел также трудно понять механизм старения и изменений, вызванных разного рода воздействиями (химическими, механическими, термическими и гидротермальными). Теория прочности дисперсных материалов не может быть создана без данных об их строении. Определение оптимальной пористости структуры катализаторов и ее реализация в промышленных процессах также требуют точных знаний о геометрии пористого тела. [c.7]


    В случае применения этого определения оптимальной пористой структуры катализатора к высокотемпературным контактам его необходимо уточнить. Это связано с тем, что активность катализатора конверсии углеводородов не является фактором, лимитирующим интенсивность протекания процесса. Из опыта эксплуатации таких катализаторов в производственных условиях хорошо известно, что наибольшие производственные трудности связаны с недостаточной механической прочностью катализатора. [c.55]

    Научные основы определения оптимальной (с точки зрения достижения максимальной активности) пористой структуры катализатора давно разработаны. Однако найденное общее решение данной задачи не исключает необходимости упрощений в конкретных случаях применения известной методики. [c.56]

    А — выбор оптимального характера пористой структуры катализатора Б — определение радиусов пор (Л], п) бидисперсной пористой структуры В — определение радиуса пор (/ ) монодисперсной пористой структуры (пунктирными стрелками отмечены оптимальные радиусы пор). [c.57]

    Определение оптимального химического состава — еще пе окончательное решение задачи создания эффективного промышленного катализатора. Удельная активность, характеризующая активность единицы поверхности катализатора, —величина специфичная для данного химического состава — пе единственный фактор, определяющий производительность катализатора. Большинство катализаторов гетерогенно-каталитических процессов обладают высокоразвитой пористой структурой. Чтобы достичь активной поверхности внутри зерна, реагенты должны продиффундировать в поры катализатора. Поэтому диффузия реагентов и продуктов реакции внутри зерна катализатора является одной из стадий гетерогенно-каталити-ческих реакций. В работах [1, 2] было показано, что скорость гетерогенно-каталитической реакции в общем случае — результат взаимодействия диффузии реагентов внутри зерна катализатора и химической реакции на поверхности катализатора. Величина внутренней поверхности и скорость диффузии реагентов внутри зерна катализатора зависят от строения пористой структуры. Недостаточная скорость диффузии приводит к неполному использованию внутренней поверхности катализатора и, в конце концов, к снижению эффективности катализатора. Очевидно, регулируя пористую структуру, можно создать условия наиболее полного использования внутренней поверхности катализатора и обеспечить максимальную его производительность. [c.153]

    Конечной целью, к которой стремится исследователь, занятый разработкой нового промышленного катализатора, является создание такого катализатора, который обеспечил бы оптимальную работу химического реактора. Оптимальность реактора может быть определена посредством экономического критерия, в котором могут быть учтены многие факторы, влияюш ие на рентабельность процесса. В качестве критерия оптимизации могут быть использованы такие показатели, как производительность реактора по целевому продукту, селективность процесса, себестоимость одного или нескольких целевых продуктов, эксплуатационные затраты и т. д. Определение технологических и конструктивных параметров процесса, при которых критерий принимает оптимальное значение, является одной из задач математического моделирования. Как это следует из анализа макрокинетики гетерогенно-каталитических реакций, в число конструктивных параметров, подлежащих оптимизации, должны входить размер зерна и параметры, характеризующие пористую структуру катализатора. На эти переменные могут быть наложены ограничения, определяемые условиями эксплуатации или технологией производства катализатора. [c.185]

    Ввиду трудностей, с которыми приходится сталкиваться при определении оптимальной пористой структуры катализатора, целесообразно рассматривать ее решение, классифицируя реакции по типу. [c.187]

    Общие теоретические вопросы оптимизации химических реакторов подробно изложены авторами [51]. Поэтому мы ограничимся рассмотрением только тех вопросов, которые непосредственно связаны с определением оптимальных параметров пористой структуры и размера зерна катализатора. [c.187]

    На практике между пористостью и средним радиусом широких пор, образующихся при изготовлении катализатора, может существовать функциональная связь. Эта взаимосвязь, обусловленная технологией и свойствами веществ, может быть выражена уравнением (IX.6) и должна учитываться при определении оптимальной пористой структуры катализатора. Расчеты для такого случая проведены авторами [9]. Полученные результаты качественно совпадают с результатами, изложенными в настоящем параграфе. [c.193]

    Для сложных реакций оптимизация селективности промышленного процесса обычно играет первостепенную роль. Включение в число оптимизируемых переменных параметров пористой структуры и размера зерна катализатора для сложных реакций чрезвычайно усложняет задачу оптимизации химического реактора. В принципе аналитические методы (динамического программирования, принцип максимума Понтрягина) позволяют получить условия оптимальности для параметров, характеризующих пористую структуру катализатора. Однако факт, что для определения скорости реакции необходимо решать краевую задачу для системы дифференциальных уравнений 2-го порядка, определяющих изменение концентраций реагентов в зерне, делает бесполезными аналитические методы. [c.199]

    Определенный оптимальный химический состав твердого катализатора является обязательным, но недостаточным условием высокой каталитической активности. Необходимо создать довольно развитую внутреннюю поверхность твердого катализатора и определенную пористую структуру, облегчающую доступ реагирующих веществ к этой поверхности. Такая структура должна обладать определенной механической прочностью и устойчивостью в условиях работы контактных аппаратов. [c.15]

    При изыскании катализаторов основное внимание уделяется определению оптимального химического состава катализатора, обеспечивающего наивысшую активность и избирательность действия. Такой подход безусловно правилен, так как изменение скорости реакции обусловлено промежуточным химическим взаимодействием реагирующих веществ с катализатором. Однако при этом надо учитывать, что важными факторами, определяющими производительность единицы объема катализатора и контактного аппарата в целом, являются также пористая структура, величина и форма зерен катализатора. Вопросы оптимальной пористой структуры и ее образования при приготовлении катализаторов рассмотрены в статье В. А. Дзисько [c.68]

    В связи с этим очень тонкие поры практически не участвуют в реакции, хотя они и создают наибольшую удельную поверхность катализатора. Крупные же поры даже при большом общем объеме не образуют значительной поверхности. Таким образом, эффективность в данном процессе катализаторов на пористой основе зависит от распределения объема пор по эквивалентным радиусам. Поэтому в работах по выбору оптимального носителя параллельно с определением активности в полимеризации проводилось подробное изучение пористой структуры катализаторов и носителей. [c.282]

    Для определения оптимальной температуры и продолжительности синерезиса было проведено исследование зависимости характера пористой структуры микросферического катализатора и его каталитической активности от режима синерезиса. [c.440]

    Высокая каталитическая активность большинства промышленных катализаторов обусловлена большой величиной внутренней поверхности, достигающей сотен квадратных метров на грамм катализатора. Подобрав оптимальную внутреннюю структуру, можно изготовить активные катализаторы из материалов, обладающих умеренной активностью, отнесенной к единице поверхности. Однако одно увеличение внутренней поверхности катализатора не всегда приводит к росту его активности, а иногда может сопровождаться даже снижением выхода полезного продукта. Каждому контактному процессу отвечает определенная оптимальная внутренняя структура, зависящая от условий проведения процесса и скорости реакции. [c.81]

    Методы расчета скорости процессов переноса реагирующих веществ и тепла к внешней и внутренней поверхности зерен, установленные для процесса каталитического окисления двуокиси серы, методы определения оптимальной пористой структуры, а также формы и размера зерен катализатора могут быть использованы и при решении задач повышения активности промышленных катализаторов для других гетерогенно-каталитических реакций. [c.339]

    Изыскание катализатора, изучение на нем кинетики контактной реакции, выяснение роли процессов переноса реагирующих веществ к поверхности катализатора, определение оптимальной внутренней структуры и размеров зерен катализатора, вычисление оптимальных температур и оптимального состава газовой смеси, расчет перепада температур внутри зерен и между их поверхностью и газовым потоком, вычисление необходимого теплоотвода на разных стадиях контактирования, создание конструкции, обеспечивающей осуществление найденного распределения теплоотвода, и, наконец, проверка с помощью моделей равномерности распределения газа по сечению выбранной конструкции—Таков неполный перечень различных, но тесно связанных между собой задач, возникающих перед исследователем каждого контактного процесса. [c.340]

    Описанные трудности необходимо учитывать, анализируя каталитические процессы в пористых зернах. Однако при определении оптимальных структур катализаторов для промышленных процессов достаточно применение правильных однородных и упорядоченных разнороднопористых структур. Нарушения и усложнения этих структур приводят к снижению активностей единиц объема катализаторов. Перед теорией приготовления катализаторов возникает задача синтеза катализаторов с правильной пористой структурой. [c.474]

    В зарубежной литературе последних лет появились ряд публикаций, посвященных вопросам поиска оптимальной поровой структуры катализаторов для процессов каталитического гидрооблагораживання нефтяных остатков с применением математических методов, основанных на принципах диффузионной кинетики [60, 61, 62]. Наиболее интересные результаты получены на баае развиваемых в последнее время представлений о протекании основных реакций в режиме конфигурационной диффузии. Учитывая большое влияние на эффективность используемых катализаторов накопления в порах отложений кокса и металлов, необратимо снижающих активность катализаторов, наибольшее внимание уделяется анализу закономерностей изменения физико-химических свойств гранул катализатора в процессе длительной эксплуатации. В качестве примера рассмотрим результаты анализа влияния размера пор катализаторов на скорость деметаллизации нефтяных остатков [60]. Авторы предложили следующую зависимость для определения скорости деметаллизации с учетом физических свойств катализатора и времени его работь  [c.83]

    Однако на первом этапе исследований а тем более при расчетах по прогнозированию свойств катализатора, до проведения экспериментальных работ необходимые данные о параметрах моделей, естественно, не известны. Выход заключается в выработке стратегии исследования в виде многоэтапной итеративной процедуры принятия решений (ППР) 1) прогноз химического состава катализатора 2) по данным первого этапа и по имеюш имся аналогам получение начальных оценок скорости реакции 3) начальный ири-ближенный прогноз качественного характера о целесообразной текстуре катализатора (например, круннонористый с малой поверхностью, либо мелкопористый с развитой поверхностью и т. п.) 4) экспериментальная проверка результатов качественного прогноза текстуры катализатора 5) экспериментальное определение кинетики процесса на удовлетворяюш,ем требованиял катализаторе пз числа занрогнозированных 6) расчет оптимальной текстуры катализатора и ее приспособление к реальным возможностям синтеза катализаторов 7) выбор способа синтеза приемлемого катализатора 8) выбор способа формирования структуры катализатора 9) приготовление образца катализатора и его опробование. [c.121]

    Так, для определения оптимальных параметров пористой структуры можно предложить следующую последовательность расчетов. Целесообразно начинать расчет, ориентируясь на биди-сперсную структуру. Если расчеты имеют предварительный характер, то их можно выполнить безотносительно к технологии изготовления катализатора. Если при расчете ориентироваться на определенную технологию формирования гранул, то необходимо учитывать взаимосвязь между пористостью и средним радиусом пор, образующихся при формировании гранул. Пористость и средний радиус пор первичной структуры определяются технологией приготовления порошка, исходного для формирования гранул. Параметром оптимизации является относительная пористость X = е /е (ё — пористость узких пор, г — пористость катализатора). [c.168]

    Как показано в главе IX, конечной целью определения оптимальной температурной последовательности (ОТП) в реакторе является оптимальная селективность процесса в каждом сечении алпарата. Но на селективность сложной химической реакции, протекающей на пористом катализаторе, а также на производительность единицы объема катализатора можно оказать влияние, варьируя пористзгю структуру катализатора. В случае изменения пористой структуры катализатора при фиксированной температуре кинетика химической реакции будет переходить из одной кинетической области в другую, например, из внутрикинетической во внутридиффузионную или наоборот. Соответственно изменится и селективность сложной реакции. В общем случае для определения оптимальной области протекания реакции, с точки зрения селективности, необходимо решить внутридиффузионную задачу в виде системы уравнений [c.191]

    При алкилировании фенола сильноразветвленным олефином — тримером пропилена при тех же условиях образуются следующие структуры 2-, 4-, 2,4- и 2,4,6-замещенные. Данные по тримеру пропилена показьгаают значительную зависимость количественного состава алкилфенолов от молярного соотношения фенол олефины. При изменении молярного отношения фенол тример пропилена от 1 6 до 1 1 соотношение между трехзамещенными алкилфенолами и пара-алкил-фенолом (2,4,6- 4-) в продукте реакции меняется в среднем от 4 1 до 1 15. Следовательно, при данном катализаторе существуют оптимальные условия по молярному соотношегппо реагентов, обеспечивающие максимальный выход алкилфенола определенной химической структуры. [c.40]

    В реальных электродах снижение диффузионных по-терь достигается созданием активного слоя с изотропной системой гидрофильных или гидрофобных газоподводящих пор и уменьшением размера гранул катализатора, заполненных электролитом. Создание эффективной системы газовых пор приводит к значительному снижению эффективной удельной проводимости электролита о вплоть до (2—3%)0о, в то время как значение а для такого же электрода, полностью заполненного электролитом, достигает (40—70%)сго. Принципиальное же различие между электродами с анизотропной (регулярной) и изотропной структурами заключается в различной зависимости 0=/(еж), где е — жидкостная пористость. Так, для регулярной структуры 0=аоеж, а для изотропной о=0ое ж (закон Арчи). При определенном отношении между эффективными параметрами активного слоя электрод с изотропной или анизотропной структурой будет иметь максимальную активность. Получим для этого случая соотношение между эффективными параметрами, что даст возможность сравнить активность реальных электродов с активностью электродов с оптимальной структурой, обеспечивающей при выбранном катализаторе максимальную активность. Для анизотропной структуры 0=0(,еж, 5 = о(1—ег—еж), где 5о=5у (см /г)рк, Рк — истинная плотность катализатора, бг—газовая пористость. Отсюда получаем [c.103]

    Требования к оптимальной дисперсности и структуре катализаторов для ТЭ и органического катализа имеют суш,ественные различия. Наиболее четко это различие видно на примере нанесенных платиновых катализаторов. В органическом катализе для снижения расхода драгоценных металлов были созданы высокодисперсные платиновые катализаторы на носителях, обладаюш,ие благодаря большому разбавлению (0,1 — 1%) очень высокой удельной поверхностью (100—300 м г) и большой нагревостойкость ю. В электродах ситуация более сложная. Токообразующие реакции и транспорт веществ протекают в среде электролита, п кроме диффузионного торможения велика роль омических потерь. Для создания активных электродов в первую очередь необходима достаточно высокая удельная поверхность катализагора в единице объема, а не на единицу массы активной составляющей. Поэтому очень разбавленные нанесенные платиновые катализаторы найти широкого применения в ТЭ, по-видимому, не должны. Довольно жесткие требования предъявляются к электрической проводимости катализаторов. Для реализации в электроде возможно большей активности проводимость катализатора (активной массы) должна быть ие ниже эффективной проводимости электролита в активном слое, составляющей обычно 1 —10% проводимости свободного электролита. Необходимость снижения диффузионных потерь предъявляет вполне определенные требования к размеру и микропористости гранул катализатора и структуре сформированного активного слоя (см. 3.2). [c.132]

    После определения оптимальной температуры в реакторе или на отдельных его участках можно определить параметры оптимальной пористой структуры для последовательной реакции. Задача заключается в том, чтобы при заданной температуре, пористости и размере зерна определить такое значение среднего радиуса пор, при котором катализатор имел бы максимально развитую внутреннюю поверхность при условии, что реакция протекает во внутрикинетическом режиме. Оптимальный радиус пор можно определить, решив уравнение Гзк (с, Гопт) = 2д опт)- Согласно этому уравнению оптимальный радиус пор определяется точкой пересечения двух функций — скорости изменения целевого компонента во внутрикинетическом Гзк (с, Грпт) и во внутридиффузионном Г2Д (с, Гопт) режиме. В действительности не существует резкой границы между внутрикинетическим и внутридиффузионпым режимами, и вычисленное из указанного уравнения значение радиуса пор следует рассматривать как приближенное. При заданном размере зерна расходы па транспортирование газа через реактор можно минимизировать, определив оптимальную линейную скорость газа из условия дР ди = 0. Процедура решения не изменяется, если оптимальной, с точки зрения селективности, окажется внутридиффузиопная область. [c.200]

    В ЛТИ разработан шариковый износоустойчивый катализатор для работы во взвешенном слое. Его получают пропиткой растворами ванадата и сульфата калия шарикового алюмосиликагеля с определенным содержанием AI2O3 и последующей термообработкой, при которой, в зависимости от температуры и содержании вводимого KNO3, создается определенная пористая структура. При этом с повышением размера гранул значение среднего оптимального радиуса пор возрастает [99, 120]. [c.155]


Смотреть страницы где упоминается термин Определение оптимальной структуры катализатора: [c.285]    [c.56]    [c.18]    [c.162]    [c.86]    [c.186]   
Смотреть главы в:

Гетерогенный катализ физико-химические основы -> Определение оптимальной структуры катализатора




ПОИСК





Смотрите так же термины и статьи:

Катализатор определение

Катализаторы структура

Оптимальная структура ХТК

Оптимальный катализатор



© 2025 chem21.info Реклама на сайте