Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газ синтеза производство в Германии

    Промышленность органического синтеза в Германии в период второй мировой войны, так же как и в США, была тесно связана с производством моторных топлив. Характеризуюш ие ее данные мы черпали главным образом из статей американских и английских специалистов [53, 54, 55, 56, 57]. [c.477]

    Первые исследования по синтезу этриола были проведены в Германии в 1931—1932 годах первая промышленная установка по производству этриола была пуш,ена в 1935—1937 гг. В настояш,ее время производство этриола освоено в США, ФРГ, Англин, Франции, Японии и Швеции. [c.338]


    Среди мономеров для производства каучука обш,его назначения стирол по объему производства находится на третьем месте, уступая дивинилу и изопрену. До появления стереорегулярных полибутадиеновых и полиизопреновых каучуков, производство которых существует с начала 60-х гг., бутадиен-стирольные каучуки были наиболее массовыми среди всех выпускавшихся эластомеров . Однако в отличие от технических синтезов дивинила и изопрена, отличающихся большим разнообразием, производство стирола, со времени его создания в США и в Германии (конец 30-х гг.), осуществлялось главным образом одним-единствен-ным способом — дегидрированием этилбензола. Этот метод отличается простотой и эффективностью и практически не устарел до настоящего времени. [c.383]

    В предыдущих главах была достаточно подробно освещена история и характеристика промышленного синтеза углеводородов в США и в Германии. Это производство компонентов мотор- [c.454]

    В отличие от промышленности органического синтеза США, базирующейся главным образом на парафиновых и олефиновых углеводородах нефти, основным сырьем этой промышленности в Германии явился уголь и синтезируемые на его основе водяной газ и ацетилен. Производство на базе ацетилена пластических масс, синтетического каучука и заменителей смазочных масел из природной нефти, конечно, диктовалось принципами автар- [c.476]

    Первыми синтетическими полимерами были бакелит (США, 1907 г.) и карболит (Россия, 1913 г.), производство которых было организовано на основе фенола и формальдегида. В 1909 г. Ф. Гофман, исходя из исследований И.Л. Кондакова, осуществляет синтез каучука полимеризацией 2,3-диметил-бутадиена, на основе которого в 1916 г. в Германии организуется его промышленное производство. В 1921 г. осва- [c.381]

    Основным сырьем для производства синтетических жирных кислот считался ранее твердый парафин, представляющий собой смесь и-парафинов с 18—36 углеродными атомами, выделяемую из масляных фракций нефтей. Твердый парафин для этих целей используют давно. Достаточно сказать, что еще в предвоенные годы в Германии на получение синтетических жирных кислот направляли более 60 тыс. т твердых парафинов, полз енных при синтезе на основе СО и На. Однако ресурсы твердого парафина [c.131]

    В качестве источника сырья для производства продуктов нефтехимической промышленности стали использовать метан из природного газа. Конверсией метана с водяным паром или реакцией с кислородом получали газ синтеза (смесь окиси углерода и водорода) и водород. Таким образом, метан из природного газа стал одним из исходных продуктов для получения синтетического метилового спирта и синтетического аммиака. Синтез аммиака был разработан в Германии непосредственно перед первой мировой войной, за ним последовало развитие процесса производства синтетического метанола в обоих случаях исходным сырьем служил каменный уголь. Подобно этому и паро-метановый и метано-кислородный процессы получения газа синтеза имеют европейское происхождение, при этом в качестве сырья используется метан, являющийся побочным продуктом в процессах разделения коксового газа или при гидрогенизации угля. [c.21]


    Этот процесс, открытый в 1925 г., вначале предполагали применять для производства бензина и высших нефтяных углеводородов из угля. В действительности во время второй мировой войны он и был использован в Германии для этой цели в очень больших масштабах. Однако различные видоизменения этого процесса были с тех пор настолько тщательно проработаны, что в настоящее время в условиях, когда смесь окиси углерода и водорода можно получать дешевым путем из газообразных парафиновых углеводородов, процесс каталитического гидрирования окиси углерода можно применять для синтеза углеводородов и кислородсодержащих соединений из нефтяного сырья. Немецкие исследователи считают, что получение жидкого топлива из угля экономически невыгодно и что этот метод следует применять главным образом для производства химических продуктов, ценность которых значительно больше, чем ценность жидкого топлива. [c.58]

    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    В Германии весь дивинил, необходимый для производства синтетического каучука, получали из ацетилена. Это служит еще одним примером, показывающим, что в Германии до и во время второй мировой войны промышленность тяжелого органического синтеза базировалась исключительно на карбиде и ацетилене. [c.219]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    В годы первой, второй и начала третьей пятилеток наряду с развитием существовавших производств появились новые отрасли химической промышленности. Триумфом советской химии был пуск в 1932 г. первого в мире завода синтетического каучука по способу С. В. Лебедева. Промышленное производство синтетического каучука было освоено за рубежом много позднее в Германии в 1937 г., а в США в 1942 г. В годы первых пятилеток создана промышленность органического синтеза, пластических масс, искусственного волокна, сложнейших фармацевтических препаратов и химически чистых реактивов. Построены заводы связанного азота с полным и сложным циклом от синтеза аммиака до азотнокислых солей (нитратов). Заново созданы также современные нефтеперерабатывающая, лесохимическая и гидролизная отрасли промышленности. [c.9]

    На базе технологии получения синтез-газа и процесса ФТ в Германии в 30-е гг. были построены заводы по производству СЖТ из угля, которые в годы Второй мировой войны, после уничтожения союзной авиацией нефтепромыслов и нефтеперерабатывающих заводов в Плоешти, стали [c.222]

    Каждый год потребляются колоссальные количества ацетилена. Ацетилен, применяемый для сварки, растворяют под давлением в ацетоне и хранят в специальных баллонах. Ацетилен служит исходным веществом для промышленного синтеза важных органических соединений, включая уксусную кислоту и ряд ненасыщенных соединений, которые используются для производства пластических масс и синтетического каучука. Многие направления синтетического использования ацетилена стали возможными в результате работ, проведенных В. Реппе в Германии до и в течение второй мировой войны (в фирме Фарбениндустри ). Его работы, целью которых была замена нефти (которой нет в Германии) как сырья для синтеза органических веществ более доступным углем, произвели революцию в промышленной химии ацетилена. [c.232]


    Немецкие химики, разработчики промышленного способа синтеза аммиака из водорода и азота Фриц Габер (1868—1934) и Карл Бош (1874—1940) оказали своему отечеству огромную услугу хорошо развитая в Германии химическая промышленность могла из аммиака получать азотную кислоту и другие соединения азота — от лекарств до взрывчатых веществ. Германия, блокированная войсками противников, без аммиачного производства не смогла бы столько времени продержаться в Первой мировой войне. Габер был истинным патриотом великой Германии, готовым ради нее забыть даже принципы гуманизма, которыми принято руководствоваться в мире науки. Ничем более нельзя объяснить его активные рекомендации применять в военных действиях боевые отравляющие вещества. Однако после прихода к власти нацистов Габер из-за своего неарийского происхождения подвергся гонениям и был вынужден оставить научную работу. Он умер на чужбине, а немецкие газеты не напечатали о его кончине ни одной строчки. [c.288]

    В других странах работы в этой новой области первоначально сильно отставали, что частично объяснялось полным отсутствием нефти в этих странах, вследствие чего химическая переработка нефтепродуктов не привлекала большого внимания. Кроме того, имела значение и потребность 1В крупных затратах при осуществлении процессов производства алифатических химических продуктов. В Германии необходимость химической переработки парафиновых углеводородов возникла только после промышленного осуществления процессов гидрогенизации углей и синтеза углеводородов по Фишеру—Тропшу, являющихся источником исходного сырья. [c.7]

    После этого синтез Фишера — Тропшв был реализован рядом фирм в Германии, и масштаб производства когазина [4] год от году увеличивался. Почти все установки работали по одному и тому же принципу. С 1938 г. строительство новых предприятий прекратилось. В 1939 г. в Германии было 9 установок общей мощностью около 600 ООО г продуктов синтеза [5]. [c.70]

    Целевым назначением процесса, разработанного в Германии (бывшей ГДР), является получение из дистиллятных, преимущественно керосиновых и дизельных фракций жидких нормальных парафинов высокой степени чистоты и низкозастывающих денор— мализатов — компонентов зимних и арктических сортов реактивных и дизельных топлив. Получаемые в процессе "Парекс" парафины используются как сырье для производства белково-витаминных концентратов, моющих средств, поверхностно-активных веществ и др/гих продуктов нефтехимического синтеза. Сырьем процесса является прямогонный керосиновый дистиллят широкого или узкого фракционного состава (в зависимости от требований, предъявляемых к продуктам), который предварительно подвергается гидроочистке. В качестве адсорбента используется цеолит типа цеосорб 5АМ (типа СаА). Используемый адсорбент — цеолит, обладающий молекулярно-ситовым эффектом, избирательно адсорбирует н-алканы из смесей их с углеводородами изо- или циклического строения. Характерной особенностью процесса "Па — реке" является проведение адсорбции в среде циркулирующего во, ородсодержащего газа, являющегося газом-носителем сырья. Применение циркулирующего газа-носителя препятствует быс — [c.269]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Естественно, что у каждого структурного изомера могут быть изомеры по положению двойной связи. Наличие двойной связи делает также возможной цис-транс-шгожерто. Сырьевая смесь, взятая даже в довольно узких температурных пределах кипения, очень сложна, о составе ее сообщений не имеется. Свежее сырье смешивается с рециркулирующим продуктом и добавляется нафтенат кобальта в таком количестве, чтобы приходилось около 0,2% кобальта на общую загрузку сырья. Раствор прокачивается через подогреватель в реактор, где жидкость движется вверх в прямотоке с синтез-газом. Реактор наполняется инертным материалом типа колец Рашига и др. В реакторе поддерживаются температура около 175° и давление синтез-газа (IHj I O) 200 am. По выходе продукта из реактора давление снижается до атмосферного, затем продукт нагревается до 150° в присутствии отпаривающего газа (обычно водорода) для разрушения всего карбонила. Освобождаемый от кобальта продукт затем гидрогенизуется, в результате получается смесь октиловых спиртов. Этот процесс мало отличается от известного, но фактически он не нашел заводского использования в Германии [17]. Смесь спиртов g очень полезна в производстве пластификаторов. Окисление спиртов дает смесь кислот С 8, называемых изооктиловыми кислотами, которые представляют интерес для применения в военном деле. Состав смеси g пока точно неизвестен. Возможно, в ней содержится до двенадцати изомерных спиртов. Видимо, значительную часть составляет 3,5-диметилгексанол, получаемый из 2,4-диметилпентена-1. Другие спирты, присутствующие в относительно больших количествах — 4,5-диметил- и 3,4-диметилгек-санолы, 3- и 4-метилгентанолы. Очень возможно, что удастся найти условия превращения олефинов в спирты реакцией в одну ступень. [c.296]

    Впервые промышленное производство аммиака бьи[о осуществлено в Германии в начале первой мировой войны. В настоящее время мировое производство аммиака определяется многими миллионами тонн в год, а реакция синтеза аммиака (1) по существу лежит в основе всех современных процессов производства многочнсленных азотсодержащих соеди-нопий. [c.378]

    Позже было найдено более удобное сырье для синтеза изобутилена — изобутиловый спирт сивушных масел, а также более удобный путь получения трйметилкарбинола (гидрата--цпей изобутилена, добытого дегидратацией изобутилового спирта). Попутно отметим, что изобутилен из изобутилового спирта, синтезируемого из водяного газа, в настоящее время является важнейшим промышленным сырьем для производства изооктана в странах, лишенных природных ресурсов нефти (Германия и Япония). [c.27]

    Первые промышленные установки по синтезу Фишера — Тропша введены в действие в середине 1930-х годов в Германии и Англии. К 1943 г. общая мощность созданных установок по производству моторных топлив этим методом превысила 750 тыс. т в год. На большинстве из них применялся стационарный слой кобальтового катализатора. Опытная установка с псевдоожиженным слоем железного катализатора мощностью 365 тыс. т в год углеводородных продуктов эксплуатировалась в 1948—1953 гг. в США. Отечественная опытно-промышленная установка синтеза Фишера — Тропша экс- [c.98]

    В Германии хотели использовать реакцию гидроконденсации окиси углерода для производства первичных высших спиртов, которые затем можно было бы сульфатировать. чтобы получить синтетические моющие средства. Для этого исходили из Сц—С],-олефинов, побочных продуктов синтеза Фишера—Тропша, которые должны были подвергаться гидроконденсации [c.195]

    Опубликован патент [16], согласно которому нитрилы высших кислот можно получать следующим образом. В расплавленные карбоновые кислоты пропускают избыток аммиака в присутствии катализаторов дегидратации при температуре, лежащей лишь немногим ниже температуры кипения этих кислот (т. е. при 250—350°). Для парофазного процесса синтеза нитрилов из карбоновых кислот применяют различные катализаторы. Если хотят получить моно- и динитрилы дикарбоновых кислот, например адипонитрил N H2 H2 H2 H2 N, процесс проводят при 350—450° в присутствии фосфата бора [17]. В случае производства нитрилов монокарбоновых кислот, имеющих не менее семи атомов углерода, в качестве катализатора используют силикагель и температуру реакции поддерживают в пределах 425—450° [18]. В Германии адипонитрил получали из адипиновой кислоты и аммиака. [c.379]

    Ацетилен получают из метана методом частичного сожжения последнего в токе кислорода. В этом процессе наряду с ацетиленом образуются окись углерода и водород, являющиеся сырьем для синтеза аммиака, метилового спирта и реакции Релена. Отпускная цена на ацетилен зависит от того, какой именно продукт предполагается получать в основном по этому процессу ацетилен или водород. Во всяком случае, процесс частичного сожжения всегда применяют в сочетании с установками, на которых могут быть использованы для химических синтезов другие получающиеся в результате частичного сожжения газообразные продукты. Этот процесс используют в США, Италии и Германии. Даже в США ацетилен из метана составляет всего лишь 10% общего производства ацетилена в этой стране. При этом в США производство ацетилена из метана методом частичного сожжения дислоцируется только в штатах Техас и Луизиана, где условия для этого исключительно благоприятны. [c.406]

    Но производство моторных топлив строится ныне помимо нефти на базе окиси углерода и водорода, получаемых из бурых углей. Синтез основан на гидрировании окиси углерода водородом в присутствии катализатора. Эта реакция открыта впервые Е. И. Орловым в 1908 г. и спустя 18 лет была осуществлена в Германии Фишером и Тропшем в промышленном масштабе. Б настоящее время производство искусственного жидкого топлива нашло промышленное применение во многих странах. [c.18]

    Первые исследования по изысканию путей синтеза мономеров принадлежат английскому профессору В. Тильдену, который в 1884 г. впервые получил изопрен высокотемпературным пиролизом скипидара. В 1889 г. русский химик Н. Н. Мариуца впервые получил 2,3-диметилбутадиен-1,3 из диметилизопропенилкарби-нола и наблюдал полимеризацию этого непредельного углеводорода под влиянием минеральной кислоты. Через год И. Л. Кондаков получил этот мономер из тетраметилэтилендихлорида. В теоретическом аспекте значение этих работ заключалось в доказательстве возможности синтеза каучукоподобных материалов не только из изопрена — структурного звена натурального каучука. Их важность в прикладном отношении была подтверждена организацией в Германии уже в первую мировую войну производства полимера на основе диметилбутадиена под названием метилкаучука (мягкий) и метилкаучука Н (твердый). Однако из-за низких технических свойств этого каучука и очень высокой стоимости его производство после войны было прекращено (всего было выпущено 2350 т метилкаучука и около 600 т метилкаучука Н). [c.7]

    В Германии производство синтетического каучука было организовано в 1936—1938 гг. в основу был положен разработанный М. Г. Кучеровым и И. И. Остромысленским сложный четырехстадийный метод синтеза 1,3-бутадиена из ацетилена ацетилен->ацет-альдегид- ацетальдоль1,3-бутиленгликоль1,3-бутадиен. [c.8]

    Сырьем для сульфохлорирования в Германии служила гидрированная при 280° и 200 ати над никельвольфрамовым катализатором фракция с пределами кипения 230—320°, выделенная из продуктов синтеза по Фишеру-Тропшу (так называемый мепазин). В США для производства алкилсульфонатов применялась фракция прямой перегонки нефти, кипящая в пределах 250—300°, счищенная от ароматических углеводородов. [c.432]

    Развитие синтеза Фишера-Тропша представляет интерес и в связи со строительством установок для производства синтетического топлива в США [17, 18]. Американские процессы носят названия синтин-синтол- или гидрокол-процесса, но основы этих процессов, так же как и свойства конечных продуктов, вполне сходны с тем, что имеется в процессе Фишера-Тропша. Вследствие большого количества сырья, которое может использоваться в производстве синтетических масел, развитие этой отрасли в США в будущем возможно в таких же или больших масштабах, как в Германии в годы войны. В США развитие процесса Фишера-Тропша связано с большим использованием природного нефтяного газа, чем угля. Исходная реакция в производстве синтез-газа  [c.244]

    Получение полиамидного волокна из капролактама дало толчок к поиску промышленных способов его производства. Основные узлы первой технологической схемы синтеза капролактама разработаны в Германии, где в 1943 г. было организовано промышленное производство мощностью 3,5 тыс. т в год с использованием ф енола в качестве исходного сырья. ЦДервые партии полиамида из капролактама применяли для получения искусственной щетины. Позднее на основе капролактама стали производить парашютный шелк, корд для авиационных шин и буксировочные тросы для планеров [c.5]

    Химик А. Бушарда в 1879 г. установил возможность превращения изопрена в каучукоподобный материал полимеризацией в присутствии соляной кислоты. Русский химик И. Кондаков в 1900 г. получил гомолог изопрена 2,3-диметил-1,3-бутадиен и доказал возможность получения из него каучукоподобного материала. Из этого вещества в Германии во время первой мировой войны стали изготовлять так называемый метилкаучук. Однако из-за низких технологических свойств и высокой стоимости к концу войны производство метилкаучука в Германии было прекращено. Во второй половине XIX века русские химики А. Бутлеров, А. Фаворский,-М. Кучеров, Н. Мариуца, Б. Бызов и другие начали работы по синтезу соединений с двойными и тройными связями, пригодных для получения синтетического каучука (СК), близкого по свойствам к натуральному. Для этого нужно было установить структуру НК. В 1924 г. немецкий химик Т. Штаудингер озонированием НК получил озонид С оН1бОб и установил, что молекула НК состоит из изопентено-вых (метилбутеновых) групп [c.6]

    Значительно ббльшую важность имеют, среди таких процессов окисления, соответственные превращения бензола в малеиновую кислоту и особенно нафталина во фталевый ангидрид. Последнее из названных превращений лежит в основе широко применяемого в Западной Европе и Америке способа производства фталевого ангидрида. Экспериментально метод был выработан, как выше упомянуто, одновременно и независимо друг от друга Во л ем в Германии и Гиббсом в Америке в 1916г. В производство он был введен ранее, чем во всех других странах, в Америке, и уже в 1919 г. полученный каталитическим окислением нафталина дешевый фталевый ангидрид был там в продаже. Фталевый ангидрид с введением нового метода получения становится крайне широко и многообразно потребляемым продуктом для синтеза антрахинона и антрахиноновых производных, синтеза фталеиновых красителей, производства бензойной кислоты главная же сфера его применения— это лакокрасочная промышленность и производство пластических масс (эфиры фталевой кислоты, продукты конденсации с глицерином). Производство фталевого ангидрида в 1929 г. в Америке дало наибольшее количество продукта — около 4 155/га при цене в 16,3 цента за англ. фунт. [c.516]


Смотреть страницы где упоминается термин Газ синтеза производство в Германии: [c.336]    [c.455]    [c.505]    [c.311]    [c.242]    [c.270]    [c.242]    [c.123]    [c.322]    [c.244]    [c.633]    [c.11]    [c.293]    [c.11]   
Синтез углеводородов из окиси углерода и водорода (1954) -- [ c.282 , c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез в Германии



© 2025 chem21.info Реклама на сайте