Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АТР участие в ферментативных

    Подводя итоги сказанного в предыдущих параграфах, мы видим, что на достаточно высоких ступенях химической эволюции возникали циклические процессы, протекающие с участием ферментативных белков, обеспечивающих пространственно-временную координацию реакций цикла при обмене веществ с внешней средой. Главным свойством этой пространственно-временной координации является новообразование аналогичных систем ферментативных белков, что и обеспечивает рост живого вещества. [c.290]


    Весьма важной является часть 4 книги, посвященная рассмотрению кинетики и механизмов реакций в конденсированной фазе (в растворах, жидкостях), реакций с участием твердых поверхностей, процессов, связанных с образованием новой фазы, и ферментативных реакций. [c.6]

    Классификация каталитических процессов и реакций производится по ряду признаков. По фазовому состоянию реагентов и катализатора каталитические процессы разделяют на две основные группы — гомогенные и гетерогенные. При гомогенном катализе катализаторы и реагенты находятся в одной фазе — газе или растворе, а при гетерогенном — в разных фазах. В особую-группу следует выделить микрогетерогенный, в частности ферментативный катализ, происходящий в жидкой фазе с участием коллоидных частиц в качестве катализаторов. [c.106]

    В случае ферментативных реакций значения энергии активации снижаются еще больше, так как процессы протекают многоступенчато, с участием нескольких катализаторов, каждый из которых проводит лишь одну стадию процесса. Это позволяет сложным ферментативным реакциям протекать с большой скоростью при [c.33]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    Как видно из разд. 7.1, суть большинства химических реакций, протекающих в биологических системах, заключается в окислении или восстановлении одного или более реагентов. Однако особенно важный тип реакций, к которому, очевидно, относятся многие ферментативные реакции, не связанные с окислением — восстановлением,— это реакции, включающие перенос протона и сопровождающиеся общим основным или кислотным катализом. Естественно, многие из этих ферментативных превращений осуществляются с помощью небелковых кофакторов или коферментов. К таким коферментам относятся некоторые серосодержащие коферменты, среди которых тиаминпирофосфат (часто называемый витамином В1) имеет наибольшее значение. Сейчас уже очевидно, что механизм действия тиаминпирофосфата включает участие карбаниона в качестве промежуточного соединения. Правда, некоторые особенности этого процесса еще недостаточно изучены. [c.458]


    Аналогичная ситуация реализуется, по-видимому, также и в ферментативных реакциях. Взаимодействие с субстратом одной функциональной группы белка может быть усилено за счет участия в реакции какой-либо другой, рядом расположенной группы нуклеофильного или электрофильного характера. Так, например, при гидролизе пептидной связи на активном центре карбоксипептидазы А см. схему на стр. 19) нуклеофильная атака молекулой воды усилена за счет общеосновного катализа со стороны карбоксильной группы остатка 01и-270 (а возможно и под действием гидроксильной группы остатка Туг-248). Общекислотный катализ осуществляет, по-видимому, Туг-248. Кроме того, расщепление пептидной связи субстрата может быть существенно облегчено в результате электрофильной атаки атомом 2п. [c.65]

    В настоящее время трудно указать ферментативную реакцию, в механизме которой участие общеосновного или общекислотного катализа строго доказано. Нельзя считать законченными даже исследования столь хорошо изученных сериновых протеаз, в частности а-химотрип- [c.65]

    Исследования кинетики ферментативных реакций в стационарном режиме — один из наиболее распространенных способов изучения механизма действия ферментов. Это определяется рядом особенностей ферментативных реакций и прежде всего тем, что для ферментативных реакций стационарное состояние устанавливается весьма быстро. Для простейшей схемы ферментативного процесса с участием одного промежуточного соединения (схема Михаэлиса — Ментен)  [c.171]

    Для реакций, протекающих по более сложным механизмам (по сравнению с механизмом Михаэлиса—Ментен), стационарное состояние существует лишь при некоторых дополнительных условиях, определяемых соотношением констант скоростей индивидуальных стадий. Так, например, для обратимой ферментативной реакции с участием одного промежуточного соединения [c.173]

    С другой стороны изучение ферментативных реакций в стационарном режиме имеет ряд существенных недостатков. Наиболее важным из них является то, что стационарная кинетика дает весьма ограниченную информацию о детальном кинетическом механизме ферментативной реакции. Стационарная кинетика, отражая лишь лимитирующие стадии процесса, практически не дает информации о быстрых , нелимитирующих стадиях превращения субстрата в активном центре фермента. Определение элементарных констант скорости многостадийной ферментативной реакции из данных стационарной кинетики не представ-ляется.возможным. Действительно, кинетика каталитической реакции, включающей п промежуточных соединений (схема 5.16), описывается 2 п + 1) константами скорости. Стационарная же скорость этой обратимой реакции независимо от числа промежуточных соединений, принимающих участие в механизме реакции, дается уравнением (см. гл. VI) [c.174]

    Более детальную информацию о механизме ферментативной реакции с участием ряда промежуточных соединений дает изучение процесса в нестационарном режиме. Именно поэтому теоретические и экспериментальные методы исследования нестационарной кинетики ферментативных реакций получили в последнее время существенное развитие. [c.175]

    Кинетические закономерности ферментативных реакций с участием двух промежуточных соединений. Кинетика трехстадийной реакции с равновесной первой стадией. Детальный кинетический анализ действия ряда ферментов обнаруживает участие в механизме катализа по крайней мере двух промежуточных соединений. [c.190]

    Предстационарная кинетика ферментативной реакции с участием промежуточных соединений. Формально-кинетический анализ кинетики каталитических реакций с участием промежуточных соединений может быть проведен и в обш,ем виде — для реакции с участием произвольного числа п промежуточных соединений [22]. [c.201]

    Суш,ность предстационарного подхода к исследованию ферментативных реакций заключается в том, что бимолекулярные стадии реакции переводят в псевдомономолекулярные при большом избытке одного из реагентов и тем самым систему дифференциальных и алгебраических уравнений, описываюш,их кинетику реакции, превращают в линейную систему. Для реакции с участием п промежуточных сое- [c.201]

    Мертвое время метода определяется двумя параметрами 1) временем импульсной вспышки и 2) временем фотохимического образования соответствующего компонента ферментативной реакции. Ксеноновая импульсная техника позволяет получить мощные импульсы света продолжительностью 10—100 микросекунд. Время вспышки может быть уменьшено без уменьшения мощности при использовании лазерной техники. Время фотохимической реакции может быть достаточно коротким (особенно в случае внутримолекулярных фотохимических процессов или же фотохимических реакций, протекающих с участием растворителя). [c.206]


    Кинетика ферментативной реакции в нашем случае регистрируется по изменению концентрации комплекса фермент-краситель (ЕР), поэтому необходимо концентрации все веществ, принимающих участие в реакции, выразить через концентрации [ЕР]  [c.210]

    Следует отметить, если pH влияет на ферментативную активность, то допущение о равновесных условиях присоединения или отщепления протона вполне допустимо, поскольку скорость ионных реакций с участием протона достаточно высока. [c.219]

    Зависимость скорости ферментативной реакции от pH типа (10.8) может соответствовать случаю, когда ионогенные группы активного центра входят в состав сорбционного участка фермента, и не принимают участие в последующей каталитической стадии. [c.221]

    Катализируемая ферментом (ферментативная) реакция протекает на особом участке его белковой цепи такой участок называется активным центром фермента. Вещества, вступающие в реакцию на этом участке, называются субстратами. Кроме субстрата в ферментативной реакции могут участвовать и другие необходимые вещества, называемые кофакторами, или коферментами. Например, для действия фермента иногда необходимо присутствие иона Mg или другого металла или участие какой-либо небольшой органической молекулы. [c.450]

    Это приближение достаточно хорошо выполняется, если промежуточные продукты обладают высокой реакционной способностью k% >kx), что наблюдается, в частности, в каталитических (в том числе ферментативных) и цепных реакциях, а также в других процессах с участием активных промежуточных частиц. Важной особенностью таких процессов является быстрое установление в системе режима, при котором разность скоростей образования и расходования промежуточных частиц становится малой по сравнению с самими скоростями. Этот режим и называют стационарным (точнее назвать его квази-стационарным, так как концентрации участников процессов изменяются). [c.265]

    Грамицидин S и родственные антибиотики относятся к той группе пептидно-белковых веществ, биосинтез которых протекает без участия рибосомного аппарата, а осуществляется с помощыо ферментных систем. В частности, в построении пептидной цепи грамицидина S принимает участие ферментативный комплекс, названный грамицидии-8-синтетазой аминокислоты активируются в активных центрах ферментов и последовательно соединяются пептидными связями, как это показано на рисунке 170. [c.286]

    В настоящее время предполагается, что метангенерирующие бактерии используют в основном углекислоту. Последняя образуется в результате различных процессов при окислении ОВ, редукции сульфатов, переходе бикарбонатов в карбонаты, ферментативном брожении ОВ и т.п. При этом изотопный состав С в СО в зависимости от генезиса последнего нередко бывает резко различным, что не может не сказаться на изотопном составе СН . СН может образоваться при реакции между СО и H S, а также при участии метангенерирующих бактерий непосредственно из СО и из сравнительно сложных молекул ОВ. Конечно, изотопный состав С в СН будет различным в зависимости от происхождения СН . В последнее время [c.92]

    Сапропелевая гипотеза происхождения нефти не дает прямого ответа на вопрос, когда и в каких условиях сапропель или продукты его последующих превращений превращается в нефть. Можно, конечно, предположить, что на начальных стадиях изменения принимали участие биологические факторы. Возможно, что ферментативное разложение в какой-то степени подготовляет сапропелевый материал к превращению в нефть. Однако после погребения органического материала и в особенности после смены преимущественно водной среды на среду, содержащую незначительное количество воды, всякие биологические процессы должны резко сократиться, и в этот период биологический фактор теряет свое значение. Основную роль должны приобретать небиогенные реакции диспропорционирования свободной энергии. В экспериментальном отношении остается совершенно неизученным вопрос о возможности перерождения погребенного органического вещества [c.201]

    Наконец, следует упомянуть, что участие соседних карбоксильных групп в гидролизе амидов также имеет значение для понимания ферментативного гидролиза амидов. Один из таких ферментов — кислая протеаза пепсин из желудочного сока механизм ее действия включает общекислотный катализ. Клюгер и Лам синтезировали фиксированные модельные соединения, чтобы изучить участие карбоновой кислоты в гидролизе амидов [112]. Они обнаружили, что аниловые производные эняо-цис-5-норборнена соответствуют критериям жесткого геометрического сближения взаимодействующих функциональных групп. [c.242]

    В связи с этим главный вопрос относительно предполагаемого ферментативного механизма действия карбоксипептидазы А состоит в стерической возможности и способности карбоксильной группы 01и-270 эффективно участвовать в нуклеофильной реакции. Фактически доказательство ее участия сейчас уже получено в спектроскопических исследованиях при температурах <0°С (—60°С) ковалентного ацилферментного промежуточного соединения, полученного при гидролизе субстрата О-(гранс-л-хлорциннамоил)-г-Р-фениллактата карбоксипептидазой А [224]. Более того, результаты свидетельствуют о том, что деацилирование промежуточного смешанного ангидрида катализируется связанной с цинком гидроксильной группой. [c.351]

    В заключение отметим, что таутомеризация происходит внутри-молекулярно и что 1,3-смещение иротона с фронта происходит через азааллильный анион. Однако модель немного отличается от биологической системы тем, что в ней могут протекать конкурентные стереохимические и изотопные реакции. Таким образом, сте-реоспецифичность ферментативных реакций, протекающих с участием коферментов, достигается благодаря апофермектам, в то время как неферментативные модельные реакции не столь стерео-специфичны [310]. [c.448]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]

    Подобного рода эффекты возможны также и в ферментативных реакциях, поскольку микросреда активного центра многих ферментов обнаруживает по своей полярности или диэлектрической проницаемости свойства скорее органических растворителей, чем воды (см. гл. I). По аналогии с э ектами, наблюдаемыми в нефермента-тиБных реакциях, десольватация реагирующих групп в активных центрах ферментов может дать ускорение более чем в 10 раз [291 (если сравнивать ферментативный процесс с гомогенно-каталитической реакцией, идущей в воде). В литературе пока не описаны системы, для которых было бы строго доказано участие сольватационных эффектов или электростатической стабилизации, в ферментативном катализе. [c.67]

    ХЬУ, не содержащих карбоксильной группы величина lg o линейно зависит, причем с очень небольшим наклоном, отДр/Са- Введение карбоксильной группы в анионной форме приводит к положительному отклонению от этой прямой. Как видно из рис. 23, участие карбоксилатаниона несомненно приводит к ускорению, однако оно невелико (приблизительно в 3 раза) и, по мнению авторов [60], не может играть существенной роли в ферментативном катализе. При переходе от водного раствора к ацетонитрилу, содержащему 3,3 М воды, эффект почти не усилился. Константа скорости гидролиза ХЬП в этом растворителе лишь в 4,5 раза выше константы скорости гидролиза ХЬП б, причем также почти не изменились и абсолютные скорости гидролиза этих соединений. В этом состоит определенное отличие этой системы от предыдущих, где было найдено, что реакция в неводном растворителе сильно тормозится, но зато и сильно ускоряется карбоксилатными анионами. [c.103]

    Однако наклон прямой б, соответствующей мицеллярной реакции, несколько меньше, чем в случае ферментативного процесса (пунктир). Это связано с тем, что алкоксильный анион в мицелле расположен в гидратированном поверхностном слое (а это снижает эффективность гидрофобного взаимодействия). Действительно, если нуклеофил несколько углублен в мицеллу, что происходит в случае бензимидазольного аниона [ПО], то специфичность мицеллярного катализа (точки на пунктире) вполне соответствует ферментативному (пунктир). Различия в константах скоростей реакций с участием наименее (ацетат) и наиболее гидрофобногЬ (гептаноат) субстратов превышают два порядка (рис. 29). [c.121]

    Зависимость скоростей реакций, катализируемых химотрипсином, от pH обнаруживает оптимум при pH 8. [42]. Механизм зависимости химотрипсино-. вого катализа от pH заключается в следующем [6—9, 13, 43, 44]. Эффективные константы скоростей химических стадий ферментативной реакции 2 и сохраняют постоянное значение при щелочных и нейтральных значениях pH, но при дальнейшем понижении pH они уменьшаются. Сигмоидальный характер этих зависимостей указывает на участие в катализе ионогенной группы фермента с рЛГа7. Многие годы полагали, что этой группой является имидазольный фрагмент His-57, однако позднее она была идентифицирована как карбоксил Asp-102 [45]. Ее протонизация разрушает водородные связи в составном нуклеофиле (рис. 32), что приводит к потере ферментом каталитической способности. [c.132]

    Исследование ферментативных реакций в предстационарном режиме нуждается в специальной экспериментальной технике, поскольку используемые методы должны иметь достаточно высокую временную разрешающую способность. Мертвое время экспериментальной методики должно быть существенно меньше времени протекания реакции в предстационарном режиме. В качестве примера рассмотрим случай реакции с участием одного промежуточного соединения. Экспериментальную методику можно считать удовлетворительной, если ее мертвое время будет меньше величины т [см. уравнение (5.109)]. Используя наиболее характерные для ферментативного катализа значения констант скоростей, можно оценить величину т. Величина константы скорости образования фермент-субстратного комплекса ( 1) для большинства ферментативных реакций лежит в диапазоне 10 —10 М" X Хс (см. гл. VII). Типичное значение Кт, характерное для многих ферментативных реакций, равно 10 М. Если положить минимальную концентрацию субстрата равной 10" М (эту концентрацию еще можно определить чувствительным спектрофотометрическим методом), зна-чениет будет лежать в диапазоне 10 —10" с. Это показывает, что для исследования предстационарной кинетики ферментативных реакций необходима специальная экспериментальная техника, позволяющая регистрировать кинетические процессы в микро- и миллисекундном временном диапазоне. [c.204]

    Стадии переноса протона в ферментативном катализе. Характерная особенность ферментативных реакций — участие в активных центрах многих ферментов в качестве каталитически активных групп сильных кислот и оснований. Основные закономерности кислотно-основного катализа в ферментативном действии рассмотрены в гл. П. Здесь оста- новимся на кинетике элементарной стадии переноса протона. [c.273]

    Известно [17], что неконкурентное ингибирование ферментативной активности а-химотрипсина борной кислотой обусловлено взаимодействием ингибитора с имидазольной группой остатка гистидина-57 активного центра фермента. В табл. 20 приведены результаты совместного воздействия борной и н-гексилборной кислот на кинетику гидролиза анилидного субстрата, катализируемого а-химотрипсином [18]. Определить, принимает ли гистидин-57 активного центра фермента участие в связывании н-гексилборной кислоты. [c.97]

    Кинетику гидролиза п-нитрофенилфосфата, катализируемого щелочной фосфатазой, изучали по образованию /г-нитрофе-нола и фосфат-иона (продукты 1 и 2 схемы 7.1 соответственно). Было найдено, что при проведении ферментативной реакции в 1М трис-буфере (1М водный раствор трис-оксиметил-З-аминометана) отношение концентраций продуктов Р1/Р2 в процессе реакции равнялось 2,1. Исходя из предположения, что трис-буфер принимает участие в ферментативной реакции в качестве дополнительного нуклеофильного агента [10], определить отношение констант (см. схему 7.12). [c.153]

    Ионогенные группы имеют особенно важное значение для ферментативного катализа. В активных центрах всех изученных до настоящего времени ферментов обнаружены функциональные группы, способные присоединять или отщеплять протоны в области pH, оптимальной для проявления ферментативной активности. Исходя из этого, естественно, что рН-эффекты ишользуются для выявления каталитически важных ионогенных групп фермента и выяснения способов их участия в общем механизме ферментативного катализа. [c.218]

    Реакция гидролиза К-трифторацетил-Ь-фенилаланина, катализируемая пепсином, происходит только в том случае, если карбоксильная группа активного центра фермента является протонированной, а карбоксильная группа субстрата — депротонирован-ной [14]. Исходя из данных рН-зависимости ферментативной реакции (табл. 22), вычислить значения рК ионогенных групп субстрата и фермента, принимающих участие в реакции. [c.237]

    Крамер детально исследовал свойства циклодекстринов, полученных при частичном гидролизе крахмала и представляюш,их собой кольца, составленные из остатков глюкозы. Проникновение молекулы иода в полость циклодекстрина объясняет иодкрахмальную реакцию. Полость циклодекстрина как бы выстлана гидроксильными группами, здесь отмечается повышенная электронная плотность, способствующая енолизации гостевых молекул и приводящая к повышению их реакционной способности. Подобная топохимическая основность проявляется в форме основного катализа химических реакций при участии циклодекстринов. Они похожи на ферментативные системы, поскольку функционируют по механизму структурного соответствия и снижают энергию активизации ряда реакций гидролиза диарилпирофосфатов, декарбоксилирования ацетоуксусных кислот и т. п. [c.99]


Смотреть страницы где упоминается термин АТР участие в ферментативных: [c.164]    [c.164]    [c.196]    [c.541]    [c.219]    [c.383]    [c.479]    [c.482]    [c.259]    [c.454]    [c.292]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте