Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели молекулы ферментов

    Химотрипсин — наиболее хорошо изученный протеолитический фермент. Он катализирует гидролитическое расщепление пептидной (или сложноэфирной) связи, в образовании которой принимают участие фенилаланин, тирозин или триптофан. Образование химотрипсина происходит в поджелудочной Железе первоначально образуется неактивный химотрипсиноген (зимоген) — резервная форма фермента. Основной компонент, химотрипсиноген А, представляет собой полипептидную цепь из 245 аминокислотных остатков и 5 дисульфидных мостиков. Активация и образование активного о -химотрипсина осуществляются сложным путем. После триптического расщепления связи Аг -11е последовательно одии за другим из молекулы отщепляются дипептиды 8ег -Аг и ТЬг -А5п . В результате одноцепочечный предшественник переходит в трехцепочечную молекулу фермента. Цепи А, В и С химотрипсина соединены исключительно дисульфидными связями. Рис. 3-32 показывает пространственную модель химотрипсина, установленную на основе рентгеноструктурных данных. [c.408]


    Рассмотрим простую модель молекулы фермента, состоящей из двух взаимодействующих тождественных субъединиц. Каждая субъединица имеет активный центр. Схема стационарного [c.199]

    Конкретизация представлений о механизме действия каждого отдельного фермента является исключительно трудной задачей. Для этого необходимо предварительное установление не только первичной, но также вторичной и третичной структур фермента. Последнее достигается обычно применением рентгеноструктурного анализа. В итоге создается подробная трехмерная модель молекулы фермента. Увязы- [c.431]

    Такая скрученная, свернутая модель молекулы фермента, какой она представляется на основе приведенных данных, выглядит в какой-то степени хаотичной, неопределенной, за исключением того, что все молекулы, имеющие одинаковую первичную структуру, скручены и свернуты одинаковым образом. Эта общая конформация, которую имеют все молекулы любого конкретного белка, хотя она и является одной из многих возможных [c.26]

    М.-гликопротеин, в углеводную часть к-рого входят остатки сиаловой к-ты и гексозаминов. Молекула фермента состоит нз двух субъединиц (мол. масса каждой ок. 60 тыс.), на одной из к-рых находится активный центр, содержащий ФАД. В состав активного центра входят также остатки гистидина и по крайней мере 2 из 7-8 принадлежащих ферменту групп SH, к-рые необходимы для проявления каталитич. активности. Величина pH, при к-рой проявляется макс. каталитич. активность, зависит от источника фермента и находится в области 7,5-9,0 р/ 4,7-5,3. Известны первичные структуры нек-рых М. и созданы гипотетич. модели строения их активного центра. [c.131]

    Концевая фосфатная группа АТР может переноситься с помощью ферментов на различные акцепторы фосфата. При pH 7 фосфатные группы полностью ионизованы. Б. Пространственная модель молекулы АТР. [c.414]

    В этой главе основное внимание сосредоточено на структуре молекул. Рассмотрен метод рентгеноструктурного анализа и показано, как были установлены структуры небольших и больших молекул. Основной упор сделан на соединения, представляющие биологический интерес, такие, как белки и нуклеиновые кислоты. Затем, основываясь на пространственных моделях молекул, полученных в результате анализа рентгенограмм, был рассмотрен механизм действия ферментов. Оказалось, что, используя эти модели, а также изученные последовательности аминокислот в белках, [c.265]

    Это соединение, как и гемоглобин — производное Ге(П). При растворении в пиридине оно легко присоединяет одну молекулу кислорода на каждый атом железа. Этот процесс сопровождается изменением окраски. Присоединенная молекула кислорода держится очень непрочно так, она нацело отщепляется в вакууме, причем вновь получается исходное соединение. Окись углерода, как и в случае гемоглобина, отравляет это вещество, отнимая у него способность присоединять и отдавать кислород. В этом соединении можно видеть относительно просто построенную модель дыхательного фермента. [c.529]


    Хотя активный центр относительно невелик, он должен все же представлять собой довольно сложную структуру. Известно, что он определяет и каталитическую активность, и специфичность, а поэтому должен обеспечить весьма тесное взаимодействие, точное в пространственном (геометрическом) и химическом отношении с молекулами субстрата или с их необходимыми частями. Для проявления активности этого центра необходима его трехмерная структура, кооперативное действие его различных участков, возникающее при их топографическом сближении и соответствующей ориентации. Следовательно, необходима определенная трехмерная структура всей молекулы фермента. В настоящее время принято считать, что активный центр не располагается Б пределах какого-либо небольшого отрезка одной пептидной цепи, а представляет совокупность групп, расположенных на двух или нескольких цепях или на различных участках одной, но сложно изогнутой пептидной цепи. Структуру подобного рода мы видим на гипотетической модели молекулы химотрипсиногена, представленной Г. Нейратом (рис. 12). На модели черными линиями показан активный центр химотрипсина, который занимает небольшую область и включает два остатка гистидина и один остаток серина. Здесь имеется одна единственная пептидная цепь, изогнутая таким образом, что различные участки ее (различные аминокислотные остатки) сближены и образуют каталитически активный центр. Ясно, что каталитическая способность химотрипсина зависит не только от наличия тех или иных функциональных групп, но главным образом от конфигурации всей макроструктуры белка, поскольку эта конфигурация определяет взаимное расположение групп активного центра. Отсюда ясно и значение стабильности макроструктуры (третичной структуры) белка для выявления и сохранения ферментативной активности. [c.74]

    Первым ферментом, пространственное строение которого было подробно изучено с помощью рентгеноструктурного анализа с разрешением до 2 A, позволяющим установить расположение всех тяжелых атомов в молекуле, оказался лизоцим яичного белка [16, 33]. Лизоцим представляет собой глобулярный белок с молекулярным весом около 14 ООО, содержащий 129 аминокислотных остатков. Пространственное строение молекулы поддерживается четырьмя дисульфидными и многочисленными гидрофобными и водородными связями. На рис. 26 приведена модель глобулы фермента с разрешением 6 A, схематически показано расположение молекулы субстрата в фермент-субстратном комплексе и приведена первичная структура молекулы. На этом рисунке изображены аминокислотные остатки, образующие поверхность щели — активного центра молекулы. Необычная форма ферментной глобулы, как бы разделяемой глубокой щелью на две неравные части, связана со строением субстрата фермента длинноцепочечных муконолисахаридов, построенных из чередующихся остатков N-аце-тилглюкозамина (АГА) и N-ацетилмураминовой кислоты (AMA), соединенных (1—4) гликозидными связями. Полимерный субстрат адсорбируется ферментом на отрезке, содержащем 6 остатков сахара, причем гидролизу подвергается только одна р-гликозидная связь между четвертым D и пятым Е остатками сахара. Положение разрываемой [c.110]

    Совокупность экспериментальных данных, теоретический анализ, аналогии с гемоглобином привели к построению модели, объясняющей механизм регуляции активности ферментов следующим образом. Молекула фермента состоит из нескольких одинаковых субъединиц, в каждой содержится один специфический центр для связывания различных типов молекул (частиц субстрата или химических регуляторов). Молекула белка, состоящая из определенного ограниченного числа единиц, всегда имеет ось симметрии. Полагают, что молекула фермента может быть в двух состояниях, сохраняя при каждом из них свою симметрию. Эти два состояния различаются по энергии связей между субъединицами в менее напряженном состоянии молекула фермента избирательно присоединяет активатор и субстрат, в более напряженном — ингибитор. Соединяясь с ферментом, данная разновидность молекул — субстрат, активатор или ингибитор — будет усиливать дальнейшее связывание молекул своей категории. При изменении относительных концентраций молекул субстрата или регуляторов равновесие может сдвигаться в ту или другую сторону. Так осуществляется взаимодействие (противоположно направленное или кооперативное) центров связывания в ферментной частице фермент реализует действие различных сигналов, переходя в одно из двух возможных равновесных состояний. [c.92]

    В настоящее время термин моделирование употребляется, вероятно, гораздо чаще, чем в какую-либо иную эпоху развития естествознания. Характерно, что моделирование стало целью исследований, с одной стороны, биохимиков, сравнивающих химическую природу ферментов и менее сложных соединений, а с другой — физиков и инженеров, интересующихся проблемами кибернетики. При этом химик обращает внимание, главным образом, на молекулы, которые по его представлениям и скрывают в своих недрах ключи к тайнам поведения клеточного вешества, а инженер, собирая реле и другие детали, имитирующие функции нейронов, ограничивается данными о небольшом числе свойств материалов. Он, несомненно, прав, действительно, если материал отвечает известным требованиям, о нем можно и не размышлять. Но такое разделение точек зрения может быть только временным. В действительности ход биохимической эволюции привел к формированию систем, в которых материал наилучшим образом удовлетворяет требованиям дальнейшего развития. Это развитие уже не связано с существенной перестройкой молекул материала. Ход развития все более сложных форм жизни действительно стал напоминать комбинирование готовых реле в руках конструктора. Однако, если мы ограничимся, с одной стороны, копированием систем связей организмов, а с другой — моделями отдельных ферментов, то мы упустим из виду закон, в силу которого возникает такая независимость от материала . [c.37]


    В настоящее время расшифрована структура первого фермента—рибонуклеазы. Этот фермент представляет собой поли пептидную цепь нз 129 остатков аминокислот. Цепь сложена определенным образом. Эти складки обеспечивают замыкание четырех ди-сульфидных мостиков между восемью цистеиновыми остатками (рис. 74). Исходя из этих соображений, можно построить определенную пространственную модель молекулы рибонуклеазы. [c.590]

    В случае фермента химотрипсина в качестве конкурентных ингибиторов часто выступают оптические антиподы асимметрических субстратов. Разница между оптическими изомерами подразумевает взаимодействие между ферментом и субстратом в трех точках, как это изображено схематически на рис. 123, на котором группы Р и р субстрата присоединены к поверхности молекулы фермента группами А и В, а па чувствительную связь К воздействует группа С. В случае оптического антипода субстрата взаимодействующие группы Р и Q точно так же могут быть соединены с группами А и В, однако группа В теперь слишком далеко удалена от воздействующей на нее функциональной группы С. Согласно этой модели, можно было ожидать, что константы диссоциации комплексов фермент-субстрат и фермент-ингибитор почти одинаковы. Поскольку экспериментально доказано, что константы диссоциации многих комплексов фермент-ингибитор соответствуют значениям субстрата, в этом случае можно [c.326]

Рис. 9-8. Пространственная модель молекулы ацетил-СоА. Ацетильная группа составляет лишь малую часть молекулы этого ко-фермента. 8-атом серы (см. также рис. 2-9). Рис. 9-8. <a href="/info/492362">Пространственная модель молекулы</a> ацетил-СоА. <a href="/info/97563">Ацетильная группа</a> составляет лишь малую <a href="/info/445072">часть молекулы</a> этого ко-фермента. 8-<a href="/info/673132">атом серы</a> (см. также рис. 2-9).
    Наиболее важная информация о строении молекулы химотрипсина (молекулярная масса 25 ООО) была получена с помощью рентгеност-зуктурных исследований последних лет, проведенных Блоу с сотр. 14, 17—19]. Как итог своих исследований авторы представили трехмерную модель молекулы химотрипсина (см. рис. 3). В согласии с ранними общими представлениями о строении белков было найдено, что все заряженные группы в молекуле этого фермента направлены в сторону водного растворителя (за исключением трех, которые выполняют специфические функции либо в механизме активации зимогена, либо в механизме действия активного центра). Особенности расположения аминокислотных остатков с гидрофобными боковыми цепями внутри белковой глобулы также согласуются с ранними представлениями о важной роли гидрофобных взаимодействий в стабилизации третичной структуры белков (см. гл. I). [c.127]

    Примером является модель управления синтезом фермента, предложенная Гудвином [12 1. В этой схеме регулирующий ген производит мРНК, взаимодействующую с рибосомами с образованием молекул фермента, которые катализируют некоторую реакцию. Одним из продуктов этой реакции является репрессор (понятие ре-прессора см. в [13 ]), поступающий назад к регулирующему гену и подавляющий его кинетическую активность (см. также [14 ]). — Прим. перев. [c.352]

    Исключительно высокие скорости и степень селективности ферментативных реакций с давних пор интригуют химиков-органиков. Многочисленные предположения, начиная с более чем столетней давности идеи ключ-замок Э.чи-ля Фишера и до более современной ковдегшии взаимоиндуцированного соответствия Кошланда были выдвинуты для объяснения этих явлений. Каковы бы ни были конкретные подробности различных интерпретаций, все они предполагают тот или иной род фиксации субстрата внутри полости активного центра конформационно подвижной молекулы фермента вблизи его реакционноспособных групп. Возникающее в результате взаимодействие между реакционными центрами фермента и реакционноспособной конформацией субстрата считается одной из главных причин высоких скоростей и селективности, свойственных ферментативным реакциям. Дизайн химических структур, пригодных для экспериментального исследования относительной важности различных факторов, определяющих скорости и селективность органических реакций как моделей определенных аспектов ферментативного катализа, был и остается областью, вызывающей напряженное внимание. [c.486]

    Для каталитической активности фермента существенное значение имеет пространственная структура, в которой жесткие участки а-спиралей чередуются с гибкими, эластичными линейными отрезками, обеспечивающими динамические изменения белковой молекулы фермента. Этим изме-неням придается больщое значение в некоторых теориях ферментативного катализа. Так, в противоположность модели Э. Фищера ключ-замок Д. Кощлендом была разработана теория индуцированного соответствия , допускающая высокую конформационную лабильность молекулы белка-фермента и гибкость и подвижность активного центра. Эта теория была основана на весьма убедительных экспериментах, сввдетельствующих о том, что субстрат индуцирует конформационные изменения молекулы фермента таким образом, что активный центр принимает необходимую для связывания субстрата пространственную ориентацию. Иными словами, фермент только в присутствии (точнее, в момент присоединения) субстрата будет находиться в активной (напряженной) Т-форме в отличие от неактивной Я-формы (рис. 4.10). На рис. 4.10 видно, что присоединение субстрата 8 к ферменту Е, вызывая соответствующие изменения конформации активного центра, в одних случаях приводит к образованию активного комплекса, в других—неактивного комплекса вследствие парущения пространственного расположения функциональных групп активного центра в промежуточном комплексе. Получены экспериментальные доказательства нового положения о том, что постулированное Д. Кощлендом индуцированное соответствие субстрата и фермента создается не обязательно изменениями [c.132]

    В принципе особенности на кривой у(5) могут возникать не в результате кооперативного взаимодействия субъединиц, но вследствие неравновесных конформационных свойств фермента. Допустим, что молекула фермента, переработавшая субстрат в продукт, выходит из реакции в активном конформационно измененном состоянии. Если время возвращения в исходное невозмущенное состояние превышает время между встречами фермента с субстратом или того же порядка, то кинетика будет имитировать кооперативную. Соответствующая модель была предложена Рабином [82] (см. также более позднюю работу [83]). Схема процесса показана на рис. 7.30. Здесь Ро — свободная от субстрата молекула фермента в исходной конформации, Р, — [c.460]

    Для исследования пространственной организации молекулы фермента в мембране широко используются методы химической модификации иепроникающими, гидрофобными и кросс-сшиваю-щими реагентами. В качестве непроникающих меток применяются также антитела к отдельным субъединицам. По имеющимся данным, предложена следующая модель организации цитохромоксидазы в мембране. [c.618]

    Нами было показано, что комплекс, образующийся нри оксигениро-вании солей одновалентной меди в растворе пиридина, во многих отношениях аналогичен ферменту тирозиназе [25]. И в ферменте, и в модельном катализаторе в анаэробных условиях медь находится в одновалентном состоянии в аэробных условиях происходит оксигенирование, причем на два атома меди поглощается один моль О 2- Стадия образования оксигенированного комплекса предшествует стадии окисления. В аэробных условиях часть меди сохраняется в одновалентном состоянии. Из двух атомов молекулы кислорода фермент и его модель переносят к субстрату только один. Субстрат восстанавливает часть меди до Си . Перекись водорода не участвует в процессе. Образуется промежуточный радикал, стабилизированный на ферменте или модели. Для фермента были предположены координационные связи Си—N и показано отсутствие геми-новоп структуры, для модели методом ЭПР найдена связь u N фта-лоцианин меди не является катализатором реакций, проводимых моделью. [c.210]

    Мультиплетная теория была распространена на ферментативныо реакции [86] и асимметрический катализ [87] (автор и Е. И. Клабунов ский). Найдено, что практически все ферментативные реакции обладают дублетными и триплетными индексами мультиплетной классификации. Высокая избирательность действия ферментов обусловлена поверхностным изоморфизмом заместителей субстрата и апофермента, на который заместители налагаются. Чем ближе структура заместителей и апофермента, тем полнее соприкосновение, что понижает энергетический барьер и в индексной группе, приводя к особо высокой активности ферментов. Плоское наложение спиртов на окись алюминия (см. стр. 364 наст, сб.) подтверждает данный эффект. Для моделей асимметрических ферментов и в растворах должен быть справедлив аналогичный принцип, но здесь соприкасаются заместители субстрата и соответствующие части молекул катализатора [86]. [c.326]

    Ферменты, присоединенные к хорошо охарактеризованным носителям, могут служить простыми. моделями биологических систем, которые находятся в живых клетках. Действительно, синтетические полимерные матрицы точно не воспроизводят ситуацию in vivo, однако исследование таких моделей является важным этапом в рассмотрении ферментативного катализа как гетерогенного процесса [38]. Преж де всего они механически более устойчивы. Хорошо определенная химическая структура матриц иозволяет изучать влияние только одного параметра, такого, как влияние гидрофобности или влияние заряженных частиц на ферментативное действие. Можно также изучать влияние микроокружения матрицы, а также эффекты, возникающие благодаря различным локальным концентрациям субстрата, продукта, протонов эффекторов. и т. д. Эти различия в локальных концентрациях возникают в результате каталитической активности ферментов или влияния соседних молекул ферментов. Влияние микроокружения на активность и стабильность иммобилизованных ферментов детально обсуждается в разд. 12.2 и 12.3. Влияние, оказываемое матрицей, с трудом можно отличить от влияния микроокружения, создаваемого в результате собственно ферментативной реакции как самого фермента, так и других окружающих ферментов. [c.439]

    Согласно симметричной модели, фермент представлен только двумя конформационными состояниями, находящимися в динамическом равновесии. При этом все субъединицы данной молекулы фермента находятся в одной и той же конформации промежуточных состояний нет, существуют только симметричные олигомеры (рис. 16.11). Равновесие характеризуется аллостерической постоянной L. В отсутствие лигандов, как правило, неактивное основное состояние Т (от англ. tense-напряженный) преобладает над активным состоянием R (от англ. relaxed-расслабленный). При добавлении лигандов они реагируют с теми моле- [c.488]

    Фриден [6, 7] предпринял интересное теоретическое исследование, исходя из гипотезы разделения центров. В первой своей работе он вывел кинетические уравнения для случая канонического односубстратного механизма, осложненного участием эффектора и центра его связывания в молекуле фермента. С помощью этих уравнений оказалось возможным выразить регуляторное поведение фермента, не прибегая к представлению о множестве взаимодействующих центров связывания субстрата. Во второй работе автор усложнил систему, введя представление о множестве центров, и провел сравнение различных моделей механизма. Этот метод позволяет различать механизмы процесса, не прибегая к предположению о существовании неактивных субъединиц. В предложенной модели, которая представляет собой дальнейшее развитие модели Моно (см. ниже), вводится представление о частичном связывании субстрата как субъединицами, так и олигомерной формой фермента .  [c.240]

    Теперь нам остается только заменить абстрактный белок апофермен-том, а гипотетического партнера — субстратом, и мы получим модель взаимодействия фермента с субстратом она позволяет судить, в каких случаях фермент соединяется с субстратом, а в каких случаях — нет. Может быть, поверхность белковой молекулы устроена так, что ей подходят только молекулы субстрата определенного сорта  [c.39]

    Большие успехи в азуч ии пространствеиного строения ферментов достигнуты на основе метода рентгеиоструктуряого анализа, когда удается получить точный рентгеновский снимок фермента в кристаллическом состоянии. Введя в молекулу фермента какой-либо тяжелый атом (например, атом металла), хорошо заметный на рентгенограмме и используемый как центр отсчета, можно построить трехмерные модели ряда ферментов и таким образом как бы увидеть их реальные молекулы с точными координатами отдельных ато- [c.47]

    Существование дополнительных кинетических путей подразумевает определенные особенности структуры КПА. Субстраты, которые способны активировать или ингибировать свой гидролиз, должны связываться более чем на одном центре. Модификаторы, по-вн-димому, тоже присоединяются одновременно с субстратами. Комплексы с модификаторами или субстратами, связанными на нескольких центрах, не подвергались прямому кристаллографическому изучению. Однако моделирование позволило найти способ связывания, объясняющий кинетический эффект модификатора, КБЗ-Gly [2, 3] (рис. 15.12). Если КБЗ-группа этого соединения находится вблизи остатка Туг-198, а группа С00 взаимодействует с остатком Arg-71, то возможны помехи ориентации субстрата в продуктивном комплексе. Для объяснения ингибирования субстратом при гидролизе КГФ было предположено, что вторая молекула КГФ образует с ферментом те же связи, что и КБЗ-Gly [2, 3] (рис. 15.12). Однако эта модель не может полностью объяснить кинетику субстратного ингибирования. В предполагаемой области связывания субстрата трудно разместить более двух молекул ацил-пептидов, в то время как кинетический анализ указывает на присоединение четырех или пяти молекул субеграта в растворе [85] и более чем двух в кристалле [97]. Высокий кинетический порядок реакции может объясняться связыванием на других участках молекулы фермента или более сложным образом [28]. [c.533]

    На рис. 1.81 представлены две полученные этим методом модели структуры кальмодулин-чувствительной аденилатциклазы мозга быка [624]. В основу реконструкции положены единичные наклонные серии изображений двух молекул фермента. "Нулевые" проекции молекул близки к приведенным на рис. 1.80, а,в и сильно отличаются друг от друга, поскольку молекулы имеют различную ориентацию относительно пленки-подложки. Тем не менее, как видно на рис. 1.81, обе модели имеют одинаковые размеры и схожи по форме. [c.212]

    Исходя из принципов, изложенных в разделе 7.4, была построена структурная модель комплекса ферментов ЦТК [15]. Принято, что симметрия комплекса ферментов ЦТК относится, как и симметрия а-кетоглутаратдегидрогеназного комплекса, к точечной группе Оз. Число асимметричных молекул каждого типа соответствует порядку группы [2], который для группы Оз равен шести. Следовательно, комплекс должен включать по шесть молекул каждого фермента. [c.175]

    Аллостерический фермент был исследован с помощью ряда физических методов, и была найдена некая физическая характеристика Р, которая зависит от конформации или формы молекулы фермента. Д-р А изучает связывание аналога субстрата 8 (который присоединяется к месту связывания субстрата, но не превращается в продукт). Кривая связывания имеет вид гиперболы. Д-р А измеряет(степень насыщения фермента 8 ) и в то же время находит величину Р при каждом значении Примечательно, что Р измен ся пропорционально изменению з д, относительное изменение Р равно — 0,30, когдаз д, = 0,30 оно равно 0,60, когда= 0,60 и т.д. Затем д-р А измеряет связывание аллостерического ингибитора -I с ферментом, которое описывается сигмоидной кривой. Он обнаруживает, что, когда I связывается с ферментом, никаких изменений в величине Р не наблюдается. Д-р А приходит в возбуждение и восклицает Фермент ведет себя точно так, как я предсказывал, исходя из модели Моно — Уаймена — Шанжё (МУШ) для аллостерических эффектов . Он описывает свои эксперименты и выводы и посылает рукопись в научный журнал. В ответ редактор пишет д-ру А Мы можем опубликовать Ваши данные, но в Ваших выводах имеется небольшое противоречие. Хотя изменение Я при связывании 8 ферментом и согласуется с предсказаниями модели МУШ, модель также предсказывает некоторые изменения в характеристике Р, когда с белком связывается I . Кто прав, д-р А, редактор, или оба неправы Объясните ваш ответ. [c.120]


Смотреть страницы где упоминается термин Модели молекулы ферментов: [c.486]    [c.201]    [c.58]    [c.308]    [c.106]    [c.210]    [c.384]    [c.422]    [c.425]    [c.158]    [c.6]    [c.52]    [c.145]    [c.139]    [c.254]    [c.144]    [c.153]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте