Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие между центрами связывания

    Взаимодействие между центрами связывания [c.15]

    Однако в случае представленного на рис. 15.4 выпуклого графика Скэтчарда нельзя предположить наличие независимых центров отдельных типов, так как уравнения (15.32) и (15.33) описывают только вогнутые кривые. Следовательно, выпуклые кривые являются окончательным доказательством того, что существует взаимодействие между центрами связывания ф(р) уменьшается по мере увеличения р. Такие системы рассматриваются в следующих разделах. [c.16]


    Отличительной особенностью ряда аллостерических ферментов является наличие в молекуле олигомерного фермента нескольких активных центров и нескольких аллостерических регуляторных центров, пространственно удаленных друг от друга. В аллостерическом ферменте каждый из двух симметрично построенных протомеров содержит один активный центр, связывающий субстрат 8, и один аллостерический центр, связывающий эффектор М т.е. 2 центра в одной молекуле фермента (рис. 4.4). Получены доказательства, что для субстрата аллостерические ферменты, помимо активного центра, содержат и так называемые эффекторные центры при связывании с эффекторным центром субстрат не подвергается каталитическому превращению, однако он влияет на каталитическую эффективность активного центра. Подобные взаимодействия между центрами, связывающими лиганды одного типа, принято называть гомотропными взаимодействиями, а взаимодействия между центрами, связывающими лиганды разных типов, —гетеротропными взаимодействиями. [c.126]

    В случае связывания кислорода гемоглобином человека уравнение (15.39) приводит к значению ДО, j = —2 ккал моль" центр для / = 1 иу = 4. Это означает, что взаимодействие между центрами приводит к тому, что энергия связывания четвертой молекулы кислорода на 2 ккал/моль выще энергии связывания молекулы кислорода с гемоглобином, имеющим три свободных центра. [c.18]

    Во многих биологических системах при связывании лиганда одного сорта с макромолекулой имеет место взаимодействие центров. Обычно обнаруживают кооперативные взаимодействия между центрами, и их можно проанализировать разработанными методами. Другим типом взаимодействия является взаимодействие между центрами одной и той же макромолекулы, в которых связываются лиганды разного сорта. В этом случае особенно интересны и полезны уравнения, описывающие взаимное влияние лигандов на их связывание. Энергия взаимодействия, характеризующая такое влияние, обычно составляет от О до л 2,5 ккал/моль. [c.38]

    Таким образом, используя ИУК, можно предположить место локализации участка связывания молекул аскорбиновой кислоты в активном центре пероксидазы. По-видимому таким участком является дистальная область активного центра фермента. Связывание ИУК в этой области при низких концентрациях субстрата создает конкуренцию за участок связывания, проявляемую в реакциях пероксидазного окисления аскорбиновой кислоты, когда в активном центре фермента связывается, по крайней мере, одна молекула субстрата. При связывании двух и более молекул аскорбиновой кислоты с пероксидазой наблюдается ускорение реакции окисления аскорбиновой кислоты, что, возможно, вызвано кооперативными взаимодействиями между участками связывания этих двух молекул субстрата. [c.73]


    Использование ИУК в качестве ингибитора реакций пероксидазного окисления АК позволило определить место локализации участка связывания молекул аскорбиновой кислоты в активном центре пероксидазы. По-видимому, таким участком является дистальная область активного центра пероксидазы. Связывание ИУК в этой области при низких концентрациях субстрата создает конкуренцию за участок связывания, проявляемую в реакциях пероксидазного окисления АК, когда в активном центре фермента связывается по крайней мере одна молекула субстрата. При связывании двух и более молекул АК с пероксидазой наблюдается ускорение реакции окисления АК, что, возможно, вызвано кооперативными взаимодействиями между участками связывания этих двух молекул субстрата. Использование ИУК позволяет высказать предположение, что участки связывания молекул АК пространственно удалены проявлением этого является неконкурентный характер ингибирования пероксидазы ИУК при окислении АК в присутствии второй молекулы субстрата. При этом связывание ИУК в активном центре пероксидазы создает препятствие [c.137]

    В этом случае все микроскопические константы образования оказываются равными и представляют собой одну истинную константу, относящуюся ко всем центрам связывания. Действительно, уравнение (4-30) совпадает с аналогичным уравнением, описывающим присоединение одного протона (или какого-нибудь другого лиганда) к молекуле, обладающей одним центром связывания. Это согласуется с нашим, уже упоминавшимся выше интуитивным представлением, согласно которому раствор вещества, молекулы которого содержат п независимых центров связывания, должен вести себя точно так же, как в п раз более концентрированный раствор вещества с одним центром на молекулу. Таким образом, все наши расчеты только подтверждают выводы, и так логически вытекающие из физических представлений. Однако в действительности центры связывания в одной макромолекуле редко бывают абсолютно независимыми почти всегда между ними есть какое-то взаимодействие, и для этих случаев вполне применимы уравнения, выведенные нами для определения констант, относящихся к отдельным стадиям процесса связывания, н истинных констант. [c.258]

    Может ли взаимодействие между группами приводить к увеличению значений констант, характеризующих последовательные этапы присоединения лигандов С первого взгляда это кажется невозможным, поскольку означает, что истинная константа связывания для второго протона больше, чем для первого, а здравый смысл подсказывает нам, что первый протон будет соединяться с тем центром, для которого константа связывания больше, а не меньше. Посмотрим, однако, на экспериментальную кривую связывания протонов с анионом тиамина (рис. 4-4). По сравнению с аналогичной кривой для ацетат-иона она не только не растягивается, а, напротив, становится вдвое более крутой. Это явление объясняется некоторыми удивительными особенностями химического строения тиамина (витамина В ). При определенных условиях этот витамин может кристаллизоваться в виде натриевой соли желтого цвета структура соответствующего аниона показана ниже. Слабое связывание протона с одним из атомов азота [уравнение (4-31)] приводит к уменьшению электронной плотности на соседнем атоме углерода, к которому присоединяется отрицательно заряженный атом серы, замыкая кольцо неустойчивой трициклической формы тиамина.  [c.261]

    Молекула имеет два идентичных центра связывания для лиганда X. Свободная энергия взаимодействия между лигандами, связанными с одной и той же молекулой, е, определяется как изменение свободной энергии связывания лиганда с молекулой, обусловленное связыванием первого лиганда с соседним центром. Покажите, что если [c.333]

    И. Линейная молекула имеет очень большое число идентичных центров связывания лиганда X. Свободная энергия взаимодействия между лигандами, связанными с расположенными по соседству друг с другом центрами, равна е. Считается, что взаимодействие между лигандами, не являющимися ближайшими соседями, пренебрежимо мало. Если обозначить константу связывания с центром, расположенным рядом с незанятыми центрами, через Кт, то выражение для изотермы связывания будет иметь вид [c.333]

    Максимальное число центров связывания, найденное для иммобилизованного гаптоглобина, согласуется с известным значением— четыре центра на 1 молекулу гаптоглобина в растворе. Следовательно, гаптоглобин, присоединенный к агарозе, в целом обладает теми же свойства.ми по связыванию гемоглобина и его а- и 3-цепей, что и в растворе, и вследствие этого пригоден для детального исследования механизма взаимодействия между гаптоглобином и гемоглобином или его субъединицами. [c.374]

    В предыдущих разделах были кратко рассмотрены причины значительно более поверхностного описания деталей стереохимии при рентгеноструктурном анализе белков по сравнению с описанием малых низкомолекулярных соединений. Однако для успешного исследования зависимости между структурой и активностью требуется более высокая точность структурных данных. Поскольку мы стремимся к более глубокому пониманию поведения активного центра или функциональных областей этих биологических макромолекул, необходимо повысить разрешающую способность дифракционных методов. Малые изменения конфигурации аминокислотных остатков в области центра связывания металла и изменения стереохимии комплексов металла в ходе каталитического процесса должны быть тщательно изучены, в особенности при исследовании ферментов, требующих участия иона металла. Как указывалось в разд. 1.2.1, описание этих структурных изменений позволяет определить стереохимическую природу электронных перестроек, происходящих при взаимодействии молекул субстрата и фермента и ответственных за каталитическое действие. [c.24]


    На тех же принципах может основываться регуляция связывания субстрата в активных центрах, не содержащих металла, и регуляция равновесий, в которых участвует субстрат. Мы сделали вывод, что полипептидная цепь удерживает в активном центре ион НО2 при рн 7 за счет кооперативного взаимодействия между двумя центрами белка, связывающими ионы № и НОг" соответственно (разд. 8.6). [c.240]

    Простейший механизм состоит в изменении валентного угла Со—С—С, однако можно рассмотреть и другие пути. Мы уже отмечали в другой нашей работе ([181 ], стр. 70), что корриноиды обладают весьма гибкой структурой (не только боковые цепи, но и корриновое кольцо) и что эффекты, затрагивающие одну часть молекулы, легко могут передаваться на другие ее части (или путем электронного взаимодействия между аксиальными лигандами, ионом кобальта и сопряженным корриновым кольцом благодаря стерическому отталкиванию, или вследствие притяжения, обусловленного образованием водородных связей) . Мы полагаем далее, что сдвиг равновесия при связывании субстрата обусловлен изменением кон( юрмации белка, которое усиливает напряжение в координационной сфере кобальта и которое снимается после израсходования и удаления субстрата. Такой механизм, который допускает образование чрезвычайно реакционноспособного радикала Н в то время, как субстрат находится в активном центре, должен также препятствовать необратимым реакциям атома С5 с кислородом и с адениновым кольцом, которые наблюдаются в растворе. [c.249]

    Совокупность экспериментальных данных, теоретический анализ, аналогии с гемоглобином привели к построению модели, объясняющей механизм регуляции активности ферментов следующим образом. Молекула фермента состоит из нескольких одинаковых субъединиц, в каждой содержится один специфический центр для связывания различных типов молекул (частиц субстрата или химических регуляторов). Молекула белка, состоящая из определенного ограниченного числа единиц, всегда имеет ось симметрии. Полагают, что молекула фермента может быть в двух состояниях, сохраняя при каждом из них свою симметрию. Эти два состояния различаются по энергии связей между субъединицами в менее напряженном состоянии молекула фермента избирательно присоединяет активатор и субстрат, в более напряженном — ингибитор. Соединяясь с ферментом, данная разновидность молекул — субстрат, активатор или ингибитор — будет усиливать дальнейшее связывание молекул своей категории. При изменении относительных концентраций молекул субстрата или регуляторов равновесие может сдвигаться в ту или другую сторону. Так осуществляется взаимодействие (противоположно направленное или кооперативное) центров связывания в ферментной частице фермент реализует действие различных сигналов, переходя в одно из двух возможных равновесных состояний. [c.92]

    Макромолекула имеет шесть центров связывания лиганда Ь. Исследователь может определить три макроскопические константы диссоциации, характеризующие связывание лиганда, К .К и Ку Он нашел, что = 15 /Г, и = 8/Г,. Ои утверждает, что этот результат ясно показывает отрицательное (антикооперативное) взаимодействие между центрами и что график Скэтчарда для этой системы, несомненно, представляет собой выпуклую кривую. Оппонент не соглашается с исследователем и говорит, что имеющиеся данные указывают на отсутствие взаимодействия между центрами и что он попытается предсказать относительные значения К. для других констант. Кто иэ них прав и почему Можно ли предсказать значения других X. Если да, то сделайте это. Если нет, то объясните, почему нельзя предсказать значения других констант. [c.39]

    Модель Михаэлиса-Ментен оказала большое влияние на развитие энзимологии. Достоинство этой модели-в простоте и широкой применимости. Все же не все ферменты подчиняются кинетике Михаэлиса-Ментен. В первую очередь-это большая группа аллостерических ферментов, для которых зависимость скорости реакции V от концентрации субстрата [8] имеет сигмоидную форму, а не гиперболическую, как предсказывает уравнение Михаэлиса-Ментен [уравнение (15)]. Вспомним, что кривая связывания кислорода для миоглобина-гиперболическая, тогда как для гемоглобина-сигмоидная. Ситуация с ферментами совершенно аналогична. В аллостерических ферментах один активный центр в молекуле фермента оказывает влияние на другой активный центр в той же молекуле. В результате такого взаимодействия между субъединицами связывание субстрата становится кооперативньш , и кривая зависимости V от [c.118]

    В итоге сорбционных взаимодействий между боковыми химически инертными группами субстрата и комплементарными участками активного центра происходит связывание субстратной молекулы на ферменте в положении, стереоспецифически ориентированном по отношению к нуклеофилу активного центра (как это показано на рис. 33). Силы сорбции стабилизируют тем самым переходное состояние реакции и приводят поэтому к ее ускорению (см. гл. II, схема 2.10). [c.135]

    Хорошо известно, что ионы кальция поступают в цитоплазму в ответ на нервную стимуляцию и что именно они вызывают различные ответные реакции в организме, такие, например, как мышечное сокращение. Весьма вероятно, что в результате присоединения ионов Са- к специфическим центрам связывания (как это имеет место, например, в каль-ций-связывающем белке карпа) в молекуле происходят конформационные изменения, инициирующие биологические ответные реакции. Кальций-связывающий белок содержит интересную систему внутренних полярных групп, связанных между собой специфическим образом с помощью водородных связей (рис. 4-5, ). Присоединение ионов кальция может вызывать перестройку этих внутренних связей (гл. 2, разд. Б.7) и изменять тем самым характер взаимодействия этого белка (функция которого точно не известна) с другим белком (ср., например, с действием тропонина С, разд. Е.1). В других кальций-связывающих центрах в белках содержатся остатки у-карбоксиглутаминовой кислоты, способной образовывать хелатные комплексы (дополнение 10-Г). [c.270]

    Пару субъединиц, которые удерживаются вместе за счет контактов типа ау и связаны осью симметрии второго порядка (рис. 4-9, А), мы буде.м называть изологическим димером. Каждая точка одной субъединицы (например, а) может быть совмещена с такой же точкой другой субъединицы при повороте вокруг оси симметрии на 180°. Точки с я с одной субъединицы (см. рис. 4-9, А) расположены точно напротив соответствующих точек другой субъединицы. В центре структуры, изображенной на рпс. 4-9, А, имеется полость, поэтому группы с я с в действительности нг соприкасаются и основной вклад в связывание между субъединицами вносят парные взаимодействия типа a между группами, удаленными от оси симметрии. Однако реальный -белковый димер может и не иметь такой лолости. Пара идентичных связей в изологи-ческом димере называется обычно одиночной изологической связью. Такого рода связь включает парные взаимодействия между комплемен-тарны.ми группами (а/) и образуется за счет наличия пар идентичных групп, расположенных вдоль оси. Изологическое связывание играет исключительно большую роль в олигомерных ферментах, причем высказывалось даже предположение, что оно возникло на самых ранних стадиях эволюции ферментов. Вполне возможно, что сначала практически никакой комплементарности между взаимодействующими субъединицами не существовало и они соединялись за счет неапецифических взаимодействий в результате контактирования двух гидрофобных участков [42], однако в дальнейшем эволюция привела к появлению более специфических парных взаимодействий. [c.279]

    Связывание аденозина с поли(и) было изучено методом равновесного диализа (Huang, Ts o, JMB, 16, 523, 1966). В приведенной ниже таблице указаны доли занятых центров в молекулах поли(и), т. е. значения у при разных молярных концентрациях свободного аденозина (А) в растворе при 5°С. Определите истинную константу ассоциации для присоединения аденозина к поли(и) и свободную энергию взаимодействия между расположенными по соседст- [c.333]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    В отношении субстрата, так и ингибитора, имеющих обычно совершенно различные трехмерные структуры и, таким образом, шллостеричных- [152]. Последнее непременно предполагает невозможность для ингибитора связываться в активном центре, подобно классическим (изостерическим) ингибиторам. Большое число данных, включая рентгеноструктурные, подтверждают предположение, что в регуляторных ферментах имеются отличающиеся друг от друга каталитические (субстрат-связывающие) и ал-лостерические (ингибитор-связывающие) центры. Эффект связывания ингибитора в аллостерическом центре передается через белок — посредством ряда конформационных изменений (часто путем легко регистрируемого взаимодействия между субъединицами) и в конечном счете влияет на активный центр. Таким путем не участвующие в реакции, катализируемой определенным ферментом, метаболиты могут регулировать его активность, модифицируя либо связывание субстрата, либо каталитическую функцию, либо, наконец, оба этих процесса [147, 148]. [c.538]

    Сравнивая связывание различных дегидрогеназ и киназ па N - (6-аминогексил) -5 -АМР—сефарозе и Р - (6-аминогексил) -Р -(5 -аденозин) пирофосфат—сефарозе, Харвей и др. [9] выразили силу взаимодействия между ферментом и иммобилизованным нуклеотидом с иомоплью так называемой связываемости . Этот параметр представляет собой концентрацию хлорида калия (мМоль/л) в центре пика фермента при элюировании фермента линейным градиентом концентрации КС1 (рис. 4.6 и табл. 4.2). Для определения константы диссоциации комплекса лактатдегидрогеназы с №-(6-аминогексил)-5 -АМР, связанным с сефарозой, Лоу и др. [11] использовали линейную зависимость между количеством связанного фермента и концентрацией иммобилизованного нуклеотида. [c.58]

Рис. 9-19. Схематическая модель взаимодействия между субъединицами аллостерического фермента. У многих аллостерических ферментов центр связывания субстрата и центр связывания модулятора расположены в разных субъединицах-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении положительного модулятора М к его специфическому центру в регуляторной субъединице передастся посредством конформационных изменений каталитической субъединице, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. После отделения модулятора М от регуляторной субъединицы фермент вновь переходит в неактивную или менее активную форму. Рис. 9-19. <a href="/info/1585918">Схематическая модель</a> <a href="/info/1387194">взаимодействия между субъединицами</a> <a href="/info/70324">аллостерического фермента</a>. У многих <a href="/info/1349731">аллостерических ферментов центр</a> <a href="/info/100571">связывания субстрата</a> и <a href="/info/101606">центр связывания</a> модулятора расположены в <a href="/info/1532036">разных субъединицах</a>-соответственно каталитической (С) и регуляторной (К). Сообщение о присоединении <a href="/info/1402605">положительного модулятора</a> М к его специфическому центру в <a href="/info/103082">регуляторной субъединице</a> передастся посредством <a href="/info/2999">конформационных изменений</a> <a href="/info/100178">каталитической субъединице</a>, которая становится активной и ее сродство к связывающемуся с ней субстрату 8 новыщается. <a href="/info/1660286">После отделения</a> модулятора М от <a href="/info/283438">регуляторной субъединицы фермент</a> вновь переходит в неактивную или менее активную форму.
    Можно сделать вьшод, что в гидропероксидазе механизм кооперативного взаимодействия между двумя центрами белка, который проявляется в миоглобинах и гемоглобинах, развился в одном определенном направлении, которое позволяет им связьшать протон вместе с одноосновным анионом. Более высокая степень кооперативности, вероятно, связана с тем, что обе связываемые частицы заряжены. Это обеспечивает функционирование механизма, облегчающего связывание в активном центре фермента анионов сильных неорганических кислот, таких, как С "" и I (например, при ферментативном галогенировании), которые с трудом связываются с металлами и с трудом образуют ионные пары. Взаимодействие с ними идет по схеме [c.209]

    Попытки установить состояние окисления молибдена в ксантиноксидазе, ингибированной аллоксантином, путем титрования феррицианидом были неудачны из-за наличия неактивной формы фермента и лабильности сульфгидрильной группы [57]. Поэтому последняя была блокирована фенилмеркурацетатом. Количество неактивного фермента устанавливалось, исходя из стехиометрии ингибирования аллоксантином, для которого требуется 0,73 моля ингибитора на 1 моль фермента. Тот же результат получен радио-изотопным методом по связыванию аллоксантина, меченного Очевидно, аллоксантин связывается только с полностью функционально активными центрами. Разница между этими центрами и функционально неактивными центрами неизвестна. Взаимодействие этих центров с нефункциональными центрами другой природы неизвестно. Опыты по титрованию феррицианидом после введения поправки на неактивный фермент показывают, что на каждый моль фермента тратится по два эквивалента электронов и что реокисление Мо(1У) ->Мо(У1) сопровождает реактивацию фермента. Дальнейшим подтверждением этого служит стехиометрия реакции фермента с аллопуринолом. На каждый моль активных центров образуются 3 моля аллоксантина. По данным оптической и ЭПР-спектроскопии, аллопуринол восстанавливает железосерные и флавиновые хромофоры. Каждый железосерный хромофор принимает по одному электрону. Следовательно, за счет железосерных хромофоров и флавиновой простетической группы образуется 2 моля аллоксантина. Восстановление Мо(У1) до Мо(1 У) позволяет объяснить образование третьего моля продукта реакции. [c.284]

    Кроме того, из изучения спектров ЯМР широких линий было установлено, что процесс сорбции воды в системе имеет многослойный характер. Было установлено, что при низких концентрациях сорбированная вода обладает крайне низкой подвижностью, так что в виде отдельной жидкой фазы она не обнаруживается. Это приписано в свою очередь локальному связыванию молекул воды соседними полярными группами в пространственной сетке отвержденной эпоксидной смолы. Результаты, представленные в настоящей работе, могут быть полезными для более углубленного понимания процессов взаимодействия в системе эпоксидная смола — вода. В то время как сорбционное поведение при низких температурах отклоняется от закономерностей фиковской диффузии, имеется указание, что с повыше-ние.м температуры система начинает вести себя как идеальная. Эта тенденция находится, разумеется, в соответствии с тем, что вероятность появления любого центра взаимодействия уменьшается с увеличением средней энергии системы. Анализ инфракрасных спектров показывает, что существенным фактором в процессе пластификации может быть разрыв присутствующих в сетке водородных связей. Помимо того, легкость, с которой рвутся замещенные водой водородные связи по сравнению со связями между полимерными сегментами, имеет важное значение при обсуждении состояния сорбированной воды в макромолекулярных системах. При измерениях теплоты плавления показано [13—14], что наблюдаются резкие нарушения в плавном ходе термодинамических свойств сорбированной воды в полимерных системах, содержащих полярные группы. Понятие связанная вода часто используется для объяснения этих фактов. Однако калориметрические данные, полученные в работах [15, 16], наряду с другими указывают на то, что термическая стабильность воды, связанной с полимером, не больше стабильности жидкой воды в объеме. Это подтверждает точку зрения, согласно которой биполярные взаимодействия в мономерных и полимерных системах отличаются незначительно. Вместо этого следует принимать во внимание, что физически напряженные полимерные сегменты подвергаются предельным пространственным флуктуациям по сравнению с флуктуациями между двумя малыми молекулами. При низких температурах все полимерные сегменты эффективно замораживаются, а взаимодействие между малыми молекулами крайне затруднено. По мере повышения температуры системы ббльшая тепловая подвижность молекул сорбированной воды проявляется в более раннем протекании диссоциации водородных связей, содержащих воду. Эти предсказания находятся в согласии с данными ЯМР и инфракрасной спектроскопии. [c.477]

    Во-вторых, во всех остальных случаях каждая из равновесных концентраций Bip, Вгр зависит от всех параметров системы. При этом лиганды Li и L2 взаимно влияют на связывание, конкурируют друг с другом (рис. 108). Это дает возможность использовать процесс взаимодействия двух лигандов с одним центром связывания для конкурентного определения констант комплексообразования одного из лигандов (при условии, что константа ассоциации другого лиганда известна). Можно также определить концентрацию лиганда, если известны все остальные параметры или имеются калибровочные кривые. Однако необходимо отметить, что конкуренция между лигандами Li и L2 за центр связывания (см. соотношения (10.113)) проявляется только в том случае, если СагЬгр и 1-b/ aiLip соизмеримы (на рис. 108 это соответствует концентрациям Ьга в районе точки перегиба кривой), и отсутствует при /Са2Ь2а<1 (на рис. 108 — участок кривой с низкими концентрациями Ьга). Аналогично из выражения (10.114) можно подучить и условия конкурентного влияния лиганда Li на связывание лиганда Ьг. [c.242]

    Изменение числа кислотных центров при получении катализаторов различными методами обусловлено изме-1ением глубины взаимодействия между компонентами. Степень связывания второго компонента зависит не только от метода приготовления, но и от содержания его в эбразце с увеличением последнего доля связанного [c.359]

    На глобуле регуляторного фермента имеется несколько специфических сайтов взаимодействия с низкомолекулярными веществами. Такими сайтами являются активный центр, аллостерические центры, центры посадки на мембрану. У некоторых ферментов количество таких специфических сайтов к различным веществам достигает десяти. Таким ферментом является, например, глутаминсинтетаза, у которого имеется активный центр и по крайней мере восемь центров для связывания различных веществ [10]. В основном количество сайтов определенного типа равно количеству субъединиц в ферменте, а на каждой субъединице имеются все сайты специфичности. В результате мутации может измениться один из таких сайтов, и тогда фермент, состояпц й из субъединиц только такого типа, изменит свои регуляторные свойства. Такими изменениями могут быть полная или частичная утрата чувствительности к эффектору, появление более сильного сродства к тому же самому или возникновение специфичности к новому эффектору. Если в клетке присутствуют нормальный и мутантный аллели, то в ней будут находиться изоферменты как нормальные, так и с мутантными субъединицами., У гибридных изоферментов изменение активности в зависимости от концентрации эффектора будет промежуточным по сравнению с белком, составленным из одних только нормальных субъединиц, и максимально измененным для белка, составленного из субъединиц только мутантного типа. При этом закон изменения активности под действием эффектора у фермента, состоящего из мутантных субъединиц, будет определяться типом взаимодействия между специфическими центрами. [c.101]

    Не решены также другие аспекты взаимодействия металлов с миотлобином. Среди них следует назвать взаимозависимость между очевидным максимальным числом центров связывания при нейтральных значениях pH (приблизительно 7 как для меди, так и для цинка) и присутствием 12 гистидиновых остатков в белке. Таким образом, некоторые имидазольные группы, по-видимому, недоступны для реакции с ионом металла, несмотря на то, что белок денатурируется, или по крайней мере они очень мало реак- [c.291]


Смотреть страницы где упоминается термин Взаимодействие между центрами связывания: [c.259]    [c.259]    [c.345]    [c.363]    [c.13]    [c.122]    [c.390]    [c.183]    [c.58]    [c.183]    [c.191]    [c.280]    [c.159]    [c.235]    [c.95]    [c.277]    [c.292]   
Смотреть главы в:

Биофизическая химия Т.3 -> Взаимодействие между центрами связывания




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте