Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция полимеров при полимеризации

    В промышленности, главным образом в микроэлектронике, широко применяют пленки, полученные в плазме. Плазмохимические пленки могут быть кристаллическими или аморфными. Их толщина колеблется от долей до сотен микрометров. При осаждении в плазме тонких полимерных пленок на пористых основах образуются мембраны, применяемые в мембранной технологии для разделения растворов солей, органических соединений и газовых смесей. Такие пленки получают двумя методами — полимеризацией углеводородов или деструкцией полимеров. Плазмохимической поверхностной обработке можно подвергать различные материалы — от металлов и их сплавов до полимеров. В результате обработки полимеров в неравновесной плазме изменяются смачиваемость, молекулярная масса и химический состав поверхностного слоя (толщиной до 10 мкм). [c.298]


    Меркаптанов содержится в нефтях меньше, чем сульфидов или тиофенов. Однако известны нефти, фракции которых являются огромным потенциальным источником меркаптанов. В настоящее время находят применение только синтетические меркаптаны. Из меркаптанов получают защитные препараты препараты для декорирования стекла, металла, пластмасс присадки к топливам и маслам препараты для сельского хозяйства ускорители полимеризации каучуков ингибиторы окисления и деструкции полимеров и др. [c.52]

    Вместе с тем при рассмотрении кинетики полимеризации и поликонденсации, а также кинетики деструкции полимеров возникают некоторые специфические проблемы. В первую очередь это вопрос о среднем молекулярном весе образующегося полимера, который является одной из важнейших характеристик полимера. Кроме того, поскольку в любом процессе образования или деструкции полимера получается сложная смесь полимерных молекул разной длины, то существенным является вопрос о количественном соотношении молекул различной длины. Обычно это соотношение задают как молярную ( и ) или весовую (7,) долю молекул полимера с числом звеньев. г  [c.354]

    ДЕПОЛИМЕРИЗАЦИЯ — реакция отрыва мономеров от цепи макромолекулы, процесс обратный полимеризации. Д. поддается только ограниченное количество полимеров. В отличие от других случаев деструкции полимеров, когда образуется полидисперсная смесь молекул с разной длиной цепи, при Д. получают большое количество мономера. Так, при сухой перегонке капрона, полистирола, полиметилметакрилата с [c.85]

    ПОЛИАКРИЛОВАЯ КИСЛОТА — полимер акриловой кислоты. П. к.— твердый продукт белого цвета, нерастворим в мономере и в большинстве органических растворителей, растворяется в воде, формамиде. Выше 230—240° С начинается деструкция полимера без перехода в высокоэластичное состояние. Под действием УФ-лучей П. к. флуоресцирует ярко-голубым светом с красным оттенком. П. к. используют в качестве эмульгатора, как добавки, повышающие вязкость растворов и суспензий, для шлихтовки искусственного волокна, как полупродукт для синтеза многих полимеров, которые нельзя получить полимеризацией мономеров. [c.195]

    Деструкция по закону случая. Обычно по закону случая протекает деструкция полимеров, полученных поликонденсацией или ступенчатой полимеризацией. Деструкция молекулы, состоящей из п мономерных звеньев, происходит в результате разрыва одной из п 1 равноценных связей с константой скорости к. [c.239]


    Для анализа экспериментальных данных (распределение продуктов ферментативной деструкции полимера в зависимости от степени полимеризации, или средняя степень полимеризации продуктов гидролиза) используют теоретические модели ферментативной деструкции полимеров — обычно весьма детализированные, но, как правило, содержащие сильные (и неочевидные) допущения, лишающие смысла всю детализацию. К ним относятся допущения об аддитивности показателей сродства индивидуальных сайтов, о постоянстве гидролитического коэффициента независимо от способа связывания субстрата и степени его полимеризации, о постоянстве инкремента свободной энергии активации действия фермента при последовательном заполнении его сайтов и т. д. Несоответствие теоретических данных, рассчитанных с помощью подобных упрощенных моделей, с экспериментальными нередко трактуется как доказательство в пользу существования таких неординарных механизмов, как множественная атака. При этом в работах, как правило, отсутствует критический анализ ограничений модели, и в частности анализ альтернативных механизмов действия фермента без априорного привлечения неординарных механизмов. [c.103]

    Накопленный к настоящему времени опыт теоретического рассмотрения кинетики ферментативной деструкции полимеров позволяет утверждать, что иа экспериментально определяемую величину константы Михаэлиса должны влиять гетерогенность состава полимерного субстрата (по типу мономерных звеньев), различия в типах статистического распределения полимеров по степени полимеризации, конкурентное самоингибирование субстратом (или его фрагментами), множественная атака. Конкурентное самоингибирование уменьшает величину эффективной константы Михаэлиса. Напротив, возрастание степени множественной атаки (если последняя вообще имеет место) приводит к возрас- [c.135]

    Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 15.1). [c.231]

    Электрическая проводимость диэлектриков обусловлена движением ионов, образующихся при деструкции полимеров, а также диссоциацией примесей, включая низкомолекулярные продукты поликонденсации, растворители, эмульгаторы, инициаторы и катализаторы полимеризации. Поэтому для улучшения диэлектрических свойств необходимо удалять примеси из полимеров. [c.362]

    При вальцевании или перетирании смеси нескольких полимеров длинные молекулярные цепи сравнительно легко разрываются — образуются макрорадикалы. Если механическая деструкция полимера происходит в отсутствие кислорода, то из макрорадикалов в результате их рекомбинации (взаимодействия) создаются макромолекулы блоксополимера. Если деструкцию вести в присутствии мономера другого строения, то макрорадикалы взаимодействуют с радикалами мономеров и создаются макромолекулы блоксополимера. Таким путем могут быть синтезированы высокомолекулярные соединения, которые не удается получить обычными методами, например сополимеры природных высокомолекулярных соединений (целлюлозы, крахмала) с синтетическими полимерами (полиакрилонитрилом, полистиролом). Низкомолекулярные полимеры (со степенью полимеризации 10—50), содержащие определенные функциональные группы, можно получить поликонденсацией (стр. 461), теломеризацией (стр. 449), ступенчатой полимеризацией (стр. 444). [c.459]

    Макромолекулярные реакции всегда приводят к изменению степени полимеризации, а иногда и строения основной цепи полимера. К этим реакциям относятся реакции деструкции полимеров, сопровождающиеся уменьшением молекулярной массы, и межмолекулярные реакции, в результате которых образуются пространственные структуры и резко возрастает молекулярная масса полимера. [c.211]

    В этом разделе реакции функциональных групп полимеров, протекающие по типу полимераналогичных превращений, рассматриваются совместно с макромолекулярными реакциями, приводящими к образованию пространственных полимеров. Химические превращения полимеров, сопровождающиеся уменьшением их степени полимеризации, — реакции деструкции полимеров — рассмотрены отдельно. [c.225]

    Скорость окислительной деструкции полимеров значительно возрастает в присутствии веществ, легко распадающихся на свободные радикалы (рис. 33 и 34), а также в присутствии ничтожных количеств (сотые и тысячные доли процента от массы полимера) металлов переменной валентности, таких, как Ре, Си, Мп, N1. Эти металлы участвуют в окислительно-восстановительных реакциях и ускоряют образование свободных радикалов. Так, в присутствии стеарата железа значительно возрастает скорость окисления натурального каучука (рис. 35). Влияние металлов в данном случае, по-видимому, аналогично их влиянию на процесс цепной полимеризации. [c.271]


    Рассмотренные радиационно-химические процессы сводятся к полимеризации молекул мономера. Однако облучение может приводить к противоположному эффекту — деструкции полимера, при которой молекулярная масса молекулы уменьшается. Варьируя природу, продолжительность и мощность дозы облучения, можно осуществлять в облучаемом образце преимущественно либо процесс полимеризации, либо деструкции. [c.210]

    В основном ЭПР (ЭСР)-спектроскопия в полимерной химии используется для изучения свободных радикалов, образующихся в процессах полимеризации (радиационная полимеризация и фотополимеризация, свободнорадикальное инициирование, полимеризация, инициированная окислительно-восстановительными системами, ионная полимеризация, сополимеризация и т. д.) деструкции полимеров (радиационная и фотодеструкция, табл. 21.2) окисле- [c.361]

    Процесс полимеризации осуществляется следующим образом. Изобутиленовая шихта, предварительно охлажденная до минус 30 — минус 40 °С, поступает в змеевиковый холодильник 2. Там она охлаждается этиленом до минус 90 — минус 95 °С за счет частичного испарения этилена. Перед входом в полимеризатор изобутилен смешивается с жидким этиленом в соотношении 1 1. После этого в полимеризатор подается катализатор. Полимеризация протекает с большой скоростью, при этом выделяется большое количество теплоты, которая отводится -при испарении жидкого этилена. На образовавшийся полимер, который движется вместе с лентой, непрерывно из мерника 5 по каплям поступает раствор стабилизатора для предотвращения деструкции полимера при дегазации и переработке. Поступление стабилизатора контролируется визуально через смотровой фонарь 4. [c.207]

    При кислотном омылении ПВА получается ПВС с пониженной вязкостью. При омылении в присутствии серной кислоты часть гидроксильных групп ПВС расходуется на образование кислых сульфоэфиров, которые впоследствии могут отщеплять серную кислоту, вызывающую деструкцию полимера. При применении соляной кислоты получается окрашенный ПВС. Трудноудаляемые остатки кислоты могут ускорять дегидратацию ПВС, а также вызывать коррозию аппаратуры. Поэтому основным промышленным способом является щелочное омыление, которое часто совмещают с полимеризацией винилацетата (рис. УП.3). [c.128]

    При равновесной анионной полимеризации температура не влияет на молекулярную массу образующегося полимера [42] и мало влияет на его выход [9]. При неравновесной же полимеризации слишком высокая температура для данной системы цикло-трисилоксан—катализатор может привести к переходу процесса в равновесный и к деструкции полимера. На практике температуру и катализатор выбирают с учетом природы исходного циклосилоксана так, чтобы обеспечить приемлемую скорость процесса. Обычно полимеризацию проводят при атмосферном давлении, за [c.480]

    Механическая деструкция полимеров в атмосфере инертного газа не является единственным методом нолучения свободных макрорадикалов из макромоле.кул. Подробно исследован и процесс ультразвукового воздействия па различные линейные полимеры в присутствии стабильных низкомолекулярш11Х радикалов, в том числе а,а -дифенил- -пикрилгидразила. Было установлено, что интенсивность ультразвуковой деструкция возрастает с увеличением д.иины макромолекулярных цепей. Напримео, разрыв цепей нолиметилметакрилата с образованием макрорадика.гюв наблюдается начиная со степени полимеризации 20 ООО, для полистирола—с 30 ООО. В разбавленных растворах скорость образования макрорадикалов под влиянием ультразвука пропорциональна разности между степенью полимеризации исследуемого полимера и предельно низкой степенью полимеризации Р аналогичного полимера, при которой уже не происходит разрыв цепей под влиянием ультразвуковых волн  [c.183]

    Окисление клслородом воздуха нолистифола в растворе беп- к)ла, метилэтилкетоыа, дифенилового эфира при 50—105" в течение длительного времени (до 700 час.) пе сопровождается присоединением кислорода к нолистиролу, по степень полимеризации юлимера при этом резко падает. Некоторое количество гидропе рекисных групп было введено в полистирол при действии на его раствор в диоксане кислородом " под давлением 6 ат при 75. По истечении 650 час. количество присоединенного кислорода достигло 2,15%. Некоторая часть присоединенного кислорода участвует в образовании гидроперекисных групп, присутствие которых легко установить по количеству фенола, выделяющегося в результате деструкции полимера при действии кислоты О-О-П О [c.367]

    Поливинилфталимид получают полимеризацией винилфтал-пмида в присутствии перекисного инициатора. Полимеризацию проводят в смеси растворителей (85 вес. ч. дихлорэтана и 15 вес. ч. метанола) при температуре кипения этой смеси. Образующийся полимер осаждают из раствора этиловым спиртом. Гидролиз полимера рекомендуется проводить спиртовым раствором гидразин-гидрата при 60°, а затем соляной кислотой. Непосредственный гидролиз поливинилфталимида минеральными кислотами может вызвать деструкцию полимера. [c.389]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Каждая молекула полимерного субстрата фактически представляет собой целый спектр субстратов (реакционных центров) с различной реакционной способностью, которая, как правило, убывает в ходе ферментативной деструкции полимера. Это обусловлено, во-первых, закономерным уменьшением эффективности ферментативного гидролиза при уменьшении степени полимеризации субстрата (см. табл. 1), которая наблюдается для всех эндогид-ролаз и для большинства экзогидролаз, и, во-вторых, предпочтительным расщеплением наиболее реакциоппоспособпых и (или) доступных связей полимера (в особенности нерастворимого полимера) на начальных этапах реакции. Именно поэтому определение начальных скоростей ферментативного превращения полимера в большинстве случаев не является особенно информативным. [c.29]

    ДЕСТРУКЦИЯ ПОЛИМЕРОВ (от лат. destru tio-разрушение), общее назв. процессов, протекающих с разрывом хим. связей в макромолекулах и приводящих к уменьшению степени полимеризации или мол. массы полимера. В зависимости от места разрыва хим. связей различают деструкцию (Д.) в основной и боковьк цепях полимера. Д. в основной цепи может протекать по закону случая (равновероятный разрыв хим. связи в любом месте микромолекулы) и как деполимеризация (отщепление мономерных звеньев с концов полимерной цепи). При Д. по закону случая среднечисловая мол. масса связана с числом разрывов цепи JV соотношением  [c.23]

    Применение. Ингибирование широко используется для регулирования скорости радикальной полимеризации, в частности при получении изделий большого объема. И. окис ления используют для стабилизации полиолефинов и каучу ков при их переработке и в условиях эксплуатации (см Деструкция полимеров), для стабилизации смазочных мате-риалов и углеводородных топлив, сохранения пищ. жиров и лек. препаратов в технологии получения мономеров они используются для предотвращения окислит, полимеризации. В исследовательских работах И. применяются для изучения механизма цепных р-ций, в частности определения скорости инициирования. [c.221]

    Различают два способа пластикации (П.)-механический и термоокислительный (без мех. воздействия). Осн. значение в пром-сти имеет мех. способ. Подводимая к полимеру мех. энергия вызывает гл. обр. деструкцию макромолекул (см. Деструкция полимеров), скорость и глубина к-рой определяются хим. природой полимера, его мол. массой и структурой, т-рой и интенсивностью мех. воздействия и оценивается по уменьшению степени полимеризации (величины мол. массы) или по изменению пластоэластич. характеристик (см. Реология). При повышении т-ры скорость и глубина деструкции проходят через минимум. В зависимости от типа полимера существует определенный температурный диапазон, в к-ром П. полимера минимальна т-ра, соответствующая такой П, наз. т-рой макс. стабильности при сдвиге (Tj ) и составляет (°С) для натурального и изопренового (СКИ) каучуков 80-115, для 1/ с-бутадиено-вого (СКД) 20-120, стирольного (СКС) 60-120, этилен-пропиленового каучука (СКЭПТ) 85-155, полихлоропрена 100-110, полиизобутилена 110-140, поливинилхлорида 195, полистирола 180-260, полипропилена >215, полиметилметакрилата 140. [c.561]

    Применение С-ЯМР-спектроскопии в химии полимеров включает исследование стереохимии макромолекул (табл. 20.5), в том числе структурной изомерии, пространственной изомерии, конформации макромолекул и конформации спирали, коротко- и длинноцепного ветвления, структуры сшитых гелей, механизма полимеризации, механизма окисления и деструкции полимеров. [c.330]

    При деструкции полимеров по закону случая в течение времени т среднестатистическая длина образующихся макромолекул, характеризуемая средней степенью полимеризации зависит от стспели потммеризации исходного полимера по и среднего числа связей 5, распадающихся в каждой макромолекуле за период времени т [c.192]

    В свете этих данных существующее в литературе кажущееся несоответствие между невысоким выходом мономера при термической деструкции полиизобутилена и низкими значениями тепл от полимеризации, а следовательно и верхней Т ,р полршера, объясняется различием в механизме распада ПИБ (катионный или свободнорадикальный механизм пррт термическом воздействии). Возможность проведения процесса деструкции полимера по схеме катионной деполимеризации устраняет это несоответствие. [c.240]

    Деполимеризация — свободнорадикальныД процесс, обратный реакции полимеризации один из видов деструкции полимеров. [c.180]

    Между исходным состоянием полимеризации и деструкцией ноли, 1сра существует непосредственная связь, например, при термической деструкции полимеров, имеющих низкое значение теплот полимеризации, образуется в основном мономер, т е. имеет место процесс деполимеризации, если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, ю при термической деструкции мономер почти не образуется, и процесс приводит к образованию устойчивых макромолекул пониженной молекулярной массы. Для замедления реакции деполимеризации применяют метод сополимеризации с мономером, склонным к реакции передачи цепи при деструкции. Так, сополимер метилметакрилат а с акрило-нитрилом (небольшое количество) менее склонен к реакции деполимеризации, чем полиметилметакрилат, из-за стабильности радикала — СН-С—, образованного в ре- [c.107]

    На колбу с коническим дном емкостью 50 мл надевают переходник, откачивают и заполняют азотом. В колбу загружают 25 г (0,22 моля) чистого е-капролактама (об очистке см. пункт А) и нагревают до 80—100°С. Затем к расплавленному в-капролактаму добавляют 0,04-0,08% металлического натрия, Д11Св рГМ КММ111110Г0 в ксилоле, (полученная смесь е-капролактама и его натрие-В0 МНЯ еШбЮАИВ при 80—100 С в течение нескольких часов). В колбу до ДП опускают капилляр, через который медленно пропускают ток азота, продолжая нагревать колбу на песочной бане до 255—265 °С. Спонтанно начинающаяся полимеризация завершается в течение 5 мин за полимеризацией можно следить, фиксируя время подъема пузырьков пропускаемого азота. Расплав полиамида быстро переливают в стакан. Определяют характеристическую вязкость полиамида в растворе л<-крезола или конц. серной кислоты, сопоставляют ее с характеристической вязкостью полимера, полученного в предыдущем опыте. Если расплав полимера выдерживать при 255—265 °С более 6 мин, становится заметной деструкция полимера, соответственно уменьшается характеристическая вязкость полимера. [c.169]


Библиография для Деструкция полимеров при полимеризации: [c.424]   
Смотреть страницы где упоминается термин Деструкция полимеров при полимеризации: [c.96]    [c.220]    [c.272]    [c.233]    [c.256]    [c.271]    [c.151]    [c.105]    [c.582]    [c.157]    [c.193]    [c.214]    [c.4]    [c.317]    [c.108]   
Химия сантехнических полимеров Издание 2 (1964) -- [ c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Деструкция полимеров



© 2025 chem21.info Реклама на сайте