Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные постоянные температурные точки

    ОСНОВНЫЕ ПОСТОЯННЫЕ ТЕМПЕРАТУРНЫЕ ТОЧКИ [c.10]

    В основе международной практической температурной шкалы лежат шесть основных постоянных точек (отмечены в таблице звездочкой). Для определения промежуточных температур служат интерполяционные приборы, градуированные по этим постоянным точкам. Точки, не отмеченные звездочкой, принадлежат к числу вторичных постоянных точек шкалы. [c.53]


    При нагреве полиэфирного волокна без натяжения оно усаживается до тех пор, пока гибкость при данной температуре не перестанет вызывать дальнейшее разупорядочение структуры. Однако, если вытянутое волокно нагревают до высокой температуры при постоянной длине, то возникают напряжения, которые затем релаксируют до такого уровня, который обусловлен степенью гибкости макромолекул при заданной температуре. Хотя это напряжение не релаксирует до нуля, как это имеет место при свободной усадке, оно все же уменьшается в достаточной степени, чтобы снизить основную часть последующей свободной усадки. Таким образом, температурная обработка при постоянной длине и некоторой температуре эквивалентна эффекту термообработки при более низкой температуре. [c.136]

    Указанные выше недостатки, присущие работе колонок в изотермическом режиме, в значительной степени устраняются методами, основанными на программировании температуры колонки. Различают два основных метода распределения температуры по колонке. В хроматермографии поддерживается постоянный температурный градиент по длине колонки, так что все точки колонки по ее длине имеют разную температуру. Высшая температура с помощью градиентной печи поддерживается на входе в колонку, низшая — на выходе из нее. Вещества, входящие в колонку с потоком газа-носителя, распределяются в соответствии с температурным градиентом, наименее летучие располагаются близ входа в колонку, а более летучие — ближе к выходу из колонки. С приближением равновесия полосы вещества становятся практически неподвижными. Передвижение градиентной печи по направлению к выходу из колонки вызывает движение полос со скоростью [c.339]

    Температурная шкала представляет собой ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми постоянными (основными или опорными) точками кипения и плавления химически чистых веществ. За единицу измерения принимается градус температуры, представляющий собой определенную долю температурного интервала. [c.19]

    В жидкостных термометрах шкала делится между основными постоянными точками не на равные части, а на неравные части, соответствующие температурам международной шкалы. Поэтому с разными термометрическими веществами такие термометры дают одинаковые показания при погружении их в среду одинаковой температуры. В СССР международная температурная шкала воспроизводится и поддерживается Всесоюзным научно-исследовательским институтом метрологии (ВНИИМ). [c.23]


    Однако если в рассчитанных корреляционных уравнениях, относящихся к деталям различных типов с габаритными размерами до 50 мм, критерий уравнения (критерий квадратичности) оказывается достаточно малым по сравнению с его основной ошибкой (что дает основание останавливаться на уравнениях второго порядка), то с дальнейшим увеличением размеров детали значения вычисляемых критериев повышаются. Таким образом, нарушается определенность выбора корреляционного уравнения второго порядка, хотя и критерии линейности, служащие для оценки корреляционного уравнения первого порядка, не позволяют получить в данном случае однозначного решения . Объясняется это положение тем, что при изготовлении средне- и крупногабаритных деталей труднее обеспечить равномерный постоянный температурный режим, который долл ен быть строго закреплен на определенном уровне, исходя из условий протекания технологического процесса. Парные корреляционные зависимости между временными параметрами и точностью размеров деталей, установленные при этом, будут отражать дополнительно влияние температуры прессования. Еще более заметно это влияние обнаруживается на корреляционных зависимостях между точностью размеров пластмассовых деталей и временем предварительного подогрева материала в генераторах ТВЧ (когда все остальные параметры технологического процесса постоянны в пределах тех возможностей, которые могут быть обеспечены с максимальной точностью на производственном оборудовании). Время предварительного подогрева Тв-п.п предопределяет количество тепла, которое успеет получить материал непосредственно перед операцией формования. С учетом результатов предварительного подогрева назначается, как известно, и температура прессования. [c.194]

    Основные постоянные точки международной температурной шкалы [c.22]

    Основными постоянными точками международной температурной шкалы являются температуры равновесия следующих систем при давлении в одну стандартную атмосферу а) жидкий и газообразный кислород—182,97° б) лед и насыщенная воздухом вода 0,000° в) жидкая вода и водяной пар 100,00° г) жидкая и газообразная сера 444,60° д) твердое и жидкое серебро 960,8° и е) твердое и жидкое золото 1063°. [c.10]

    При постоянном технологическом режиме крекинга и не слишком высоких температурах свойства и характер получаемого бензина будут зависеть от характера крекируемого сырья. Это следует из того обстоятельства, что термический крекинг представляет собой процесс, при котором углеводородные осколки, вначале содержавшиеся в больших молекулах, расщепляются с небольшими изменениями структуры или вообще без таковых. Так, при крекинге твердого парафина в обычных температурных условиях можно было бы ожидать образования парафинов и олефинов, имеющих в основном прямую цепочку углеродных атомов опыт подтвердил это предположение. Аналогичным образом, при крекинге газойля из нефтей Галф-Коста или Калифорнии, содержащих большое количество циклических углеводородов, получают бензины, имеющие преимущественно нафтеновый или ароматический характер. Если же, впрочем, температура процесса очень высока, — например 700° С или выше, — то главными продуктами, независимо от характера сырья, будут ароматика и газообразные парафины и олефины. [c.307]

    Теплоотдача к теплоносителю при ламинарном режиме течения. Теплоотдача от поверхности к теплоносителю при ламинарном режиме течения осуществляется обычной теплопроводностью. Следовательно, тепловой поток зависит от градиента температуры в радиальном направлении вблизи нагретой стенки. Этот температурный градиент зависит не только от распределения скорости и теплопроводности теплоносителя, но также и от степени его нагрева при прохождении через канал вплоть до рассматриваемой точки. Для таких основных конфигураций, как круглые и прямоугольные каналы, получены аналитические выражения, которые, однако, обычно нельзя решить в явном виде относительно коэффициента теплоотдачи. Их можно решить численно на вычислительных машинах. Полученные коэффициенты теплоотдачи зависят от принятого распределения температур стенки. Типичными являются случаи постоянной температуры стенки, постоянной разности температур между стенкой и основным потоком теплоносителя (равномерный тепловой поток) или линейного изменения температуры стенки в направлении потока. [c.54]

    По параметрической диаграмме можно определить и другие характеристики, например предельно допустимую температуру эксплуатации. В этом случае на оси ординат параметрической диаграммы задают предельно допустимые значения удельной потери массы металла или глубины коррозионного разрушения. Затем движутся до пересечения с линией lg — Я или gh — Р, затем вверх по ординате при постоянном значении Р до пересечения с линией Р — 1/7 , соответствующей определенному времени эксплуатации и, наконец, от точки пересечения вправо при постоянном значении ординаты до пересечения с осью ординат 1/Г. Точка пересечения соответствует определенной величине предельно допустимой температуры. Ниже приводятся параметрические диаграммы [131 для ряда сталей и сплавов, широко используемых при высоких температурах. Параметрические диаграммы построены в основном по экспериментальным данным (точки на диаграмме). Если диаграмма построена по значениям констант кинетических и температурных уравнений (51) и (52) окисления металлов, то экспериментальные точки отсутствуют. При построении диаграмм применялись следующие величины и их единицы , д — г/см , к — мм, т — ч, Г — К, Q — кал/моль. Эти отступления от системы СИ для Q сделаны сознательно, для того чтобы не снизить точность диаграммы. При использовании вышеуказанных единиц шкалы lg и lg /г почти совпадают для сталей и никелевых сплавов. Параметрический метод позволяет надежно проводить интерполяцию, а также экстраполяцию. Экстраполяцию можно проводить по температуре на 50—100 °С, по времени на 1—1,5 порядка [13]. [c.309]


    Приведенные выше решения задач теплопроводности для движущегося полубесконечного стержня могут быть использованы для нахождения распределения температуры в растущих кристаллах, а также при анализе некоторых других тепловых задач, возникающих при получении монокристаллов по методу Чохральского. Рассмотрим случай, когда внутренние источники тепла отсутствуют. Если /1>8гц, то температурное поле в кристалле можно считать стационарным. В данном случае можно использовать решения задач теплопроводности (V.87) и (V.93), полагая в них ( в = 0. Для подсчета температуры по этим формулам нужно знать а, и физические параметры материала кристалла X, р и а. Последние в решения входят как постоянные. Физические параметры германия X, р и й в расчетных формулах были взяты при температуре кристаллизации. Линейный закон теплообмена с боковой поверхности кристалла был принят для возможности получить точное решение сформулированной задачи. В действительности тепло с боковой поверхности кристалла отдается в основном путем излучения. Поэтому а и /о.с в рассматриваемом случае являются величинами условными и одна из них может быть принята такой, чтобы при этом не нарушался физический смысл процесса теплообмена, В общем случае для любой системы экранирования значения а могут быть получены из расчета лучистого теплообмена элемента кристалла со всеми окружающими его поверхно- [c.155]

    Таким образом, в этом случае скорость изменения температурного градиента не равняется нулю, как для плоской плиты, а связана с приведенной выше зависимостью с самим температурным градиентом. Причина этого заключается в том, что поперечное сечение потока тепла уменьшается по мере возрастания расстояния от стенок трубы, в то время пока для плоской плиты оно остается постоянным. Для удовлетворения приведенного выше условия мы должны следующим образом выразить температурный напор между стенкой трубы и основным ядром потока  [c.242]

    Если температурная зависимость давлений паров чистых компонентов аппроксимируется простыми уравнениями типа (VII.29) и (VII.30), то производную 1п р легко рассчитать аналитически. Основной вклад в 1п р дают зависимости р (Т). Величины же мало меняются с температурой, и при выводе выражения для 1п р их можно принять за постоянные. Естественно, что [c.172]

    Рассказ о современных материалах и о роли химии в их разработке и получении можно существенно расширить и дополнить, если рассматривать и классифицировать их по структурному признаку. В твердофазном материаловедении понятие структуры — собирательное название характеристик материалов. Оно может означать как пространственное взаимное расположение атомов или ионов относительно друг друга (кристаллическая или рентгенографическая структура), так и взаимное расположение структурных элементов и фаз в поликристаллическом материале (микроструктура или керамическая структура). Иногда еще говорят о тонкой (реальной) кристаллической структуре, или субструктуре, имея в виду поверхностные и объемные несовершенства типа областей когерентного рассеяния, остаточных микроискажений и дефектов упаковки. Обычно твердые тела делят на две большие группы — кристаллические и некристаллические (аморфные или стеклообразные). Первые характеризуются наличием дальнего порядка в расположении атомов, ионов или молекул, а вторые — отсутствием такового. Согласно современной терминологии стеклом называют все аморфные тела, полученные путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания, обладающие в результате постоянного увеличения вязкости механическими свойствами твердых тел. При этом процесс перехода из жидкого в стеклообразное состояние обратим. Промежуточную группу образуют стеклокристаллические материалы, многие из которых уже рассматривались. Это ситаллы, в том числе и шлакоситалл. В группу некристаллических материалов, помимо хорошо всем известных стекол, в последнее время входят аморфные металлы и сплавы переходных металлов с неметаллами. Аморфные металлы можно получать различными методами, но среди них лишь способ быстрой закалки из жидкого состояния имеет пока практическое значение, В настоящее время применяют два основных метода 1) расплющивание капель 2) быстрая закалка расплава на вращающемся металлическом диске или барабане, охлаждаемом до очень низких температур (чаще всего до температуры жидкого азота—196 " С). Аморфные металлические материалы, полученные в виде ленты, называют металлическими стеклами. Для изготовления массовых изделий из аморфных металлов чаще всего применяют метод ударного сжатия при прессовании аморфных порошков. Среди металлических стекол, находящих практическое применение, в первую очередь интересны материалы, сочетающие свойства сверхпроводников с удовлетворительными механическими свойствами, в частности высокой прочностью и определенной степенью деформируемости. Интересно, что и в этой области используют приемы частичной кристаллизации металлических стекол. По сути дела так получают стеклокристаллические материалы с требуемыми меха- [c.157]

    Математическая модель экструзии может быть использована для анализа влияния флуктуаций свойств сырья на основные параметры процесса. В дальнейшем будем полагать, что нестабильность свойств сырья проявляется в основном в изменениях параметров и /г, в то время как величина температурного коэффициента Ь остается практически постоянной. В этом случае анализ влияния колебаний свойств сырья сводится к исследованию влияния этого изменения на расположение точки пересечения внешних характеристик головки и червяка. [c.310]

    Опыт показывает, что основное значение в процессе теплопередачи путем теплопроводности имеет распределение температур". Вообще говоря, температура является функцией места (координат) и времени /=/(х, у, 2, т). Эта функция определяет температурное поле во времени. Соединив все точки постоянной температуры в этом поле, получим изотермы. Как известно из опыта, поток тепла всегда сопровождается перепадом температур отсюда следует, что направление теплового потока должно быть перпендикулярным к направлению изотерм. В ином случае направление теплового потока можно было бы разложить на две составляющие, одна из которых совпала бы с направлением изотермы. Это означало бы, что мы имеем поток без разности температур. [c.277]

    Степень примешивания, вызванного полем, обратно пропорциональна энергетическому расстоянию до высшего уровня. Если это расстояние меньше, чем в приведенном примере, но все еще гораздо больше, чем кТ (как это может иметь место, если спин-орбитальное взаимодействие снимает вырождение основного состояния и появляется расщепление, равное примерно X), то температурно независимый парамагнетизм вносит в восприимчивость вклад, равный С/Х, который может быть довольно существенным. Такой температурно независимый парамагнетизм может превышать 1000-10 эл.-стат. ед. (С — постоянная, зависящая от электронной конфигурации). Если расщепление кТ, вклад, вносимый этим эффектом Зеемана второго порядка, уже не является не зависящим от температуры и может быть очень велик. При расстоянии <С кТ парамагнетизм такого происхождения обращает закон Кюри для зависимости от температуры. [c.389]

    Отметим, что исключительно полезно рассматривать плоские сечения многомерной фазовой диаграммы. Если такое сечение делают параллельно температурной оси, то получается псевдобинарная система, если перпендикулярно - то изотермический разрез. Более того, для уменьшения числа координат можно рассматривать сечение с постоянным соотношением концентраций компонентов (а именно X Xj) или с постоянной концентрацией определенного компонента. Тогда рассматривается только сумма концентраций определенных компонентов, такой прием часто используется, когда свойства компонентов близки (например, для силикатных систем это будут основные оксиды MgO и СаО [5]). [c.251]

    Два основных метода хроматографии с изменением температуры различаются характером распределения температуры по колонке. Хроматердгография характеризуется движением нагревателя к низу колонки при этом создается постоянный температурный градиент, благодаря чему различные точки по высоте колонки имеют разную температуру. Передвижение нагревателя приводит к соответствующему движению слоя растворенного вещества в направлении те мпературного градиента. [c.100]

    Ди-н-пропш1кетон распадается по обоим механизмам. При изучении квантовых выходов каждой из этих конкурирующих реакций оказалось, что они в основном постоянны в температурном интервале 20—100° при газовых реакциях. В растворе, однако, квантовый выход реакции, изображаемой уравнением 31, сильно зависит от температуры и падает до крайне малой величины, тогда как во второй реакции квантовый выход почти такой же, как и в газовой реакции, и лишь в малой степени зависит от температуры. Это явление можно объяснить тем, что когда первая реакция происходит в растворе, то она состоит почти целиком во взаимодействии свободных радикалов с растворителем. Это взаимодействие зависит от температуры и при низких температурах протекает медленно, так что очень значительная часть свободных радикалов успевает рекомбинироваться (принцип Франка-Рабиновича), а поглощенная световая энергия рассеивается главным образом в виде тепла. Это приводит к низкому квантовому выходу и к малому фактору вероятности Р. [c.321]

    Реакторы объемного типа являются основным обо рудованием в ряде отраслей промышленности химической, фармацевтической, пищевой и др. Это объясняет ся возможностью широкого варьирования теплообменных характеристик реакторов в зависимости от задан ных температурно-временных режимов синтеза и темпе ратурных изменений физико-химических свойств реак ционной массы в аппарате (см. гл. 1). Однако точное поддержание температурно-временного режима в реак торе объемного типа требует априорного или оператив ного расчета основных динамических характеристик реактора как объекта управления. Так как реактор по принятой нами модели процесса теплообмена (см. гл. 3. раздел Основные уравнения процесса теплообмена ) с позиций теории автоматического управления представ ляет собой одноемкостное статическое звено [см. урав нения (73) и (74), (76)], то его основными динамиче скими характеристиками будут постоянная времени Т и коэффициент самовыравнивания (саморегулирования) К, [25]. [c.101]

    Равномерно распределенный радиационный теплообмен в топливных печах характерен тем, что при нем внешний теплообмен может быть рассчитан достаточно точно, поскольку лучепогло-щающая среда имеет постоянные в пределах рассматриваемого объема температуру и физические свойства. Точность расчета в данном случае определяется тем, насколько близко полученные в реальных условиях температура и светимость пламени соответствуют расчетным. Если рассчитывается печь с переменным по длине печи температурным режимом, то основная трудность заключается в определении расчетных температур пламе- [c.296]

    В дальнейшем аналитическими решениями Грэца, Нуссельта, Латцко, Лейбензона и др было установлено, что коэффициент теплоотдачи за участком стабилизации остается постоянным на протяжении всего канала. Это теоретическое доказательство послужило основанием для исследования теплоотдачи в каналах постоянной длины. Если канал в опыте длиной I > 50 то считается, что эмпирическую формулу, полученную при указанных условиях эксперимента, можно распространить на любые температурные и геометрические условия. Постоянство а за участком стабилизации справедливо при движении жидкости, близком к изотермическому. С изменением температуры жидкости меняются и условия теплоотдачи. Эмпирическую формулу, полученную при определенных температурных и геометрических условиях нельзя распространять на другие неподобные условия. Распространение этих формул, имеющих частный характер приводит к размерам аппарата не соответствующим условиям эксплуатации. Это особенно резко проявляется при высоких температурах нагрева. В экспериментальной практике не соблюдаются основные теоремы подобия. Излагая основные положения теплового подобия, М. В.Кирпичев и М. А. Михеев подчеркнули, что подобие температурных полей и теплообмена может быть достигнуто в другом теплообменном аппарате только в том случае, когда оба аппарата геометрически подобны. [c.32]

Рис. 9. Единичное определение конечной точки титроваиия методом прямой инъекционной энтальпнметрии АВ — основная линия ВС или Д Г—температурный пульс, вызванный реакцией определяемого компонента с прибавленным реагентом СО — линия постоянней температуры Рис. 9. Единичное <a href="/info/68251">определение конечной точки</a> титроваиия <a href="/info/141159">методом прямой</a> инъекционной энтальпнметрии АВ — <a href="/info/50461">основная линия</a> ВС или Д Г—температурный пульс, вызванный реакцией определяемого компонента с прибавленным реагентом СО — <a href="/info/618069">линия постоянней</a> температуры
    Если принять в соответствии с теорией, что Igay зависит только от разности Т—Гс и не связан с механизмом того или иного релаксационного процесса, то можно воспользоваться теоретической зависимостью gaT — f T—Гс)- и, подставляя в уравнение (III. 6) значения экспериментально определенного коэффициента а/, вычислить /с- В этом случае значения свободного объема совпадают с универсальными значениями. Однако, как видно из табл. III.3, значения доли свободного объема, вычисленные нз экспериментально определенных зависимостей Igaj-= /(Г Гс), хотя и постоянны для всех исследованных систем, существенно больше универсального значения. Для объяснения этого факта напомним, что значение /с в теории Вильямса — Лэндела — Ферри для большинства систем определялось из данных о динамических свойствах полимеров, т. е. в условиях, в которых релаксационные процессы связаны в основном с проявлением сегментальной подвижности. Для этой группы времен релаксации и был экспериментально установлен факт одинаковой температурной зависимости Igflr, положенный в основу теории. Величина f при этом связывается с объемом дырок, необходимых для перескоков относительно небольших структурных единиц. Отсюда следует, что /с не может быть постоянной величи- [c.112]

    Скорость электролиза зависит не только от отнощения объема раствора к площади электрода, но также от температуры и от интенсивности перемещивания. К сожалению, большинство сосудов для электролиза, описанных в литературе, не имеет специальных устройств для термостатирования. Общепринятым является мнение, что точное термостатирова-ние не требуется для чисто аналитических целей, так как полное количество электричества, потребляемое при электролизе, не зависит от температуры. Однако такая точка зрения слишком упрощает процесс, поскольку во время электролиза могут выделяться значительные количества тепла в связи с прохождением больших токов через среду с определенным конечным сопротивлением. Первым серьезным следствием даже небольших изменений температуры в ходе электролиза является тот факт, что потенциал электрода сравнения будет меняться по закону, определяемому его температурным коэффициентом. Потенциостат стремится поддерживать постоянную разность потенциалов между рабочим электродом и электродом сравнения, но фактический потенциал рабочего электрода может значительно отклониться от первоначально установленного значения результатом этого может быть снижение эффективности тока и даже возникновение нежелательных электролитических процессов. Во-вторых, изменения температуры могут вызвать непредвиденные флюктуации фонового тока, так как влияние температуры на скорость основного электролитического процесса и процессов, дающих фоновый или остаточный ток, в общем случае, неодинаково. Очевидно, что для фундаментальных исследований электродных процессов, вторичных реакций и других основных проблем необходимо точное термостатирование. Трудности, связанные с этим, можно легко устранить, используя электролитическую ячейку, снабженную рубашкой, внутри которой циркулирует термостатирующая жидкость, или просто помещая всю ячейку в термостат. [c.38]

    Основное достоинство гранулированных насадок состоит в том, что при воздействии на них сравнительно небольшим намагничивающим, т. е. внешним, полем в их порах, а именно в окрестности точек контакта гранул, генерируется поле, имеющее высокую напряженность (намного превосходящую напряженность намагничивающего поля) и высокую степень неоднородности. Поэтому частицы подвергаются эффективному силовому воздействию, величина которого на 3-4 порядка выше, чем, например, вблизи поверхности постоянного магнита. Еще одним суще-ственньил достоинством гранулированной намагничиваемой насадки является то, что создаваемые в ней магнитные силы захвата частиц намного превосходят силы захвата (чисто-химические, механические) в других традиционных фильтрующих средах<орбентах. Поэтому процесс магнитного осаждения допускает намного более высокие рабочие скорости протекания очищаемой среды, а следовательно, и значительно большую удельную производительность - в 3-10 раз. Сохранение же насадкой ферромагнитных свойств в широком температурном диапазоне, вплоть до точки Кюри (для железа 770 °С) делает ее объективно возможной для очистки жидкостей и газов практически на любых участках технологических процессов. К достоинствам гранулированных насадок относится и то, что они текучи и не требуют рабочих камер специальных конструкций. [c.8]

    Как уже отмечалось, величина Ъ имеет постоянное значение 0,12 (в-, интервале температур 160—218° С). Отсюда можно заключить, что процессы (2) и (3) имеют близкие энергии активации. Так как далее константа /Сб слабо зависит от тeмпepaтypы, то температурный коэффициент рассматриваемой реакции должен определяться в основном зависимостью от температуры константы Аг . Подставляя в выражение для температурного коэффициента [c.335]


Смотреть страницы где упоминается термин Основные постоянные температурные точки: [c.232]    [c.312]    [c.365]    [c.136]    [c.74]    [c.157]    [c.39]    [c.17]    [c.273]   
Смотреть главы в:

Физические методы органической химии Том 2 -> Основные постоянные температурные точки

Физические методы органической химии Том 2 -> Основные постоянные температурные точки


Физические методы органической химии Том 2 (1952) -- [ c.10 ]

Физические методы органической химии Том 2 (1952) -- [ c.10 ]




ПОИСК







© 2024 chem21.info Реклама на сайте