Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный парамагнитный резонанс химический сдвиг

    РАДИОСПЕКТРОСКОПИЯ — область физики, изучающая электромагнитные спектры веществ в диапазоне радиоволн и микроволн с частотой от нескольких до 3 IQi Гц. Наибольшее значение в химии получили методы магнитной Р. ядерный магнитный резонанс (ЯМР) и электронный парамагнитный резонанс (ЭПР). Оба метода основаны на эффекте Зеемана — расщеплении спектральных линий микрочастиц или их систем на составляющие в магнитном поле. Например, если поместить вещество, в состав которого входит водород, в магнитное поле с напряженностью Я = 10 ООО а, ядра водорода, протоны, приобретают способность поглощать электромагнитные колебания длиной волны около 7 м, т. е. длиной ультракоротких радиоволн (частота 42,6 МГц). Причем эта длина различна для разных водородосодержащих веществ (т. наз. химический сдвиг частоты), что дает возможность делать выводы о строении молекул. Электроны в этом же магнитном поле поглощают микроволны длиной [c.209]


    Структурные данные можно получить также методами, которые используют энергии в радиочастотной области. К ним относится ядерный магнитный резонанс (ЯМР), ядерный квадруполь-ный резонанс (ЯКР) и электронный парамагнитный резонанс (ЭПР). Ядра, которым присущ магнитный момент, могут существовать в различных квантовых состояниях при наложении внешнего магнитного поля. Явление ядерного магнитного резонанса состоит в переходах между энергетическими уровнями, соответствующими различным ориентациям ядерных магнитных моментов по отношению к внешнему полю. Разность между энергиями квантованных состояний очень мала и лежит в области частот от 10 до 60 Мгц (т. е. в области длин волн от 30 до 5 м). Так как поле, которое определяет разность в энергиях, зависит от распределения электронов вокруг ядра, то изменения в этом распределении вследствие изменения связи или молекулярного окружения вызывают сдвиги положений резонансных пиков, называемые химическими сдвигами. Они и дают информацию о структуре молекулы. [c.293]

    Вместе с тем следует подчеркнуть еще одну особенность кни гн Драго. На основании изучения физических свойств можно де лать различные выводы, но мы часто видим, что из сложных экспериментальных исследований (например, в области электронного парамагнитного резонанса) делаются только общие выводы физического характера (оцениваются лишь параметры спинового гамильтониана). Для химика такие исследования не представляют особенно большого интереса, поскольку он не может связать подобные данные с непосредственно волнующими его проблемами, касающимися строения и свойств молекул. Во многих книгах по электронному парамагнитному резонансу авторы-физики вообще не доходят до химических результатов. Драго, напротив, акцентирует именно химические выводы, уделяя основное внимание химическим приложениям физических методов. Большую часть главы, посвященной ЭПР, составляет рассмотрение сверхтонкой структуры, а главы, посвященной ЯМР, — анализ химических сдвигов, т. е. именно разбор тех особенностей спектров ЭПР и ЯМР, которые позволяют делать выводы, существенные для химии. [c.8]

    В качественном и несколько упрощенном методе основные особенности химических сдвигов "В можно объяснить на основании парамагнитного сдвига. Этот сдвиг возникает из-за различного заполнения электронами связывающих орбиталей Рх я Ру п частично заполненной орбитали Рг. Если не учитывать сверхсопряжение, то связи бора в триметилборе В (СНз) 3 должны быть типа sp2, при этом Pz-орбиталь не занята электронами. Этой особенностью объясняется резонанс в слабом поле в спектре ядерного магнитного резонанса на В, В других молекулах BR3 участие в образовании связи электронов атомов, присоединенных к бору, приводит к тому, что связь между бором и заместителями имеет характер частично двойной связи. Таким образом валентная оболочка бора приближается к электронному октету, и химический сдвиг В сдвигается в более сильное поле. В самом сильном поле должен наблюдаться резонанс на В бор-гидридного иона ВНГ. В боргидридном ионе, по-видимому, имеет место 5рЗ-гибридизация орбиталей бора с полностью тетраэдрической симметрией около этого [c.229]


    В последние годы для изучения белков широко используются различные методы магнитного резонанса. Мы рассмотрим два из них электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). При помощи этих методов получают данные о химических сдвигах и скоростях релаксации. Данные с химических сдвигах пока еще мало используются в биохимии. [c.669]

    Большой химический сдвиг возникает при наличии неспаренного электрона (например, в свободных радикалах или в некоторых ионах металлов) ввиду того, что сам электрон имеет значительный магнитный момент. Сдвиг составляет от 20 до 30 м. д. его можно обнаружить, когда неспаренный электрон находится на расстоянии 10 А от ядра, дающего резонанс кроме того, так как величина сдвига обратно пропорциональна кубу расстояния, эти эффекты могут быть использованы для измерений молекулярных расстояний. Однако для многих парамагнитных веществ происходит очень сильное уширение резонансных линий, так что их трудно наблюдать в спектре ЯМР. Такие парамагнитные соединения изучают с помощью электронного парамагнитного резонанса. [c.488]

    Некоторые парамагнитные ионы металлов, особенно многие ионы лантанидов, индуцируют изменение химического сдвига ядерного резонанса соседних ядер. Псевдоконтактные сдвиги возникают вследствие наличия дальних взаимодействий, эффективность которых зависит как от природы иона металла, так и от стереохимических особенностей расположения отдельных ядер относительно иона металла. Прежде чем приступить к дальнейшему рассмотрению этого эффекта, следует отметить, что имеется и другой механизм изменения химического сдвига резонанса под влиянием парамагнитного иона — так называемый контактный сдвиг. Последний возникает в результате прямой делокализации электронов через химические связи от иона металла на ядра, резонанс которых наблюдается, и он не зависит от расстояния, в общем случае не дает сведений о структуре, однако его необходимо учитывать при анализе псевдоконтактного сдвига. [c.390]

    Ядерный резонанс в парамагнитных системах позволяет получить важную информацию о молекулярных процессах в существенно новом аспекте. Прежде всего неспаренные электроны создают химические сдвиги, величина которых во много раз больше обычных сдвигов в диамагнитных молекулах, и, кроме того, химические сдвиги парамагнитных веществ обладают характерной температурной зависимостью. Далее для парамагнитных веществ возможны также разнообразные по природе уширения линий и релаксационные эффекты. Наконец, явление ядерного резонанса в парамагнитных системах лежит в основе экспериментов двойного резонанса, при котором радиочастотные поля воздействуют одновременно и на электронный и на ядерный спины при соответствующих резонансных частотах. [c.289]

    В работах, посвященных исследованию ЭДА-комплексов методом ЯМР, большое внимание уделяется вопросу о том, можно ли использовать и как меру относительной энергии ДА-взаимо-действия в различных системах. Но получить однозначный ответ здесь весьма трудно. Все зависит от изучаемого ядра, состава и структуры сопоставляемых соединений. Рассмотрение химического сдвига только с точки зрения изменений электронной плотности, безусловно, является весьма упрощенным. При более строгом анализе необходимо учитывать и другие факторы, оказывающие влияние на параметры экранирования [529—543]. Помимо диамагнитного экранирования ядра окружающими электронами при комплексообразовании могут заметно изменяться парамагнитное экранирование и анизотропия магнитной восприимчивости соседних атомов или групп [см. уравнение (П1.16)]. Кроме того, на б и А могут существенно влиять изменения характера связей. в молекулах исходных компонентов при комплексообразовании, не имеющие отношения к энергии ДА-связей, например 1) изменение характера я-связывания или внутримолекулярной координации 2) изменение гибридизации и электроотрицательности соседей 3) индуктивный эффект и эффект сопряжения 4) кольцевые токи ароматических колец и т. п. Современная теория химических сдвигов практически не позволяет оценить роль каждого вклада. Затруднения, связанные с интерпретацией химических сдвигов, иногда могут быть преодолены путем исследования резонанса нескольких ядер, входящих в состав данного комплекса. [c.135]

    Взаимосвязь между структурой молекулы и ее химической активностью представляет собой один из основных вопросов химии. Систематические исследования высоко активных литийорганических соединений показывают существенную зависимость их реакционной способности от структуры [1, 2]. Понимание свойств этих соединений может основываться только на детальных сведениях об их структуре и характере связи. Лишь недавно исследование структуры и природы связи углерод—литий в литийорганических соединениях привлекло к себе серьезное внимание [3—5], причем одним из самых плодотворных физических методов в этой области оказался ядерный магнитный резонанс. Поскольку все ядра в большинстве обычных литийорганических соединений имеют магнитные изотопы, возможно исследование резонанса на ядрах углерода, лития и водорода. Ввиду относительной доступности протонного магнитного резонанса этот метод исследования получил наиболее широкое распространение. Основным параметром, который получают из спектров ЯМР, является химический сдвиг. Величина сдвига определяется плотностью электронного заряда вокруг резонирующего ядра и распределением заряда на соседних атомах. Оба эти фактора могут приводить к диамагнитному или парамагнитному сдвигу линий ядерного резонанса. [c.292]


    Магнитный момент неспаренного электрона примерно в 10 раз превышает магнитный момент ядра (разд. 9.7). Следовательно, парамагнитные соединения могут оказывать существенное влияние на магнитное окружение ядер, вызывая сдвиг ЯМР-линий и изменяя времена релаксаций. Парамагнитный сдвиг может быть весьма значительным, как это видно на примере спектра протонного резонанса парамагнитного соединения Fe -циано-метмиоглобина из кашалота, где наблюдаемые линии спектра ЯМР располагаются в интервалах от — 27 до + 3 м.д. Тот факт, что парамагнитные соединения влияют на химический сдвиг, повлек за собой создание специальных реагентов, таких, как лантаниды, которые можно использовать для упрощения спектров ЯМР. [c.156]

    Интересно отметить, что протонный химический сдвиг в арилироваиных боразинах наблюдают в относительно высоком поле [31, 157]. На основании данных по инфракрасным спектрам Бехер и Фрик [153] впервые высказали предположение, что в таких замещенных боразинах ароматическое ядро ориентировано перпендикулярно к плоскости боразинового кольца. Данные протонного магнитного резонанса, по-видимому, подтверждают это предположение, ибо установлено, что экранирующий эффект такого ароматического кольца на метиленовые группы имеет место только выше плоскости цикла [142]. В заключение следует отметить, что боразины не дают спектров электронного парамагнитного резонанса [141]. [c.173]

    Как было показано на примере эбонита , разрыв химических ковалентных связей происходит и в этом случае. Так, на рис. 4.16 показано увеличение амплитуды первой производной сигнала электронного парамагнитного резонанса с ростом относительной деформации при сжатии. Разрыв ковалентных связей в ряде полимеров (полистирол, полиакрилонитрил, полиэтилен, поливинилхлорид, полиметилметакрилат) в условиях высокого давления и напряжения сдвига, а также последующие вторичные реакции образующихся радикалов описаны в работе . Следовательно, и при приложении гидростатического давления начиная с определенной величины деформации происходит интенсивное образование свободных радикалов. Однако всестороннее давление создает условия для рекомбинации части обпазоьав-шихся свободных макрорадикалов в процессе дальнейшего скольжения материала возможно химическое течение материала 17б->78- в результате у эбонита и фенопласта ФКП-1 не возникает столь большого числа [c.112]

    Однако, если атом входит в состав молекулы, так что сферическая симметрия атома теряется, расчет становится более сложным. А. Сейка и К. Сликтер (19Е4 г.) предложили рассматривать общее экранирование как возникающее в результате сложения нескольких эффектов. Один из них — диамагнитное экранирование за счет электронов данного атома, которое можно рассчитать по формуле (38) для атомов. Однако вклад диамагнитного экранирования будет частично компенсирован вторым членом, парамагнитным, имеющим противоположный знак, хотя и обусловленым теми же самыми электронами. Этот член отражает тот факт, что молекула теряет сферическую симметрию и потому ноле, индуцируемое в направлении, противоположном Но, соответственно уменьшается. Иное положение состоит в том, что в присутствии магнитного поля будет иметь место некоторое смешение основного состояния молекулы с возбужденными электронными состояниями подходящей симметрии. В случае протонов вклад парамагнитной составляющей в константу экранирования является незначительным (им обычно пренебрегают), но при наблюдении магнитного резонанса на ядрах с низколежащими возбужденными уровнями (например, Р, и др.) парамагнитная составляющая может иметь большую величину. В 1957 году Дж. Гриффит и Л. Оргел, рассматривая химические сдвиги Со в октаэдрических комплексах Со +, получили парамагнитный вклад, который можно рассчитать по уравнению [c.64]

    Как указывалось выше, спектр ЯМР многих парамагнитных веществ не удается получить из-за того, что наличие неспаренного электрона приводит к уширению сигнала вследствие взаимодействия по дипольному механизму и взаимодействия электронного и ядерного спинов. Поскольку магнитный момент электрона примерно в 10 раз больше магнитного момента ядра, добавление парамагнитных ионов приводит к появлению сильных магнитных полей, очень эффективно вызывающих диполь-ную спин-решеточную релаксацию, так что понижается (см. раздел, посвященный химическому обмену и другим факторам, влияюшим на ширину линий). Если волновая функция, описывающая неспаренный электрон, имеет конечное значение у ядра, то возникает взаимодействие электронного спина со спином ядра. Оно также приводит к появлению у ядра флуктуирующего магнитного поля, укорачивающего Т1. Если электронная релаксация очень медленная, время жизни иона в данном спиновом состоянии будет большим и должны наблюдаться два резонанса, соответствующих 5= /2- Такое положение осуществляется не особенно часто. Если время жизни парамагнитного состояния очень мало, магнитное ядро будет реагировать только на усредненное по времени магнитное поле двух спиновых состояний электрона и в спектре должен наблюдаться лишь один пик. Часто электронная спиновая релаксация имеет скорость, промежуточную между этими двумя предельными случаями, что в результате приводит к укорочению и очень большому уширению сигналов. Если электронная релаксация очень быстрая, уширение минимально и главным результатом присутствия неспаренных электронов явится изменение магнитного поля, влияющего на магнитное ядро. Это приводит к очень большому химическому сдвигу (достигающему иногда 3000—5000 гц) резонанса в ЯМР-спектре. Такой сдвиг называется контактным ЯМР-сдвигом. [c.323]

    Химические сдвиги протонов. Возникновение у ароматических систем индуцированного диамагнитного кольцевого тока (см. рис. 1.1) приводит к деэкранированию внешних протонов кольца, вследствие чего в спектрах протонного магнитного резонанса они проявляются в существенно более слабом поле по сравнению с олефиновыми протонами. Как известно, константа магнитного экранирования атома ад, определяющая химический сдвиг, может быть представлена в виде выражения (П), где и — диамагнитные и парамагнитные вклады от электронов атома А, — вклад от циркуляции электронов на других атомах, обозначенных В, кольцо — вклад от межатомного кольцевого тока. Для ароматических соединений доминирует последний член этой суммы, на основании чего одно время полагали, что химические сдвиги протонов могут служить важным критерием ароматичности. Р1мелось в виду, что более ароматичным соединениям должна соответствовать большая величина диамагнитного кольцевого тока и более сильный сдвиг сигналов-кольцевых протонов в сторону слабых полей. Однако позднее стало очевидным, что и другими членами выражения (И) нельзя пренебрегать. Это в особенности относится к гетероароматическим системам из-за неравномерного распределения в них электронной плотности и влияния анизотропии гетероатома. [c.34]

    Химические сдвиги Р в основных структурах приведены на диаграмме (рис. П-17 см. вклейку). Общая шкала химических сдвигов фосфора 500 м. д., если не принимать во внимание резонанс элементарного фосфора, дающего широкий пик в области 4-450 м. д. [122]. Распределение на диаграмме различных соединений указывает, что для химических сдвигов фосфора определяющим является парамагнитный член атомного экранирования, в результате чего введение электронодонорных заместителей ведет, как правило, к уменьшению магнитного экранирования. В четырех- и особенно в пятикоордпнационных соединениях фосфора парамагнитный вклад уменьшается вследствие большей симметрии электронного облака в результате резонанс фосфора в таких соединениях наблюдается в более высоком поле. [c.101]

    Сигналы протонного магнитного резонанса при 60 Мгц обычно располагаются в интервале несколько более 700 гц. Как указывалось выше, расстояние между пиками данного протона и стандарта называется химическим сдвигом. Величина химического сдвига пропорциональна напряженности внешнего поля и зависит от электронного окружения протонов. В настоящей главе кратко рассматривается природа возникающих в магнитном поле внутримолекулярных электронных токов. Эти сведения позволяют качественно предсказывать величины химических сдвигов протонов отдельных групп, входящих в состав сложных молекул. Экранирование какого-либо протока представляет собой результат наложения полей, по меньшей. мере, трех электронных токов локальных диамагнитных полей, диамагнитных, и парамагнитных полей соседних атомов и полей межато.мных токов. Эти три фактора неравноценны по своему вкладу в экранирование рассматриваемого протона. [c.87]

    Найтовский сдвиг можно использовать для определения спиновой плотности неспаренного электрона в парамагнитных молекулах. Этот метод имеет определенные преимущества по сравнению с анализом сверхтонкой структуры спектра ЭПР. Непосредственно по направлению сдвига можно определить знаки спиновых плотностей кроме того, анализ спектров становится гораздо проще, поскольку ядро дает только одну линию ЯМР вместо группы линий сверхтонкой структуры. Наконец, по температурной зависимости, экстраполируя экспериментальные значения химических сдвигов к Т со, при которой найтовский сдвиг исчезает, можно идентифицировать отдельные линии, сравнивая их с линиями в спектре ЯМР соответствующей диамагнитной люлекулы. Основная трудность таких исследований заключается в том, что сложно найти парамагнитные молекулы, имеющие узкие линии ядерного резонанса. [c.292]

    Как известно, химические сдвиги ядер Р определяются главным образом парамагнитным вкладом в константу магнитного экранирования [1 ]. В дифтор ангидридах кислот фосфора введение более электроотрицательных заместителей часто ведет к положительному смещению резонанса фтора, что было объяснено повышением электронной плотности на фторе за счет участия d-орбит атома фосфора [ ]. В том же направлении происходит и смещение резонанса В нашем случае для соединений с сопряженной винильной группой сигналы Р наблюдаются в сравнительно узкой области, за исключением дифторангидрида (III), обладающего разветвленной структурой. Отрицательное смещение резонанса фтора при переходе от дифторангидридов (I—III, VI) как к ацетиленовому (IV), так и к алкильному (VII) соединениям не находит простого объяснения и требует дополнительных исследований. Ранее нами было показано, что в эфирах фосфиновых кислот резонанс Р смещается в высокое поле при переходе от алкильных к алкеновым и к ацетиленовым фосфонатам [ ]. [c.242]

    Традиционными экспериментальными критериями ароматичности являются аномальная реакционная способность соединения (хотя и очень плохой критерий, как видно из изложенного выше), а также наличие большой эмпирической энергии резонанса (этот критерий также не является наилучшим, поскольку определяемые таким образом значения энергии резонанса не только обусловлены делокализацией я-элек-тронов, но включают вклады, обусловленные другими факторами, связанными с наличием о-связей). Современный и более последовательный подход основан на исследовании анизотропии диамагнитной или парамагнитной восприимчивости, наблюдаемой в химических сдвигах ароматических колец по методу ЯМР (на ядрах Н и, в особых случаях, С) [2]. Этот критерий обычно объясняется с использованием модели кольцевых токов для делокализованных я-электронных систем однако, хотя упомянутая анизотропия реально существует, ее происхож" дение все еще до конца не выяснено, и вследствие этого общая связь между химическими сдвигами и ароматичностью оказывается не вполне обоснованной [1]. [c.156]


Смотреть страницы где упоминается термин Электронный парамагнитный резонанс химический сдвиг: [c.276]    [c.12]    [c.156]    [c.375]    [c.68]    [c.222]    [c.87]    [c.125]    [c.6]   
Биофизическая химия Т.2 (1984) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс парамагнитный

Химические сдвиги при у-резонансе

Химический сдвиг

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс



© 2025 chem21.info Реклама на сайте