Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рост Локализация

    Донорная способность переходных металлов уменьшается соответственно росту локализации в d -конфигу-рации [246] от металлов IVa к металлам Va и далее [c.68]

    Из уравнений (VII.83) следует, что максимум интенсивности процесса остается в лобовом сечении вплоть до момента Тц = 1п 2. [ макс определенное из (VII.83) при т < Tq, меньше нуля, т. е. до этого момента времени скорость реакции монотонно убывает с ростом х]. При т > То скорость перемещения максимума уменьшается со временем при больших т, когда 1, формула (VII.83) становится (после перехода к размерным переменным) неотличимой от формулы (VII.62), а скорость перемещения максимума постоянной и равной 1. Чем больше СдЦ и А , тем ближе значения мако определенные из уравнений (VII.62) и (VII.83), что подтверждает сказанное ранее об условиях, способствующих локализации процесса в тонком слое. Скорость реакции в точке ее максимальной интенсивности получаем, подставляя (VII.83) в (VII.82)  [c.298]


    В заключение следует сказать несколько слов о современных представлениях, развиваемых академиком Дубининым и его учениками . Согласно этим представлениям, понятие удельной поверхности с ростом дисперсности вырождается и не применимо к высокодисперсным адсорбентам, например углям, где половина атомов С свободно контактирует с адсорбатом. Понятие границы раздела фаз (без которого не имеет смысла 5о) исчезает (см. главу I) в таких системах, и они с большим основанием могут трактоваться как гомогенные. В этом случае адсорбент может рассматриваться как один из компонентов, изменяющих, в процессе адсорбционного взаимодействия, свой химический потенциал На. Термодинамическая трактовка, основанная на этих представлениях, приводит авторов к обобщенному уравнению, которое дает два частных решения. Для случая макропористых систем, где адсорбент является лишь источником силового поля, не изменяясь в процессе адсорбции, Д Иа = О, 5 = о и решение сводится к уравнению адсорбции Гиббса. Для другого случая— микропористой системы, 5о = О, А 1а ф 0. При этих условиях решением оказывается уравнение Гиббса—Дюгема, применимое к гомогенным объемным фазам. Концепция вырождения о хороша согласуется с возможностью гомогенной трактовки дисперсных систем, рассмотренной нами при обсуждении правила фаз. Эти представления требуют дальнейшего развития, поскольку адсорбент не является обычным компонентом, ввиду жесткой локализации его в определенной части системы, однако направление это несомненно весьма перспективно, особенно для понимания сущности дисперсного состояния. [c.168]

    Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл-среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалентности связи железо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали. [c.116]

    Хотя предотвратить взрыв взвеси несомненно лучше, чем уменьшить его последствия, первое очень редко может быть гарантировано с достаточной уверенностью. Поэтому обычно необходимо проектировать установки с учетом возможности взрывов. Поскольку взрыв пыли может в общем случае сопровождаться ростом давления, сравнимым с ростом давления при взрыве газовых смесей, то установка должна быть снабжена быстродействующими клапанами, открывающимися при небольшом избыточном давлении в системе и стравливающими продукты взрыва в атмосферу. В работе [67] отмечается, что очаги взрыва пыли имеют тенденцию перемещаться из одной точки установки в другую, что приводит к серии последовательных взрывов. Для того чтобы ограничить повреждения зоной начального взрыва, при проектировании стремятся локализовать взрыв и сбросить давление, отводя газы в атмосферу. Несомненно, наиболее эффективным средством локализации взрыва является установка поворотных клапанов или заслонок на выходе из сосудов. Для больших емкостей может потребоваться несколько предохранительных клапанов, осо- [c.313]


    Используя в больших масштабах методы защиты от биоповреждений, особенно воздействием на среду, необходимо руководствоваться законом экологии [27]. Согласно этому закону, выбирая средство защиты, следует проанализировать, как оно будет влиять на другие процессы и особенно на организм человека. Если средство не безопасно, то необходимо предусмотреть условия локализации его действия и нейтрализации в случае необходимости, а также обезвреживания остатков отдавать предпочтение биологическим или химическим экологически правильным методам применять преимущественно ингибирование (сдерживание роста), а не методы уничтожения, так как возможно образование экологических ниш с устойчивыми и более приспособленными к материалам конструкций агрессивными микроорганизмами. [c.109]

    Следовательно, с ростом степени деформации и числа дислокаций в скоплениях происходит локализация деформационного сдвига потенциала нулевого заряда и изменяется работа выхода электрона так, что деформационное влияние на измеряемые параметры двойного электрохимического слоя и измеряемую работу выхода все более определяется поведением области одного дислокационного скопления. В частности, измеряемая средняя работа выхода образца в целом приближается к локальной величине работы выхода в окрестности дислокационного скопления (несмотря на уменьшение числа активируемых мест на поверхности). [c.177]

    Электрохимическая гетерогенность поверхности определяет также величину измеряемого потенциала и его изменение Аср под влиянием деформации. Однако если полная дифференциальная емкость с увеличением степени деформации становится независящей от размера рабочей поверхности, то потенциал, а точнее, его сдвиг Аф, существенно зависит от этой величины (см. рис. 72, кривые 3 и 4). Это связано с тем, что локализация активированных анодных процессов с ростом деформации увеличивает действующую площадь катодов (или менее эффективных анодов), что ведет к уменьшению сдвига стационарного потенциала. [c.180]

    Ускорение роста коррозионных трещин хлоридами, бромидами и иодидами имеет важное значение с различных точек зрения. Во-первых, повсеместность содержания галоидных ионов в морских условиях делает необходимым изучение их влияния на КР, если чувствительные к этому виду коррозии сплавы применяются в таких средах. Во-вторых, водные растворы хлоридов широко используются для ускорения в лабораторных испытаниях и удивительно, как мало было известно до сих пор об этом явлении ускорения в хлоридных растворах. В-третьих, хлориды, бромиды и иодиды являются специфическими агентами на питтинговую коррозию алюминия и его сплавов, поэтому они влияют не только на распространение, но и на возникновение коррозионных трещин путем локализации концентрации напряжений в питтингах. [c.200]

    В предыдущей главе обсуждалась проблема устойчивости химических систем по отношению к флуктуациям, не нарушающим их пространственную однородность. Как возмущенная, так и невозмущенная системы были пространственно-однородными. Теперь мы рассмотрим более общий случай устойчивости по отношению к диффузии, т. е. будем считать возмущения локализованными в пространстве. Будет показано, что эффекты, ответственные за возникновение периодических траекторий типа предельных циклов, могут почти при тех же условиях порождать пространственные распределения, если учесть влияние диффузии. Это происходит потому, что вдали от термодинамического равновесия конкуренция между диффузией, стремящейся поддержать однородность состава системы, и пространственной локализацией, возникающей благодаря росту локальных концентрационных возмущений в аутокаталитических процессах, приводит к неустойчивости однородного состояния системы и к переходу ее в устойчивое состояние с пространственно-неоднородным распределением вещества. Мы имеем здесь пример перехода с нарушением симметрии, когда конечное состояние имеет более низкую симметрию, чем начальное. [c.226]

    Кажущаяся стабильность химического состава целостного организма является результатом существования определенного равновесия между скоростями синтеза и распада его составляющих. Внедрение в биохимическую и клиническую практику метода меченых атомов позволило доказать, что белки нужны не только растущему, но и сформировавшемуся организму, когда его рост прекратился, т.е. имеются доказательства существования в организме механизма постоянного обновления химических составных частей тела. При нормальных физиологических условиях, как и при патологических состояниях, скорости синтеза и распада специфических веществ определяются, помимо нервно-гормонального влияния, химической природой веществ и внутриклеточной их локализацией. В растущем организме скорость синтеза многих компонентов органов и тканей преобладает над скоростью их распада. Тяжелые изнуряющие болезни, а также голодание, напротив, характеризуются преобладанием скорости катаболизма над скоростью синтеза. Почти все белки тела, включая структурные белки, гемоглобин, белки плазмы и других биологических жидкостей организма, также подвергаются постепенному распаду и синтезу. Например, более половины белков печени, сыворотки крови и слизистой оболочки кишечника подвергается распаду и ресинтезу в течение 10 дней. Медленнее обновляются белки мышц, кожи и мозга. [c.410]


    Член Д1 возрастает при увеличении локализации вещества X и растворителя . Эта величина зависит от параметра Дх (анализируемое вещество) и Ш (растворитель). Параметр Дх зависит от относительной локализации X и и увеличивается как в зависимости от роста степени локализации растворителя у, так и от степени покрытия поверхности сорбента. Другими словами, величины Дх и Ш) определяют степень аномалии адсорбционного поведения вещества и растворителя. Эти показатели аномалии связаны следующим образом (В работе [124] [c.39]

    В результате экспериментов было установлено, что оптимальная средняя температура кристалла составляет 900—1100° С, тогда как в импульсе на поверхности кристалла температуру следовало доводить до 2000° С и выше. Хотя, как известно, температура графитации алмаза составляет 1500—1700° С, перехода алмаза в графит не происходит, вероятно, вследствие малой продолжительности импульса, во время которого не успевает образовываться критический зародыш графита. Продолжительность импульса пересыщения менялась от 5-10" до 10 сек, а продолжительность пауз между ними от 5-10 до 5-10" сек. При больших частотах импульсов их влияние уменьшается, очевидно, вследствие тепловой инерции затравочного кристалла алмаза, а при продолжительных импульсах (более 2 сек.) происходит растрескивание и графитация алмаза. Перед опытом поверхность монокристалла алмаза делалась матовой травлением на воздухе с целью локализации и усиления нагрева именно самой поверхности. В процессе роста шероховатости постепенно сглаживаются, поэтому на определенном этапе синтеза шероховатость приходится возобновлять. [c.104]

    Материал книги условно можно разделить на три части. Поскольку гетерогенные химические реакции, как это сейчас хорошо известно, отличаются от реакций в газах и кидкостях, первая часть посвящена описанию специфических особенностей гетерогенных реакций (протеканию реакции через образование зародышей продукта и их рост, локализации процесса на границе раздела фаз и т. д.). Эти особенности — причина того, что исследование гетерогенных процессов требует специальных методики и техники эксперимента. Поэтому вторая часть относится к экспериментальным методам. Автор подробно изложил правила выбора оптимальных условий для исследования конкретных систем, приемы, необходимые для выделения кинетической стадии из сложной цепочки последовательных процессов. характерных для гетерогенных реакций, правила выбора оптимальных условий массо- и теплопередачи в экспериментальной установке для изучения кинетики гетерогенных реакций и т. д.— все это может окасался весьма ценным для исследователей-экспериментаторов. [c.5]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Локализация разрушения происходит на следующем этапе, когда хаотически расположенные микропоры объединяются с образованием кластера- укрупненной трещины, способной к росту [91] при этом индивидуальные направления роста пор и микротрещин могут не совпадать с направлением результирующего нарушения сплощности [58]. [c.144]

    До сих пор нет общего мнения о первопри шне разупрочняю-щего. воздействия водорода. Воздействие водорода на рост трещины в сталях и сплавах обусловлено самыми разными, порой конкурирующими, элементарными процессами взаимодействия водорода в деформируемом материале с атомами кристати-ческой решетки и с дефектами структуры. Полагают, что водород, хемсорбируясь на активированных деформацией внешних и внутренних поверхностях, ослабляет межатомные связи в металле. Результатом такого взаимодействия, в зависимости от условий деформирования, может быть либо облегчение шхасти-ческого деформирования, либо разрушение металла. При этом основная причина водородной хрупкости металла - локализация действия водорода в наиболее ослабленных местах 49, 94]. [c.10]

    Поведение металла в дальнейшем может быть весьма различным в зависимости от анионного состава раствора, его концентрации, температурных условий и т. д. В принципе следует принимать во внимание следующее. Пассивация-металла сопровождается переходом его поверхности в оклслен-ное состояние вследствие образования адсорбционной или фазовой окисной пленки. В присутствии в - растворе ионов хлора, сульфатных ионов или иных анионов часто наступает пробой окисной пленки, что вызывает рост плотности анодного тока. Поверхность металла в отдельных местах подвергается интенсивному растворению, образуя набольшие очаги поражений (питтинги). Следует предположить, что в пределах отдельного питтинга анодная плотность тока достигает очень высоких значений, что приводит к крайне быстрому местному травлению металла. При подходящих условиях концентрации и температуры питтинги могут сливаться между собой, и тогда травление распространяется на всю поверхность металла, приводя к выравниванию местных дефектов и общему сглаживанию всей. поверхности (электрополировка). Для проведения электрополдаровки обычно рекомендуется употребление очень вязких растворов, спо- обствующих локализации линий тока на выступающих участках поверхности. [c.99]

    Питтинговая коррозия. Алюминиевые сплавы склонны к питтингу в морской воде. Присутствие хлор-ионов значительно усиливает этот вид локального разрушения. Локализация питтингов часто определяется металлургическими факторами, например они могут располагаться вдоль границ зерен [89]. В принципе можно было бы омеидать, что повышение концентрации растворенного кислорода в морской воде уменьшает скорость роста питтингов, однако на практике это может не проявляться из-за наличия других эффектов. Как показал Рейнхарт [90], в Тихом океане питтинговая коррозия определяется в основном именно содержанием в воде кислорода и в меньшей степени глубиной. В этих экспериментах наименьшая питтинговая коррозия нескольких алюминиевомагниевых сплавов серии 5000, испытанных при трех различных концентрациях кислорода, наблюдалась в условиях минимальной концентрации (рис. 66). [c.136]

    Р. в т. т. начинаются в отд. точках на пов-стн или в объеме тела (т. н. центрах р-ции) и постепенно захватывают весь его объем. Если центры локализуются на пов-сти раздела фаз твердых реагента и продукта, процесс относят к поту химическим реакциям.. Локализация и скорость роста центров может определяться диффузней (напр., при окислении металлов, распаде твердых р-ров), скоростью собственно хим. превращ. либо обоими процессами. [c.498]

    Применяют проспидин при раке гортани и злокачественных новообразованиях глотки независимо от стадии, формы роста и локализации, а также при папилломатозе верхних дыхательных путей, раке легких, лимфогранулематозе, ретикулезах кожи (при ангиоретикулезе Капоши, грибовидном микозе, саркоматозе кожи) ретинобласто-мах. Препарат можно сочетать с лучевой терапией. [c.43]

    В табл. 1-4 приведены результаты серпи опытов, проведенных при близких начальных концентрациях жесткости. При различных энтальпиях среды на входе и выходе и различной величине локальных отложений на участке от вх01да до промежуточной точки отбора темп роста интегральных отложений, характеризуемый повышением температуры стенки трубы в единицу времени At/Ax, примерно одинаков. Таким образом, ори большем суммарном количестве отложений на входном участке трубы (серия Б) максимальная скорость роста температуры в опытах (серии А и Б) примерно одинакова, что может быть только при локализации отложений. [c.24]

    Полученное решение зависит от двух параметров — 6 и т]о. Очевидно, при данном значении т]о — косинуса угла вылета струи из клапана — профиль радиальной составляющей вектора скорости оказывается заполненным при малых значениях Ь с ростом параметра Ь происходит локализация скоростного поля в центральной части струи — вблизи оси т] = т1о. На рис. 1.4 представлены эпюры радиальной составляющей вектора скорости для различных значений в координатах 0, иА шах. где V, — скорость газа на оси струи Угшах = [c.17]

    Существует два осн. типа моделей структуры дисперсной системы. В первом случае предполагается, что в системе существует непрерывная сетка межчастичных связей, к-рую можно рассматривать как квазикристаллич. решетку. Часть узлов решетки свободна ( вакансии ). Возможность течения системы обусловлена перемещением этих вакансий под действием сдвигового напряжения. Во второй модели рассматриваются группы частиц, двигающиеся как единое целое (агрегаты или блоки). Текучесть системы зависит от размера агрегатов, к-рый, в свою очередь, определяется скоростью деформации. Эта модель соответствует случаю более глубокого разрушения структуры при деформировании. Если структура имеет неоднородности, что характерно для высококонцентрир. систем, при деформировании может образоваться разрыв сплошности, т. е. появляется зона локализации сдвига с пониж. концентрацией дисперсной фазы. Рассматривая это явление по аналогии с образованием трещины в кристалле и используя критерий Гриффитса для роста трещины (см. Прочность), можно считать, что образование разрыва сплошности произойдет при где /-характерный размер неоднородности, а и Г-соотв. размер частиц и сила связи между ними, обусловленная межмол. притяжением. [c.249]

    Эксплуатация термоядерных эисргетич. установок будущего приведет к дальнейшему росту выбросов Т., т. к. ТЯЭС (термоядерная энергетич. станция) по оценкам будет выделять Т. в 10 -10 раз больше, чем АЭС эквивалентной мощности. Задачи улавливания Т. и очистки сбросов до санитарных норм, вьщеления и концентрирования Т. с целью его локализации (захоронения) или использования м. б. решены при помощи методов разделения изотопов водорода ректификацией воды под вакуумом, хим. изотопным обменом (очистка и начальное концентрирование), низкотемпературной ректификацией жидкого водорода, сорбционным разделением на твердых сорбентах. [c.7]

    Благодаря своим большим размерам и локализации ядра в основании клетки ацетабулярия оказалась удобным объектом для исследования морфогенеза [38, 39]. Растущую водооосль разрезали на отдельные части — ризоидную, базальную и апикальную, затем удаляли ядро и трансплантировали его из одной части в другую отрезанные части разных растений сращивали и получали водоросль с несколькими ядрами апикальную часть от одного вида соединяли с ризоидной частью другого и т. д. Опыты такого рода показали, что морфология (форма) шляпки определяется информацией, поступающей из ядра. Однако синтез белка и рост клетки идут даже в отсутствие ядра. Отсюда следует, что, по-видимому, несущие информацию молекулы (предположительно матричной РНК) перемещаются из ядра в зону роста на очень ранней стадии развития водоросли. Для синтеза белка в остальной части клетки постоянного участия ядра не требуется. [c.49]

    Представляет интерес возможность оценить физиологическую активность различных медицинских препаратов на основе данных по их электроно-донорной способности, определенной по константам комплексообразования с иодом. В работе [27] электроно-донорная способность барбитуратов была охарактеризована на основе констант равновесия образования комплексов с иодом. Установлено, что с ростом электроно-донорной способности барбитуратов сила их наркотического действия увеличивается, а время наступления эффекта уменьшается. Момент наступления снотворного действия барбитуратов линейно зависит от IgK взаимодействия с иодом. Выявлены закономерности влияния заместителей на электроно-донорную способность барбитуратов. Использование гексамидина, противосудорожное действие которого связано с окислением в организме до фенобарбитала, в качестве модельного соединения, не дающего комплекса с иодом, дало возможность предположить место локализации связи в комплекса с барбитуратами, которая осуществляется по СО или СО -группам в положении 2. На этой основе дана интерпретация проявления противосудорожных свойств у фенобарбитала, которых нет у других барбитуратов с более сильными электроно-донорными свойствами. [c.21]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    Попадая в ложбины ячеистого рельефа, в более глубокие ложбины между активными акцессориями дислокации обычно остаются там, предпочитая это компромиссное положение изменению ориентации (чтобы оставаться нормальными либо одному, либо другому склону ложбины ). Кроме того, дислокации (особенно краевые) активно адсорбируют примесь, что, очевидно, приводит к еще большему снижению скорости роста в этих участках, увеличению глубины межакцессорных ложбин и возрастанию крутизны их склонов. Этот процесс, в свою очередь, ведет к прогрессирующей локализации дислокаций в пространстве между акцессориями и собиранию их в жгуты и стенки . Особенно хорошо это явление заметно на кристаллах с большей плотностью дислокаций (см. рис. 18,а). В таких кристаллах кварца собирание дислокаций в жгуты и стенки порождает свилеватое строение, т. е. то, что для других кристаллов обозначается термином блочность . Значительная разориентация отдельных частей свилеватых кристаллов является причиной, не позволяющей получить достаточно хороший контраст одновременно для всей площади сканируемого образца. [c.94]


Смотреть страницы где упоминается термин Рост Локализация: [c.459]    [c.130]    [c.559]    [c.559]    [c.334]    [c.90]    [c.54]    [c.85]    [c.179]    [c.85]    [c.27]    [c.482]    [c.483]    [c.328]    [c.131]    [c.210]    [c.50]    [c.75]    [c.288]   
Рост растений и дифференцировка (1984) -- [ c.11 , c.14 ]




ПОИСК







© 2025 chem21.info Реклама на сайте