Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие жидкость бинарные смеси

    Исследователи фазового равновесия проводят различие между изотермическими и циркуляционными методами при постоянном давлении. Принцип циркуляционного метода состоит в том, что бинарную смесь известного состава испаряют и после установления фазового равновесия (т. е. состояния, при котором число молекул, покидающих жидкость, равно числу молекул, возвращающихся в жидкость) при определенном давлении измеряют концентрации кубовой жидкости и сконденсированных паров. Мюллер и Штаге ([39] к гл. 1) дают превосходное введение в технику экспериментальных измерений на примере дистилляции [c.86]


    Если н идкую идеальную бинарную смесь в течение значительного времени выдержать в замкнутом объеме при кипении в условиях постоянной температуры и постоянного давления, система, состоящая из пара и жидкости, придет в состояние равновесия. Более строгим критерием установившегося равновесия будет равенство химических потенциалов всех компонентов в фазах. [c.289]

    Рассмотренный случай не является единственным. Так, если максимальное давление смеси совпадает с критическим давлением одного из компонентов (например, смесь N2 —Ог), то прерывность в равновесии жидкость — пар (а это и является характерным признаком, отличающим бинарную систему от чистого вещества) [c.305]

    В первом приближении перегнанное талловое масло можно представить как бинарную смесь двух групповых компонентов— смоляных и жирных кислот. Ранее считали, что относительная летучесть смоляных и жирных кислот постоянна, а кривая фазового равновесия жидкость—пар близка к [c.113]

    Непрерывная противоточная перегонка в вакууме. Диаграмма фазового равновесия жидкость-пар бинарной смеси представлена на рис. 12.3. Из этой диаграммы видно, что вода и серная кислота образуют азеотропную смесь с максимальной температурой кипения 336,6 °С при атмосферном давлении, содержащую 98,3 % (мае.) Безводная серная кислота кипит при атмосферном давлении при температуре 296,2 °С, вьщеляя пары 80 и превращаясь при этом также в 98,3 %-ный водный раствор. Водные растворы, содержащие менее 70 % (мае.) Щ80 , при нагревании образуют пар, практически не содержащий серной кислоты. Ниже приведены температуры кипения 98 %-ной кислоты при различных остаточных давлениях  [c.412]

    При рассмотрении вопроса о смесях для испытания перегонных колонн важно учитывать два требования. Во-первых, специальная смесь должна быть но существу идеальной, чтобы сделать возможным применение уравнения (6) или быть такой, для которой при равновесии жидкости и нара можно получить подходящие и надежные данные по составу и температуре, по которым и удастся графически определять число эквивалентных теоретических тарелок. Во-вторых, компоненты смеси должны быть легко доступны в сравнительно чистом виде по умеренной цене. Смеси А, В и С, перечисленные в табл. 3-1, сравнительно хорошо удовлетворяют этим требованиям и использовались в качестве смесей при испытаниях [63]. Смесь Н, имеющая очень малую величину а, нуждается в дальнейшем, более детальном исследовании, с точки зрения величины ее отклонения от идеальности, прежде чем может быть применима в очень точных исследованиях. Диметилгексан, являющийся основой смеси D, до настоящего времени, в силу своей дороговизны, является недоступным в достаточных количествах и нужной чистоты, чтобы использовать его в качестве компонента смесей при испытаниях. Относительно триметилпентана, являющегося основой смеси Е, положение несколько более благополучно. Хотя ни один из компонентов в отдельности не является доступным в соответствующих количествах необходимой чистоты, но чистые бинарные смеси [c.33]


    Если при расчете процесса ректификации воздух рассматривается как бинарная смесь кислорода и азота, то ЧТТ определяется по диаграмме х—у для кислорода с использованием кривой равновесия 2 = 0 (рис. 40). Кроме того, кубовая жидкость вводится в сечение, кото- [c.134]

    На рис. XVI- в качестве примера представлены два варианта сочетания процессов ректификации и кристаллизации применительно к разделению бинарной смеси, имеющей диаграмму равновесия жидкость — пар, близкую к идеальной, и диаграмму расплав — кристаллическая фаза эвтектического типа (при отсутствии растворимости компонентов в твердом состоянии). Подобная смесь, как указывалось выше, методами простой фракционной кристаллизации не может быть разделена на чистые компоненты из-за наличия на диаграмме расплав — кристаллическая фаза эвтектической точки. В лучшем случае можно получить в чистом виде лишь один из компонентов смеси и маточную жидкость эвтектического состава. Однако, сочетая процессы ректификации и кристаллизации, рассматриваемую смесь можно разделить на практически чистые компоненты. Для осуществления такого процесса необходимо иметь одну ректификационную колонну и один или два кристаллизатора. [c.329]

    Через жидкую бинарную смесь пропускают пар, не находящийся в равновесии с этой жидкостью. [c.19]

    Рассмотренный случай не является единственным. Так, если максимальное давление смеси совпадает с критическим давлением одного из компонентов (например, смесь N3—Од), то прерывность в равновесии жидкость — пар (а это и является характерным признаком, отличающим бинарную систему от чистого вещества) наблюдается только на одном конце фигуры Р—Т—/V, т. е. для смесей, богатых одним из компонентов. В случае же наличия экстремума прерывность будет в средней части диаграммы. Известны также системы, характеризующиеся наличием температурного максимума и минимума на критической кривой. [c.323]

    При выводе уравнений для расчета идеальных ректификационных колонн, работающих в циклическом режиме, введены следующие допущения 1) массовое количество пара в колонне мало по сравнению с количеством жидкости 2) расход пара во время парового периода постоянен 3) количество жидкости в укрепляющей и отгонной части колонны постоянно и равно 4) бинарная смесь разделяется 5) на тарелках достигается равновесие 6) равновесная зависимость линейна 7) жидкость во время жидкостного периода перетекает с тарелки на тарелку в режиме вытеснения. [c.71]

    Если при расчете процесса ректификации воздух рассматривается как бинарная смесь кислорода и азота, то определение числа теоретических тарелок производится по диаграмме л —у для кислорода с использованием кривой равновесия у = О (фиг. 44). Кроме того, кубовая жидкость вводится в месте, которому на диаграмме х — у соответствует точка пересечения рабочих линий. Концентрационные напоры в колонне, т. е. расстояния между рабочей линией и кривой равновесия на диаграмме л — у, получаются в этом случае значительно большими, чем в случае рассмотрения воздуха как тройной смеси. [c.143]

    Если при расчете процесса ректификации воздух рассматривается как бинарная смесь кислорода и азота, то число теоретических тарелок определяется по диаграмме х—у для кислорода с использованием кривой равновесия г/2 = О (рис. 41). Кроме того, кубовая жидкость вводится в месте, которому на диаграмме х—у соответствует точка пересечения рабочих линий. Концентрационные напоры в колонне, т. е., расстояния между рабочей линией и кривой равновесия на диаграмме х—у, получаются в этом случае значительно большими, чем в случае рассмотрения воздуха как тройной смеси. При ректификации тройной смеси вследствие накопления аргона на тарелках колонны наиболее резкое сокращение концентрационных напоров в верхней колонне происходит на участке от места, которому соответствует точка пересечения рабочих линий, до места ввода смеси в колонну и на нижнем участке исчерпывающей секции колонны, где происходит процесс разделения смеси кислород—аргон. [c.143]

    При малых не нарушающих существенно гидродинамич. режим движения парогазовой смеси (напр., при испарении воды в атм. воздух) и подобие граничных условий полей т-р и концентраций, влияние дополнит, аргументов в ур-ниях подобия незначительно и им можно пренебречь, принимая, что Nu = 8Ь. При И. многокомпонентных смесей указанные закономерности сильно усложняются. При этом теплоты И, компонентов смеси и составы жидкой и парогазовой фаз, находящихся между собой в равновесии, различны и зависят от т-ры. При И, бинарной жидкой смеси образующаяся смесь паров относительно богаче более летучим компонентом, исключая только азеотропные смеси, испаряющиеся в точках экстремума (максимума или минимума) кривых состояния как чистая жидкость. [c.276]


    В идеальной колонке на каждой тарелке должно устанавливаться равновесие между жидкостью и паровой фазой. В этом случае, применяя для оценки работы колонки графический метод, можно охарактеризовать процессы, протекающие на отдельных тарелках, при помощи кривых равновесных состояний жидкость — пар рассматриваемой бинарной смеси (см. рис. 233). Пусть смесь в перегонной колбе имеет состав х, а пар, поступающий на первую тарелку,— состав у. Если колонка работает идеально, то тот же состав у должна иметь и флегма, стекающая с первой тарелки [c.219]

    Метод равновесной седиментации в градиенте плотности основан на следующем. Если поместить в ячейку центрифуги смесь низкомолекулярных жидкостей (растворителей) различной плотности, то при сильном центробежном ускорении (более 10 м/с ) через некоторое время в кювете установится седиментационное равновесие, т.е. в радиальном направлении возникнет постоянный во времени градиент плотности. Если в таком бинарном растворителе содержится полимерный компонент с плотностью, промежуточной между плотностями элементов растворителя, то полимер начнет собираться в полосы в тех местах кюветы, где его плотность равна плотности бинарного растворителя. Чем ниже молекулярная масса, тем больше коэффициент диффузии и тем сильнее размывается эта полоса (изоденса). Для сополимеров (если сомономеры имеют разные плотности) в результате установления равновесия могут появиться несколько полос макромолекулы с различной плотностью соберутся в разные полосы. Следует отметить, что метод применим для молекулярных масс выше критической, иначе ширина полосы становится соизмеримой с длиной ячейки. [c.325]

    Если разделяемая смесь — бинарная, то состав смеси однозначно определяется концентрацией одного компонента. Поэтому для бинарной смеси получается система из трех уравнений, содержащих три неизвестные величины. Предварительно уравнение (V. 221) должно быть проинтегрировано. Для этого необходимо располагать зависимостью Уг — (Х ), описывающей связь состава жидкости и образующегося из нее пара. Как было указано, при проведении процесса дистилляции в емкостном аппарате можно считать, что пар находится в равновесии с жидкостью. Для п. ком- [c.540]

    Равновесная перегонка сравнительно редко применяется для разделения бинарных смесей. Чаще ее используют для разделения многокомпонентных систем, например, при перегонке нефти. В этом случае смесь нагревают под давлением в трубчатых аппаратах и подают в пространство с пониженным давлением. Образующиеся при этом пары находятся в условиях приблизительного равновесия и отделяются от перегретой жидкости. [c.37]

    Имеются, конечно, исключения расчет равновесия в тройных системах только по данным для бинарных систем оказывается, по-видимому, более успешным в тех случаях, когда область нерастворимости в бинарной системе АВ (для систем типа I или в обеих ограниченно растворимых парах для систем типа II) почти симметрична. В качестве исходных данных для тройных систем (в дополнение к данным для бинарных), которые удобно применять при расчете тройного равновесия, могут служить известная хорда равновесия или данные о равновесии пар — жидкость. Можно пользоваться также данными об азеотропных составах, исключая те случаи, когда азеотропная смесь образо- [c.111]

    Соответственно с этим изменяются и условия равновесия между жидкостью и паром. На рис. 99 показан характер кривых равновесия, выраженных в относительных концентрациях компонентов, для случая, когда исходная смесь является бинарной. [c.267]

    Впервые исследованы фазовые равновесия жидкость-пар и азеотропия в вакууме при остаточном давлении 1,333 кПа в бинарных системах линалоола с дегидролиналоолом и дигидролиналоолом а также с геранилацетоном (смесь изомеров) геранилацетона (смесь изомеров) с дегидронеролидолом неролидола с дегидронеролидолом цис- и транс- изомеров еранилацетона. Экспериментальные данные подтверждены результатами расчетов с применением ЭВМ, [c.5]

    Технологическая схема периодического процесса. Схема показана на рис. 12.12. В дистилляционный куб 1 с теплообменным устройством (кипятильником) заливается исходная бинарная смесь в количестве молей с начальной концентрацией НКК Хн при температуре о. Через теплообменную поверхность подводится теплота Сначала жидкость, как видйо из рис. 12.13, нагревается до начальной температуры кипения (стадия нагрева без изменения агрегатного состояния), а затем происходит испарение части жидкости с понижением в ней концентрации НКК и повышением температуры кипения (стадия дистилляции). Образующиеся пары отводятся из дистилляционного куба немедленно — в момент их образования. Пары поступают в конденсатор-холодильник 2, после которого в виде жидкого дистиллята собираются в приемнике 3. В конце стадии дистилляции количество оставшейся в кубе жидкости равно Ьк, концентрация НКК в ней — х , а конечная температура кипения — 4 концентрация НКК в дистилляте составляет Хд, а количество последнего — П. Постепенному изменению концентрации НКК X в кубовой жидкости сопутствует изменение его концентрации у в паровой фазе. Идеализируя процесс дистилляции, будем считать, что в каждый момент стадии дистилляции текущие концентрации НКК в жцдкой и паровой фазах равновесны. Такое допущение отвечает медленной дистилляции или очень большой поверхности контакта паровой и жидкой фаз — тогда успевает установиться межфазное равновесие, и массообмен происходит в условиях потоковой задачи. [c.990]

    Рассмотрим теперь разделение бинарных смесей в случае образования молекулярных соединений. На рис. 8.8, а представлена диаграмма фазового равновесия бинарной смеси, образующей конгруэнтно плавящееся соединение ЛпВт состава С . Такую бинарную смесь ряяделить на чистые компоненты методами обычной фракционной кристаллизации нельзя. Если концентрация высокоплавкого компонента в исходной смеси находится в промежутке между О и Сви то при простой кристаллизации можно выделить чистый компонент А и получить при этом маточную жидкость состава Се1. Если концентрация исходной смеси находится в диапазоне от 1 до 2, то простой кристаллизацией вообще невозможно получить чистые компоненты. В этом случае получают кристаллическую фазу, соответствующую составу молекулярного соединения s и маточник состава Се1 или состава Се2. В области концентраций от Се2 до 1 можно получить чистый компонент В и маточник состава Се2. [c.278]

    На рис. 8.11, г представлен один из вариантов схемы разделения бинарной азеотропной смеси, образующей при кристаллизации непрерывный ряд твердых растворов. В данном варианте однократную кристаллизацию используют в основном для перехода через азеотропную точку, окончательно же смесь разделяют ректификацией. На рис. 8.11, (Э разделение той же смеси осуществляют сочетанием ректификации с противоточной кристаллизацией. В рассматриваемом случае можно использовать и другие варианты разделения, например получение одного компонента кристаллизацией, а второго — ректификацией. На рис. 8.11, ж показан один из возможных вариантов разделения азеотропной смеси, имеющей эвтектическую точку на диаграмме фазового равновесия жидкость — кристаллическая фаза. Соче- [c.293]

    Если бинарная смесь имеет азеотроп (рис. П-17в, г) и концентрация компонента 1 в точке питания меньше, чем в точке азеотропа, то в верхней секции колонны обратимой ректификации с полным исчерпызаннем компонента величина потоков пара и жидкости в соответствии с уравнениями (П.43) и (П.44) становится отрицательной после перехода через точку азеотропа. Это следует из того, что индекс п в уравнениях (П.43) и (П.44) относится к компоненту с наименьшим значением коэффициента фазового равновесия при составе и температуре в точке питания. Отрицательные значения потоков соответствуют неестественному направлению их движения, т. е. сверху вниз для пара и снизу вверх для жидкости. В связи с этим, точка бинарного азетропа является термодинамическим ограничением процесса бинарной обратимой ректификации, и процесс полного разделения смеси на компоненты в этом случае невозможен. [c.65]

    Наибольшее практическое применение для обработки опытных данных о равновесии между жидкостью и паром получили различные формы уравнения Гиббса — Дюгема. Это уравнение, как известно, описывает условия фазового равновесия при постоянных температуре и давлении. Согласно правилу фаз Гиббса, бинарная двухфазная система при заданных двух параметрах состояния является нонвариантной, т. е. при заданных температуре и давлении может существовать лишь определенная жидкая смесь, находящаяся в равновесии с паровой фазой определенного состава. Таким образом, при Т — onst и Р = onst составы фаз, входящие в уравнение Гиббса — Дюгема, не могут рассматриваться как независимые параметры состояния системы и уравнения Гиббса — Дюгема и Дюгема — Маргулеса к бинарным двухфазным системам, строго говоря, неприменимы. Поэтому использование этого уравнения для обработки данных о фазовом равновесии в бинарных системах неизбежно связано с термодинамической нестрогостью. Последнюю легко выявить, сопоставляя уравнение Гиббса — Дюгема (1-206) и уравнение состояния фазы (1-193). Из этого сопоставления следует, что использование уравнения Гиббса — Дюгема для обработки данных о равновесии при Т = onst связано с допущениями, что AV JRT) dP = = О, т. е. что коэффициенты активности компонентов не зависят от давления. Последнее положение выполняется с высокой степенью [c.157]

    В производстве кино- и фотоматериалов получается водная смесь растворителей (ацетон, толуол, бутилацетат). С целью разработки метода регенерации этих растворителей необ.чодимо располагать данными по 4 1 ()вому равновесию жидкость — жидкость — пар. В настоящей работе представлены результаты экспериментального исследования фазового равновесия жидкость — пар для тройных подсистем ацетон — толуол — бутилацетат (I) и ацетон — вода — бутилацетат (II) и жид-кость — жидкость для системы (II), а также математического моделирования во всех бинарных и тройных подсистемах. Фазовое равновесие жидкость — жидкость — пар исследовали при атмосферном давлении на приборе, описанном в литературе [1]. Составы равновесных фаз определяли на хроматографе ЛХМ-8МД с катарометром. Колонка дли-лой 3 м и внутренним диаметром 3 мм заполнялась порапаком р5, анализ проводился при 200° с использованием водорода и качестве газа-носителя (100 мл/мин). [c.77]

    Анализ устойчивости тройных (или высших) систем в принципе подобен проведенному Для бинарных систем, хотя математические сложности увеличиваются с числом компонентов (см., например, работы [7, 73]). Следует, однако, признать, что анализ устойчивости может показать нам только то, что система при данной температуре может или не может расслоиться. Другими словами если есть выражение для конкретной температуры, то анализ устойчивости может показать, имеется или нет некоторый диапазон составов, в котором существуют две жидкости. О самом диапазоне анализ ничего не говорит. Нахождение диапазона составов, в котором две жидкости сосуществуют в равновесии, требует более сложных расчетов. Для иллюстрацйи рассмотрим опять простую бинарную смесь, для которой избыточная энергия Гиббса дается уравнением (8.13.2). Если А йКТ, то можно рассчитать составы двух сосуществующих фаз путем решения системы двух уравнений фазового равновесия [c.332]

    Через жидкую бинарную смесь пропускают пар, не находящийся в равновесии с этой жидкостью. Жидкость, со- держащая больше азота, чем это должно быть по равновесному состоянию с поступающим паром, имеет по сравнению с паром более низкую температуру. Барботирующий через жидкость пар стремится [c.21]

    В настоящее время наибольшее практическое применение получили методы расчета равновесия, основанные на использовании уравнения Дюгема—Маргулеса и эмпирических зависимостей неидеальной доли изобарного потенциала смешения от состава смесей [9, 16, 209, 213, 214, 227—232]. Неидеальная доля изобарного потенциала смешения выражается при этом обычно в виде суммы неидеальных долей изобарного потенциала сме- шения бинарных систем, образованных веществами, входящими в многокомпонентную систему, и дополнительных членов, учитывающих совместное взаимодействие всех компонентов друг с другом. Эти члены включают эмпирические коэффициенты, которые определяются по данным о равновесии в трехкомпонентной системе. С помощью зависимости неидеальной доли изобарного потенциала смешения от состава жидкости коэффициенты активности определяются по уравнению (214). По найденным значениям коэффициентов активности концентрация произвольного компонента в паре рассчитывается по уравнению  [c.185]

    В случае подачи в колонну исходной омеси в виде жидкости скачкообразное изменение концентрации разделяющего агента происходит также на тарелке питания, кш это следует из уравнения (308). В этом случае концентрация разделяющего агеьта в укрепляющей части больше, чем в исчершывающей. Соответственно с этим изменяются и условия равновесия между жидкостью и паром. На рис. 89 показан характер" кривых равновесия, выраженных в относительных концентрациям, для случая, когда исходнз Я смесь является бинарной. [c.228]

    Было исследовано равновесие твердое — жидкость для системы четыреххлористый углерод—нараксилол—метаксилол [27]. На основании этой работы предложили применять четыреххлористый углерод для предотвращения образования эвтектики мета- и нараксилолов. Это достигается благодаря тому, что четыреххлористый углерод образует эквимолекулярное соединение с параксилолом, по не образует такого соединения с метаксилолом. Диаграмма равновесия для этой системы несколько напоминает диаграмму рис. 8. В то время как в бинарной системе эвтектика мета- и параксилолов образуется при содержании нараксилола в маточном растворе 14%, тройная эвтектика, образуемая а) молекулярным соединением четыреххлористого углерода с параксилолом, б) избытком четыреххлористого углерода и в) метаксилолом, соответствует содержанию в маточном растворе лишь около 1% нараксилола. При пересчете на смесь, не содержащую четыреххлористого углерода, это соответствует содержанию в растворе лишь 2% нараксилола. Совершенно очевидно, что во втором случае выход нараксилола возрастает. [c.61]

    Рассмотренные выше принципы относятся только к размерам получаемых кристаллов влияние же различных условий на состав получаемых кристаллов практически почти не изучено. В частности, в литературе опубликована лишь одна работа для органической системы [37], ири которой бинарную испытуемую смесь пропускали по охлажденной трубе и определяли скорость кристаллизации и состав твердой фазы. Для удобства количественной оценки разделительной способности стадии образования кристаллов применяли систему, образующую твердые растворы, а именно нафталин — р-нафтол. Было установлено, что низкие скорости кристаллизации благоприятствуют повышению эффективности единичной ступени, т. е. с уменьшением скорости кристаллизации до нуля достигается большая степень приближения к равновесию между твердой и жидкой фазами. Увеличение турбулентности жидко11 фазы также повышает эффективность е .1 ничной ступени кристаллизации. Например, при скорости кристаллизации 50 кг час на 1 м поверхности охлаждения и числах Рейнольдса 59 600 и 4910 эффективность единичной ступени составляла соответственно 70 и 15%. С увеличением скорости кристаллизации в 10 раз эффективность стунени снизилась приблизительно до 10% независимо от числа Рейнольдса. При скорости кристаллизации 5 кг час на 1 и числе Рейнольдса 59 600 эффективность стунени составляла около 90%. Попытки установить зависимость между скоростями кристаллизации, с одной стороны, и коэффициентами мас-сообмеиа и данными фазового равновесия пар — жидкость, с другой стороны, подтверждают влияние числа Рейнольдса. В отношении других параметров четких зависимостей выявить не удалось. [c.70]

    Азеотропвая Р. Для нек-рых бинарных смесей кривые равновесия у = ф(х) при определенных условиях пересекают диагональ >>-х-диаграммы в точке пересечения составы пара и жидкости одинаковы (азеотропная смесь), вследствие чего подобные смеси обычной Р. разделить невозможно. Поэтому к исходной смеси добавляют р-ритель-т. наз. разделяющий агент, образующий с одним из компонентов азеотропную смесь, к-рая прн Р. выделяется в виде дистиллята кубовая жидкость представляет собой высококипящий компонент с миним. содержанием разделяющего агента. Однако его выделение из азеотропной смеси (дистиллята) затруднено. Один из методов, позволяющий осуществить рецикл р-рителя, заключается в применении таких разделяющих агентов, к-рые обладают ограниченной взаимной р-римостью в компонентах, отбираемых в виде дистиллята. При этом благодаря его расслаиванию в разделит, сосуде слой, обогащенный ЛЛК, поступает в среднюю часть регенерац. колонны, откуда в результате Р. в виде кубового продукта отбирается ЛЛК исходной смеси, а в виде дистиллята-азеотроп, направляемый в разделит, сосуд (рис. 7). [c.233]

    Рассмотрим систему, состоящую из двухкомпонентной (бинарной) жидкой смеси и паров, образующуюся при ее кипении. В данном случае характеристическими параметрами, кроме давления и температуры, являются еще составы жидкости и пара. Если компоненты жидкой смеси абсолютно нерастворимы друг в друге, то /С = 2, Я = 3 и / = 1, т. е. система моновариантна. По условию равновесия изменение, например, давления над этой системой влечет за собой одновременное изменение температуры кипения и состава паровой фазы (состав жидкой смеси здесь роли не играет, так как ее компоненты взаимно нерастворимы). Если же рассматриваемая смесь состоит из компонентов с неограниченной взаимной растворимостью, то /С = 2, Я = 2 и / == 2, т. е. система бива-риантна. [c.424]

    В практике встречаются многочисленные бинарные смеси, кривые равновесия которых при определенных условиях пересекают диагональ х— /-диаграммы. В точке пересечения, носящей название азеотропной, составы жидкой смеси и образующегося из нее пара одинаковы (у = х). Такая жидкая смесь отличается наибольшим отклонением от закона Рауля она называется азеотропной, или нераздельнокипящей, и характеризуется постоянством температуры выкипания. Совершенно очевидно, что равенство составов жидкости и пара исключает возможность разделения азеотропных смесей на практически чистые компонентыобычными методами ректификации. Из исходной смеси, состав которой отличается от азеотропного, можно предельно извлечь лишь фракцию, обогащенную одним из компонентов остаток же будет азеотропной смесью. [c.529]

    Действительно, если для полного определения бивариантной двухфазной системы бинарной смеси при заданном общем давлении достаточно знать лишь концентрацию одного из компонентов в одной из фаз, то для полного определения /г-вариант-ной двухфазной системы, состоящей из п компонентов, необходимо знать уже концентрации п—1 компонентов в одной из фаз при заданном общем давлении. В общем случае это означает, что кривая фазового равновесия (изобара) для каждого компонента, находящегося в многокомпонентной смеси, является фупкциейпе только физико-химических свойств (качества) других компонентов, но и их абсолютных концентраций (количества). Этим собственно и отличается многокомпонентная смесь от бинарной смеси, где кривая фазового равновесия (изобара) для каждого из двух компонентов зависит только от физико-химических свойств (качества) другого. Следовательно, каждый компонент такой сложной смеси имеет не одну кривую фазового равновесия, а бесчисленное множество их, в зависимости от содержания других компонентов, что приводит к необходимости располагать многочисленными данными по равновесным соотношениям. Установление этих данных экспериментальным путем требует большого труда даже в случае трехкомпонентных смесей и практически становится невыполнимым если речь идет о смесях с большим числом компонентов. Более того, как уже говорилось выше, такой путь изучения равновесных соотношений здесь даже исключается, потому что данные, экспериментально установленные при каком-либо одном режиме для заданного разделения смеси, не могут быть использованы существующими методами для проведения расчетов при изменении хотя бы одного из условий этого режима для того же самого разделения смеси, например, при изменении флегмового числа. Проведение расчетов существующими методами становится возможным только в случае идеальной смеси, в которой летучесть каждого компонента пропорциональна абсолютной мольной доле этого компонента при любой температуре и любом давлении [481. Такие идеальные многокомпонентные смеси состоят обычно из химически родственных компонентов (например, смеси углеводородов в нефтяной или коксо-беизольной промышленности и т. д.) и равновесные соотношения для каждого компонента этой смеси в системе пар-— жидкость описываются достаточно точно уравнением  [c.78]

    Рассмотрим бинарную солевую смесь А+С —В+С , не обра зующую твердых растворов. Фазовая диаграмма такой смеси представлена на рис. 4. При температуре Т твердая соль АС находится в равновесии с жидкостью, в которой ионная доля [c.226]


Смотреть страницы где упоминается термин Равновесие жидкость бинарные смеси : [c.29]    [c.34]    [c.649]    [c.95]    [c.81]    [c.353]    [c.26]    [c.246]   
Справочник по физико-техническим основам криогенетики Издание 3 (1985) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Бинарные смеси

Равновесие жидкость пар

Равновесие пар жидкость бинарное

Равновесия смесях



© 2025 chem21.info Реклама на сайте