Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОТРАВЛЕНИЕ КАТАЛИЗАТОРА И СЕЛЕКТИВНОСТЬ

    ОТРАВЛЕНИЕ КАТАЛИЗАТОРА. СЕЛЕКТИВНОСТЬ РЕАКЦИИ. [c.203]

    Создание новых, более активных и селективных, но менее подверженных отравлению катализаторов позволило сократить число стадий процесса, часто путем объединения в одну стадию стадий гидрирования и расщепления сырья. Двухступенчатые схемы применяются обычно только для переработки низкокачественного сырья, например высококипящего или с высоким содержанием азотистых соединений. Современные процессы гидрокрекинга с более эффективными катализаторами проводятся при значительно меньшем расходе водорода, а следовательно, и нри более низком давлении, что значительно упрощает аппаратурное оформление и снижает себестоимость продуктов. [c.306]


    В литературе имеются некоторые данные об исследовании влияния пропарки катализатора на степень его отравления. На свежий катализатор наносили 0,2 вес.% нафтената железа-и пропаривали при 566 °С перегретым паром под давлением. Параллель-) но пропаривали свежий катализатор при тех же условиях, после чего на него обычным методом наносили 0,2 вес.% железа и затем испытывали его активность. Было установлено, что при пропарке существенная часть отложенных металлов поглощается катализатором поэтому они оказывают значительно меньшее дезактивирующее действие, чем в случае нанесения металлов после пропарки катализатора. Предотвращение отравления катализатора путем воздействия на него водяного пара изучалось в работе [205]. Полученные результаты (табл. 44) иллюстрируют существенное улучшение селективности при пропарке катализатора. [c.143]

    Отравляется природный и синтетический катализатор. Отравление катализатора крекинга тяжелыми металлами происходит и в промышленных условиях [206]. Снижение селективности катализатора от отравления вызывает резкое ухудшение экономических показателей процесса. Это было показано на следующем эксперименте. На промышленной установке каталитического крекинга с псевдоожиженным слоем пылевидного катализатора в течение двух с лишним лет перерабатывалось сырье трех типов с высоким содержанием металлов полученные результаты сравнивали с результатами работы установки на чистом вакуумном газойле. Содержание металлов в сырье (в вес.%) приводится ниже  [c.148]

    В присутствии в сырье никеля выход кокса в 4,5 раза больше-и количество бензина снижается в 7,9 раза больше, чем в присутствии такого же количества ванадия [215]. Потеря селективности при наличии на катализаторе никеля и меди в 10 раз больше, чем при наличии железа [202]. Коксообразование, вызываемое содержанием на катализаторе никеля, в 4 раза больше, чем в присутствии железа [204]. При изучении влияния различных металлов, на степень отравления катализатора большинство исследователей проводили опыты с относительно большими количествами металлов по сравнению с содержанием их на промышленном равновесном катализаторе. Поскольку в работе [216] были использованы данные по содержанию металлов в промышленном катализаторе, определенные зависимости отличны от всех остальных. Уравнение, предложенное автором этой работы для определения активности катализатора, имеет следующий вид  [c.155]


    Резкое снижение активности алюмосиликатного катализатора подтверждено в работе [18] установлено, что наиболее токсичными из исследованных металлов являются никель, затем кобальт, медь, молибден, ванадий и хром (рис. 10). Для предотвращения отравления катализатора металлами необходимо проводить специальную подготовку сырья, т. е. улучшенная ректификация вакуумного газойля, термическая обработка и деасфальтизация остатка атмосферной перегонки, очистка вакуумного газойля селективными растворителями, серной кислотой и гидроочистка. [c.18]

    В связи с резким уменьшением выхода целевого продукта (бензина) существенно снижается экономичность процесса. Поэтому для поддержания активности и селективности катализатора на достаточно высоком уровне необходимо предохранять катализатор крекинга от отравления. Известны два метода предотвращения отравления катализатора металлами удаление металлов из сырья или с поверхности катализатора. [c.108]

    Высокая селективность цеолитов по отношению к таким соединениям серы, как сероводород и меркаптаны, используется для удаления последних из смесей многих веществ, в том числе и из смесей углеводородов. Из циркулирующего в установках риформинга водорода и из сырья, идущего на изомеризацию, сернистые соединения необходимо удалять, чтобы предотвратить отравление катализаторов, чувствительных к сере. При переработке природного газа из него методом селективной адсорбции удаляют воду, СО2 и соединения серы до остаточного уровня не выше [c.724]

    Поведение других металлов различно. Платина и никель проявляют специфическое взаимодействие некоторых плоскостей своих кристаллов с серой, повышая тем самым как селективность, так и активность (см. разд. 6.2). Подтверждено [16], что это происходит вследствие как реконструкции поверхности катализатора, так и разницы в поверхностной энергии различных кристаллографических плоскостей металла, обладающих низкими индексами Миллера. Считают, что адсорбция небольших количеств НгЗ изменяет энергетический баланс поверхности и приводит к новому равновесному распределению плоскостей с различной каталитической активностью. Такое объяснение имеет важные последствия для тех типов реакций, на которые влияют отравление катализаторов сероводородом или реконструкция поверхности под его действием. Таким образом, этот вид отравления должен влиять в значительно большей степени на такие структурно-чувствительные реакции как гидрогенолиз и изомеризация, чем на такие структурно-нечувствительные реакции как гидрогенизация. [c.150]

    Усовершенствование указанных процессов ожижения связано с необходимостью преодоления следующих затруднений 1) дезактивация катализатора вследствие отложения углерода, металлов и минеральных веществ 2) отравление катализатора соединениями азота и серы 3) дезактивация катализатора вследствие сульфидирования в среде, содержащей сероводород 4) ограничения эффективности контакта катализатора с продуктами ожижения и водородом, а также диффузионные ограничения 5) высокий расход водорода и уменьшение выхода жидких фракций вследствие недостаточной селективности крекинга 6) спекание катализатора и носителя, особенно в процессе регенерации 7) плохой тепло- и массоперенос вследствие неправильного распределения пор по радиусам 8) механическое разрушение катализатора при длительном использовании и регенерации. [c.224]

    Гл. V посвящена рассмотрению связи между диффузией, отравлением катализатора и селективностью реакции. С этими вопросами непосредственно связано влияние диффузии на окислительную регенерацию закоксованных катализаторов, которое также рассмотрено в этой главе. [c.12]

    Сада и Вен [287] проанализировали влияние степени отравления катализатора на селективность при отравлении пор для сложных реакций трех типов. Рассмотрены реакции на сферической грануле, на бесконечной плоской пластине и бесконечной цилиндрической грануле. Для случая одновременного протекания двух реакций рассмотрено воздействие яда на протекание как одной из них, так и обеих. [c.207]

    Селективность и отравление катализатора при диффузионном торможении процесса [c.133]

    При быстром необратимом отравлении катализатора яд оседает главным образом в устье пор отравление селективно выходят из строя наиболее доступные участки поверхности. Чтобы подойти к активной внутренней поверхности зерна, реагент должен продиффундировать сквозь отравленные участки пор, прилегающие к внешней поверхности частицы. Толщина отравленной зоны, равная 6, создает диффузионное сопротивление б //), Массопередача от внешней поверхности частицы к внешней границе части зерна катализатора, сохранившей активность, идет с эффективной константой скорости р = ) /б и при достаточно большом 6 может стать лимитирующей стадией. При этом, очевидно, имитируется внешнедиффузионная кинетика, но, разумеется, не появляется характерная для внешнедиффузионной области зависимость скорости реакции от линейной скорости потока. [c.136]


    Для восстановления активности и селективности катализаторов их периодически, а на некоторых установках непрерывно, подвергают окислительной регенерации при температуре 300—500°С и давлении 1,0—1,5 МПа осушенными дымовыми газами, содержащими 0,5—1,0 % кислорода. Во избежание отравления катализатора применяют инертный газ (азот) высокой чистоты, содержащий не выше 0,5 % об. кислорода, 1 % об. углекислоты, 0,5 % об. окиси углерода и не более 0,2 г/нм водяных паров. Дозировка воздуха для равномерности выжигания кокса и предупреждения местных перегревов регламентируется начальной концентрацией кислорода в инертном газе. Кратность циркуляции (отношение объема газа, подаваемого в час на единицу объема регенерируемого катализатора) рекомендуется поддерживать в пределах 500—1000 нмVм Остаточное содержание кокса на регенерированном катализаторе составляет менее 0,02 % мае. на катализатор [7]. [c.12]

    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Так, например, катализатор молибдат висмута (В Мо = 1) при 460° С и 1 атм (9,8 10 Па) превращает пропилен в акролеин с начальной селективностью 90% v /v2 = 9), не зависящей ни от давления кислорода, ни от разбавления водяным паром и очень медленно убывающей по мере увеличения степени превращения v Vз = 4). Кинетический порядок равен 1 по СзН и О по Ог отравления катализатора продуктами обнаружено не было [67]. Энергия активации составляет 20 ккал/моль (8,36 10 Дж/моль) в области температур 350— 500° С, но выше 500° С катализатор дезактивируется. Вообще говоря, рекомендуется поддерживать величину отношения СдНв/Ог выше теоретической ( = 1). [c.157]

    Низкие выходы бутиленов и, соответственно, дивинила обусловливаются недостаточной селективностью процесса дегидрирования бутана, отравлением катализатора, быстрым размельчением и ухудшением его фракционного состава. Наряду с этим, низкие выходы целевых продуктов связаны с плохой работой узлов ректификации, экстрактивной дистилляции и хемсорбции. [c.238]

    Интерес к микроэлементам нефтей и соединениям, содержащим эти элементы, обусловлен их заметной ролью в технологических процессах переработки и использования нефтепродуктов и их онре- деленной геолого-геохимической информативностью. Микроэлементы в сырье для нефтепереработки снижают технологические показатели процессов, вызывают отравление катализаторов и ухудшают селективность их действия. Природа металла и форма соединения, в которой он находится, существенно влйяют на степень отравления катализатора [858—861]. Содержащиеся в газотурбинных, реактивных и котельных топливах примеси переходных металлов, в особенности ванадия, приводят к интенсивной газовой коррозии находящихся в активной зоне элементов двигателей и энергоустановок [862—865]. Галоидные нефтяные соединения, разлагаясь при термических воздействиях, значительно ускоряют коррозию аппаратуры [866]. [c.159]

    Дробление катализатора способствует росту степени использования зерна катализатора, увеличению глубины процесса и тем самым выхода кокса, а также росту коксоемкости катализатора. Кокс, яды и металлоорганические соединения, откладываясь на свободных активных центрах, блокируют последние, уменьшают их число, пониясая тем самым активность, стабильность и селективность катализаторов. Для уменьшения действия чрезмерно активных центров применяют методы предварительно1 о отравления катализатора ядами. [c.94]

Рис. 4.4. Влияние продолжительности использования катализитора, глубины превращении, кратности циркуляции катализатора, селективности бензин /кокс, бензин/ газ в случае гетерогенного процесса, протеказзщего с отравлением катализатора на выход продуктов , X ( ) на скорость их образования в единицу времени т (б) г - газ б - бензин Рис. 4.4. <a href="/info/420722">Влияние продолжительности</a> использования катализитора, <a href="/info/25903">глубины превращении</a>, <a href="/info/66246">кратности циркуляции катализатора</a>, селективности бензин /кокс, бензин/ газ в случае <a href="/info/12711">гетерогенного процесса</a>, протеказзщего с <a href="/info/3365">отравлением катализатора</a> на <a href="/info/9156">выход продуктов</a> , X ( ) на скорость их образования в единицу времени т (б) г - газ б - бензин
    Таким образом, на установках каталитического крекинга катализатор находится в весьма тяжелых усдониях. Свежий катализатор, догруженный в установку, довольно быстро изменяет свои свойства [7, 8]. Прежде всего уменьшаются его каталитическая активность и селективность. Одной из причин ухудшения свойств катализатора является изменение его удельной поверхности, структуры пор и других физических свойств ( старение катализатора ). Другая причина — отравление катализатора, обусловленное изменением химических и каталитических свойств его поверхности. Отравление катализатора может быть обратимым. В этом случае активность катализатора после удаления каталитических ядов полностью восстанавливается. В частности, азотистые основания и коксовые отложения обратимо отравляют алю-мосиликатный катализатор — при окислительной регенерации они лолностью сгорают. При необратимом отравлении каталитические яды не удаляются на какой-либо стадии процесса и постепенно накапливаются на поверхности катализатора. Такими ядами являются металлы и их соединения, содержащиеся в сырье. Накопление металлов на поверхности катализатора приводит к увеличению образования кокса, легких газов и к уменьшению выхода бензина. В результате существенно ухудшаются технико-эконо-мические показатели процесса крекинга. [c.7]

    На выходящем пз регенератора катализаторе металлы находятся в виде окислов. Это было доказано на примере ванадия. В пор-фирине ванадий находится в четырехвалентной форме (У +). При отложении ванадия из такого соединения на катализатор валентность его не изменяется, что установлено по спектрам электронного парамагнитного резонанса катализаторов крекинга, отравленных ванадием [337]. После обработки загрязненных ванадием катализаторов крекинга воздухом в условиях, обычно применяемых для выжига, четырехвалентный ванадий переходит в другое окисленное состояние, вероятно, в пятивалентное, и не обнаруживается методом электронного парамагнитного резонанса. В связи с тем, что активность отравленного катализатора сильно зависит от вида соединения, в котором металл присутствует на катализаторе [217], для восстановления первоначальной активности и селективности отравленных катализаторов металлы следует либо совсе.м удалять, либо перевести в новые, неактивные соединения. [c.212]

    Сера. Значительный лнтерес представляют данные о действии серы на алюмоплатиновый катализатор, так как оно в известной мере подобно действию металлов IV группы (германия, олова, свинца). Дозированное осернение алюмоплатинового катализатора и, следо этельно, введение небольших количеств серы, хотя и снижает дегидрирующую активность катализатора, однако, подавляя гидрогенолиз парафинов, увеличивает селективность процесса, вследствие чего повышается выход ароматических углеводородов. С другой стороны, при значительном содержании серусодержащих соединений в сырье происходит отравление катализатора, в частности уменьшается его активность и селективность в реакции дегидроциклизации парафинов (табл. 2.13). Подобное явление наблюдается только, при умеренных температурах каталитического риформинга. Если же проводить процесс при высоких температурах (например, 525 " С) существенного ухудшения селективности не отмечено [120]. . [c.96]

    Добавление к бензолу хинолина, обработанного серой, бром-тиофена или тиохинантрена, т. е. введение яда, позволило остановить реакцию на стадии альдегида (с выходом 75—80% от теории) [22]. Следует отметить, что уже при изготовлении катализаторов в их состав целесообразно вводить вещества, травляющие те ак- / тинные центры катализатора, на которых происходят реакции, снижающие селективность. При изучении отравления катализаторов была установлена связь между токсичностью и молекулярным строением яда. Это явление Мэкстед назвал якорным эффектом [33]. При сравнении ядов, содержащих, например, ядовитый атом серы, оказалось, что токсичность яда, приходящаяся на 1 г-ат серы, тем больше, чем больше молекулярный вес соответствующего соединения серы [22, 44]. [c.68]

    Количественные данные о влиянии этих примесей (кроме соединений серы и минеральных масел) на активность и тем более на селективность платиноидных катализаторов в литературе отсутствуют. Предполагают, что такие вещества, как РНз, АзНз, Fj, U, HF, H l, ацетилен, этилен и другие соединения углерода в воздухе должны отсутствовать. При наличии незначительных количеств этих веществ (например, до 2,2-10 % фосфинов и до ЫО-2—1-10— мг/л фтора) происходит глубокое необратимое отравление катализатора. Механизм воздействия этих ядов на катализатор неизвестен. Существует предположение, что под влиянием соединений углерода происходит науглероживание сеток — внедрёние углерода в решетку платинового сплава. [c.50]

    I Окисление этилена до этиленоксида с использованием металлич. Ag (10-15%), нанесенного на а-А120з, обладающий малой уд. пов-стью частичное отравление катализатора хлорсодержащими добавками увеличивает селективность катализатора. [c.340]

    Дальнейшее совершенствование процесса риформинга происходит путем создания полиметаллических катализаторов, содержащих кроме рения добавки иридия, германия, олова, свинца и других металлов, а также редкоземельных элементов— лантана, церия, неодима. Действие иридия во многом аналогично действию рения. Германий, олово, свинец каталитически неактивны, их используют для подавления активности катализатора в реакциях гидрогенолиза (деметилирования аренов, расщепления циклоалканов), т. е. они играют роль селективного яда. Ранее с той же целью производилось дозированное отравление катализатора серой. Полиметаллические катализаторы обладают стабильностью биметаллических, но характеризуются лучшей избирательностью и обеспечивают более высокий выход бензина. Срок службы полиметаллических катализаторов составляет 6—7 лет. Вместе с тем реализация преиму- [c.353]

    Каталитическое окисление этилена в промышленности осуществляют воздухом или кислородом при температуре 220-280 °С и давлении 1-3 МПа. В качестве катализатора используют металлическое серебро (10-15%), нанесенное на а-А120з с низкой удельной поверхностью. Частичное отравление катализатора хлорсодержащими добавками (например, дихлорэтаном) увеличивает селективность катализатора. [c.847]

    Более сложной задачей является ступенчатое восстановление алкинов в алкены. Для этого можно использовать палладий на носителе благодаря его высокой селективности, однако довольно часто приходится прибегать к отравлению катализатора, чтобы избежать дальнейшего восстановления алкена. Обычно в качестве носителей применяют ВаЗО , СаСОз, активированный уголь или оксид алюминия. Типичным представителем дезактивированных палладиевых катализаторов является Р(1/Ва504, ингибированный хинолином эта система с хорошим выходом восстанавливает циклододецен-1-ин-6 до цис,цис- хш лододекадиена-1,6 [1ба] [схема (7.13)]. [c.259]

    Смесь бутиленов (в отдельных случаях — с пропиленом) может подвергаться олшомеризации в процессе Полинафта Францлаского института нефти ( IFP ) с получением предпочтительно керосиновой фракции (рис. 12.141). Алюмосиликатный катализатор 1Р-501 загружают в три последовательных полочных реактора или в четыре реактора (при паралельной работе). Катализатор прочен и относительно дешев. Диолефины рекомендуется удалять из сырья в установке селективного гидрирования, а кислородсодержащие — водной отмывкой с последующей отгонкой воды. Отравление катализатора кислородсодержащими соединениями может быть скомпенсировано подъемом температуры или продувкой горячим водородом. Катализатор может подвергаться окислительной регенерации (вне установки). Конверсия олефинов (92-97 %) и селективность регулируются теплообменниками между реакторами. [c.926]

    Разрыв непрерывности поверхности металла может быть также важным следствием отравления катализатора, так же как и повышение вероятности влияния адсорбции на одном участке на близлежащие участки. На основе данных своих исследований процесса метанирования Делла Бетта с сотр. [27] полагают, что это направление предпочтительно и имеет важные практические последствия. Они обнаружили сильное влияние сероводородного отравления на селективность ряда катализаторов, включая никель и рений, на различных носителях, и сделали предположение, что влияние обусловлено типом разрыва активных участков поверхности катализатора, как уже упоминалось ранее. [c.66]

    При отравлении катализатора серой изменяется также продукционная селективность. Наблюдается увеличение метана, образующегося на промотированном железе, сильно дезактивированном вследствие поглощения серы [8]. Херингтон и Вудворт [10] нашли, что добавление серы в кобальтовый катализатор, промотированный диоксидом тория, сначала увеличивает выход жидких углеводородов, а затем более глубокое отравление сдвигает распределение продуктов в сторону газообразных углеводородов. Сходные результаты были опубликованы для никеля и промотированных никелевых катализаторов [1, с. 246]. Крексфорд приписывал первоначальный сдвиг в распределении продуктов в сторону жидких углеводородов резкому снижению каталитической функции в отношении гидрокрекинга вследствие отравления катализатора [И]. Херингтон и Вудворт описали эффект предпочтительного ослабления гидрирующей функции поверхности, что и приводит к преобладанию процесса полимеризации и образованию более длинных цепей углеводородов. [c.261]

    Банкрофт [41, 43] отметил значение адсорбции при отравлении. Контактный катализ замедляется, если яд легко адсорбируется, препятствуя таким образом нормальной адсорбции реагентов на катализаторе, так как он препятствует ссприкоснсвению реагента с поверхностью. Позже Банкрофт указал [44], что отравление катализатора обязано своим эффектом заметному селективному характеру адсорбции. Это утверждение подтверждается экспериментальными данными [231], доказывающими, что окись углерода, добавленная в малых количествах к платинирсваннсму асбесту, содержащему адсорбированный водород, способна вытеснять адсорбированный водород из платины в определенных процессах каталитической гидрогенизации. Коэфициент адсорбции для платинированного асбеста оказался большим, чем коэфициент адсорбции для платиновой черни, показывая, что платинированный асбест имеет большую удельную поверхность, чем платиновая чернь. [c.393]

    В заключение необходимо отметить, что явления отравления используются на практике и для улучшения свойств катализаторов. Поскольку действие яда неодинаково сильно сказывается на различных (параллельных или последовательных) реакциях, протекающих на данном катализаторе в данной реакционной системе, создается возможность применять так называемое селективное отравление для повышения избирательности катализатора. Широко известно, например, селективное отравление серебряных катализаторов галогенами, когда реакция полного окисления этилена подавляется сильнее, чем реакция образова ния окиси этилена, и избирательность катализатора, таким об разом, повышается. Метод селективного отравления, видимо довольно широко применяется в промышленности, однако кон кретные случаи его применения мало освещены в литературе если не считать недостаточно надежных патентных указаний Кроме того, вряд ли существует определенная граница между селективным отравлением катализаторов и их модифицирова- [c.77]


Смотреть страницы где упоминается термин ОТРАВЛЕНИЕ КАТАЛИЗАТОРА И СЕЛЕКТИВНОСТЬ: [c.57]    [c.79]    [c.34]    [c.305]    [c.200]    [c.705]    [c.128]    [c.347]    [c.263]   
Смотреть главы в:

Каталитический крекинг -> ОТРАВЛЕНИЕ КАТАЛИЗАТОРА И СЕЛЕКТИВНОСТЬ




ПОИСК





Смотрите так же термины и статьи:

Катализаторы селективность

Отравление катализатора. Селективность реакции. Газификация углеродистых отложений

Отравление катализаторов

Отравление катализаторов селективное

Селективность и отравление катализатора при диффузионном тормо

Селективность сложных реакций и отравление катализатора при диффузионном торможении процесса



© 2025 chem21.info Реклама на сайте