Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы задач я образцов

    Прежде чем приступать к решению подобного типа задачи, необходимо сделать некоторые предварительные выводы. Например, выяснить, какое количество вещества необходимо подвергнуть аналитическому исследованию. В примерах а и г анализ всего объема имеющегося вещества был бы неосуществим и слишком дорог, если бы использовалась какая-либо аналитическая методика с разрушением образца. Точно так же невозможно испытать каждую сигарету данного сорта (пример б) и соответственно взять анализ у каждого из мужчин указанной группы (пример д). В примере в определенные ограничения, обусловленные наличием у хроматографа мертвого времени , не позволили бы применить его для непрерывного слежения за составом газовой смеси. [c.45]


    Методы препарирования. Методы препарирования веществ определяются типом исследуемого образца, а также задачами и целью опыта. Существует много способов препарирования образцов. Для исследования катализаторов можно применять следующие. [c.106]

    MOB в ячейке. Такая задача возникает тогда, когда исследователь имеет дело с новым соединением или с новой кристаллической модификацией уже известного вещества. Однако в практике материаловедения часто достаточно знать, какие фазы и в каком количестве присутствуют в анализируемых образцах известного химического состава после различного вида обработок. Подобного типа задачи решаются методами рентгеновского фазового анализа. Наконец, возможны случаи, когда тип кристаллической структуры известной фазы несколько изменяется в процессе обработки (например, появление тетрагональных или ромбических искажений при легировании фазы с кубической структурой). [c.276]

    Выбор наиболее эффективного адсорбента применительно к данной конкретной задаче является одним из основных пунктов исследования. Ассортимент адсорбентов очень велик, и свойства их весьма разнообразны. В промышленном масштабе н па опытных установках изготовляются многие типы и образцы активированных углей, силикагели, цеолиты (молекулярные сита), пористые стекла и т. п. В работе [150] наглядно показано, что лучшие активированные угли по своей эффективности значительно превосходят адсорбенты другой природы. Если [c.83]

    При определении содержания изотопов водорода в молекулярных соединениях встречаются два типа задач. Первая наиболее простая дейтерий распределен в молекуле случайным образом. В этом случае общее количество дейтерия может быть определено по любым удобным масс-спектральным линиям. Вторая, более трудная задача дейтерий занимает в молекуле вполне определенное место. В этом случае правильное содержание дейтерия отражают только осколочные ионы с изотопной меткой. На примере дейтерированных полиэтиленов нами было показано [282], что вторично-эмиссионная маос-спектрометрия позволяет рещать обе эти задачи, причем основным преимуществом метода является то, что сведения об изотопном составе высокомолекулярного образца могут быть получены непосредственно из масс-спектров. [c.211]

    Значения теплот смачивания АН определяют калориметрическими измерениями. Что же касается удельных теплот смачивания Л, то для конкретных систем жидкость— тип катализатора и условий тренировки поверхности образцов они являются вполне определенными и могут быть взяты из таблиц 2. Таким образом, задача оиределения поверхности образцов катализаторов практически сводится к калориметрическому измерению теплот их смачивания , г, 7з  [c.86]


    Фотографический метод предусматривает использование специальных камер той или иной конструкции в зависимости от поставленных задач. Наиболее широко применяется камера типа РКД (рис. 68) для съемки рентгенограмм с поликристаллических образцов по методу Дебая—Шеррера. [c.115]

    Оценил получаемых данных. Она заключается в их критическом анализе и выборе наилучших по точности и достоверности. Это относится ко всем данным, т. е. полученным различными способами. Часто бывают ситуации дублирования данных из различных источников, и здесь задача установления их достоверности становится очевидной в силу их различия. Однако и данные в единственном экземпляре должны подвергаться проверке, в конечном итоге за их точность несет ответственность либо источник, либо пользователь. Обычно проверка данных проводится на основе некоторых закономерностей типа уравнения состояния (для данных Р—У — Т), уравнения Гиббса—Дюгема (для равновесных данных) и т. д. и состоит в установлении факта их совместимости. Для экспериментальных данных основанием их достоверности могут служить чистота образцов, точность калибровки экспериментальной установки, точность метода измерения по сравнению с другими методами, соответствие данных с другими источниками или полученными другими методами, репутация исследователя, выполняющего эксперимент. [c.183]

    Задачей группового анализа светлых дистиллятов является последовательное количественное определение углеводородов различных классов и групп. В продуктах прямой перегонки или получаемых в процессах, идущих под давлением водорода, присутствуют углеводороды трех классов алканы, цикланы и ароматические. В продуктах крекинга и пиролиза наряду с этими углеводородами могут содержаться и ненасыщенные соединения моноолефины, диолефины, циклоолефины и ароматические углеводороды с ненасыщенными боковыми цепями (типа стирола). При детализированном исследовании состава светлых нефтяных фракций задачей анализа уже является количественное определение или качественная идентификация (доказательство наличия) отдельных индивидуальных углеводородов или гетероатомных веществ, находящихся в исследуемом образце. [c.61]

    При измерении дефектов первым способом ставится задача найти искусственный дефект типа плоскодонного отверстия, залегающий на той же глубине, что и естественный, и дающий эхосигнал такой же амплитуды. Образец с искусственным дефектом должен быть изготовлен из того же материала, что и ОК (иметь такое же акустическое сопротивление и затухание). Поверхности ОК и образца должны иметь одинаковую шероховатость ( г Ю мкм). [c.192]

    В 1858 г. А. Кекуле писал Я не считаю больше главной задачей времени указывать па атомные группы, которые вследствие их известных свойств можно считать радикалами, и причислять таким образом соединения к некоторым типам, едва ли имеющим иное значение, чем формула образца. Я считаю необходимым и, при современном состоянии химических знаний, во многих случаях возможным при объяснении свойств химических соединений обратиться к самим элементам, из которых составлены эти соединения .  [c.189]

    Практика показывает, что каждый образец угля в какой-то степени отличается от других образцов угля. Одна из основных задач состоит в том, чтобы упорядочить совокупность рассматриваемых объектов так, чтобы неопределенно большое число индивидов свелось к определенному числу групп (типов). Затем группы объединяют в классификационную систему. Это можно сделать только на основе предпосылки (гипотезы) о существовании общей связи между всеми единичными образцами (индивидами). [c.9]

    Характеристика полимера — это задача, к которой необходимо подходить во многих случаях с учетом типа и назначения полимера, подлежащего исследованию. Приведем один пример в аморфном полимере нельзя определить истинную точку плавления тем не менее такой материал может быть охарактеризован температурой (или температурной областью), при которой он размягчается или полностью расплавляется, поддается формованию или начинает менять форму под действием определенной нагрузки. Один и тот же образец полимера может проявлять указанные изменения при различных температурах, и в зависимости от круга вопросов, интересующих исследователей, каждый из них получает необходимые характеристики термических свойств материала. Таким образом, приводя результаты исследования, необходимо указать условия, при которых производились определения данного свойства. Если изучаемое свойство является функцией молекулярного веса или распределения по молекулярным весам в образце, то эти данные составляют часть условий измерений, о которых идет речь. К счастью, большинство физических свойств данного полимера изменяется очень мало или вообще не изменяется, когда полимер имеет довольно высокий средний молекулярный вес. [c.43]


    Существуют быстро сканирующие спектрофотометрические детекторы, которые позволяют снять УФ-спектр вещества при его прохождении через кювету без остановки потока. Один из наиболее удачных детекторов такого типа используют в хроматографе Милихром , в котором с помощью зеркала, поворачивающегося по заданной программе на определенный угол с заданной частотой, кюветы с образцом и сравнительная кювета освещаются последовательно монохроматическими лучами с выбранными оператором различными длинами волн. Получаемая при этом хроматограмма, представляющая собой комбинацию из двух, трех или более хроматограмм, снятых при разных длинах волн, позволяет получить качественную информацию о возможных примесях, замаскированных в одном пике, о природе и структуре вещества, о длине волны, при которой поглощение данного вещества максимально и можно определить его минимальное количество. Эта информация часто позволяет по одной хроматограмме решить сразу несколько достаточно сложных задач обнаружить примеси, установить чистоту веществ, определить длину волны, при которой поглощение каждого вещества наибольшее, провести идентификацию. Работать с таким детектором, конечно, сложнее, чем с простым спектрофотометром. [c.152]

    Электронно-оптическая система и типы сигналов, возникающие в РЭМ—РМА под действием электронной бомбардировки, обсуждаются в гл. 2 и 3. Остальная часть книги посвящена подробному описанию способов измерения соответствующих сигналов, методам их использования для определения конкретной информации об органических и неорганических объектах и способам препарирования образцов. Особое внимание уделяется выбору и использованию методик, предназначенных для решения задач, которые часто ставятся заказчиками перед исследователями, работающими на РЭМ и РМА. [c.11]

    Основные задачи многомерных методов хемометрики состоят в группировке и классификации химических объектов (образцов, веществ, материалов) и в моделировании взаимосвязей между различными типами аналитических данных. Вот некоторые характерные примеры. [c.518]

    Вторично-ионную масс-спектрометрию часто используют для изучения поверхности нанесенного конденсированного образца. Хотя в результате нагрева в этом случае может происходить разрушение образца, что приводит к уменьшению выхода вторичных ионов, метод имеет свои преимущества при решении именно подобных задач. Более удобным является растворение исследуемого образца в жидкой матрице типа глицерина, поскольку быстрая диффузия в жидкости обеспечивает постоянное восстановление поверхности. [c.32]

    При поточном методе одной из основных задач является выдача точных результатов испытания качества резиновых смесей в течение 2—4 мин. Контроль осуществляют при помощи приборов различного типа. Широко используется установка, состоящая из вулканизационного пресса с диаметром плит 100 мм и прибора для определения кольцевого модуля, отличающемся от стандартного прибора меньшими габаритами (рис. 7.22). Пресс оборудован пневматическим приводом и автоматическим управлением. Плиты пресса обогреваются электронагревательными элементами до 190—200 °С. Время вулканизации образцов 1,0—1,5 мин. Верхняя плита опускается сжатым воздухом под давлением [c.107]

    Общая конструктивная схема колонки включает в себя корпус, фильтры и наконечники (рис. 5.11). Корпус представляет собой цилиндрическую трубку из нержавеющей стали, стекла или полимерных материалов он служит емкостью для слоя сорбента. Верхний и нижний концы корпуса закрывают фильтры. Чаще всего это диски из пористой нержавеющей стали, по диаметру соответствующие наружному диаметру колонки. Диаметр пор фильтров 0,5—2 мкм, их назначение — удерживать слой сорбента в колонке. Кроме того, фильтр на входе в колонку задерживает механические примеси из подвижной фазы и образцов. Наконечники герметизируют всю колонку и служат для подключения капиллярных трубок, соединяющих колонку с дозатором и детектором. Конструкция наконечников должна быть такой, чтобы свести к минимуму внеколоночное размывание пробы и разделенных компонентов. Наконечник хорошей конструкции так формирует поток на входе в колонку, что поперечное размывание и отрицательное влияние стеночного эффекта сводятся к минимуму. Фактически в колонке работает при этом только центральная часть сорбента. Такие колонки характеризуются высокой эффективностью. Однако при указанной конструкции колонки сорбент будет легко перегружаться по мере увеличения массы вводимой пробы, и поэтому наконечники препаративных колонок призваны решать прямо противоположную задачу — распределять пробу по возможно большей части поперечного сечения. В настоящее время чаще всего применяются колонки трех типов цельнометаллические, разборные со сменными разделительными патронами полимерные для работы в режиме радиального сжатия. [c.197]

    Для сопоставления метрологических характеристик разных типов приборов, разных экземпляров приборов одного типа и т.п. применяют единые государственные стандартные образцы (F O) состава. При этом значения метрологических характеристик необходимо выражать в единицах массовых долей (содержаний) контролируемых компонентов. F O целесообразно применять также для оценки метрологических характеристик методик при государственной или отраслевой стандартизации, для построения основных (базисных) градуировочных характеристик, при решении других задач, связанных с обеспечением единообразия средств и методик вьшолнения измерений. [c.420]

    Резьбовые детали в реальных конструкциях подвергаются неоднородному одноосному растяжению, изгибу из-за коробления фланцев и кручению вследствие схода резьбы. Задача акустической тензометрии заключается в определении осевых растягивающих усилий, возникающих в процессе затяжки и отнесенных к гладкой части детали, представляющей собой цилиндр диаметром 8. .. 160 мм и длиной 50. .. 1500 мм. Как правило, доступным для ввода и вывода ультразвука является один из торцов образца. Предыстория материала в большинстве случаев неизвестна. Важнейшими проблемами являются оценка ожидаемой погрешности, учет влияния внешних воздействий и геометрии объекта, выбор типа волн и частоты ультразвука, выбор метода акустических измерений. В общем случае использование методов акустической тензометрии затруднено из-за малости акустоупругого эффекта. Для обеспечения удовлетворительных метрологических характеристик процедуры контроля напряжений необходимо измерять время распространения с относительной погрешностью порядка [c.184]

    Еще одна задача, решаемая методом порошковой рентгенографии, - определение размеров областей кристалла с ненарушенной периодичностью, т.е. областей когерентного рассеяния (ОКР), которые иногда называются кристаллитами. Для некоторых образцов размеры ОКР совпадают с размерами частиц. Методически близки к решению этой задачи вопросы определени5 некоторых типов дефектов. Для решения этого комплекса проблем необходим тщательный анализ профиля дифракционных линий. [c.5]

    ДЯоо — тепловой эффект, или энтальпия, химического процесса. Экспериментально непрерывно наблюдают изменение АТ с), т. е. Д7 (0 =7 обр(0—То, где Т обр( ) —средняя температура образца То — некоторая известная температура, которую или поддерживают постоянной (изотермический режим), или определенным образом изменяют (неизотермический режим). Величина Д7 ( зависит от глубины и теплового эффекта реакции, теплоемкости образца и характеристик регистрирующей системы. Таким образом, задача теории метода применительно к изучению кинетики химических реакций заключается в установлении функциональных зависимостей типа [c.309]

    Стандартные образцы простых химических веществ могут служить основой для приготовления двух (и более) компонентных -стандартов. Как привило, для приготовления стандартных образцов такого типа (сплавы, растворы, смеси) прибегают к смешению, сплавлению, растворению точно отвешенных навесок чистых (эталонных) простых веществ. Вполне естественно, что в ходе приготовления таких стандартных образцов следует четко контролировать все условия, чтобы избежать потерь того или иного компонента или не привнести посторонние вещества в результате взаимодействия с окружающей средой и материалам аппаратуры, в которой проводится синтез стандартного вещества. Кроме того, в случае многокомпонентных стандартных образцов возникает специфическое осложнение, связанное с необходимостью равномерного> распределения всех компонентов по всему объему стандартного образца. При кажущейся простоте задача, связанная с обеспечением однородности состава образца по объему, часто оказывается достаточно сложной. В первую очередь это относится к твердым кристаллическим объектам типа сплавов и порошкообразных смесей, в которых в ходе их приготовления могут протекать процессьЕ дифференциации (разделения) компонентов и продуктов их взаимодействия по плотности или дисперсности. Уместно напомнить,, например, что для многих сплавов концентрации легирующих компонентов в поверхности и объеме образца могут не совпадать. [c.53]

    В ходе опытов предусматривалось прослеживание за изменением коэффициента проницаемости образца при последовательной фильтрации различных жидкостей (газ, нефть, пластовая вода, пресная вода и растворы ПАВ различной концентрации). Поэтому было особенно важным исключить влияние посторонних факторов на величину коэффициента проницаемости при фильтрации по образцу различных жидкостей в течение довольно длительного времени (3—6 дней). К этим факторам относятся механические примеси в жидкостях и продукты коррозии, получающиеся в результате контакта рабочих жидкостей с металлическими деталями установил. Если в первом случае задача решается сравнительно легко специальной подготовкой жидкости и подбором соответствующего номера фильтра Шотта перед входом в образец (в нашем случае фильтр № 4), то во втором случае требуется специальная установка. При изготовлении установки была произведена замена металлического материала отдельных деталей на неметаллический, предусмотрена возможность осуществления, промывки входной и выходной камер кернодержателя перед сменой фильтрующихся жидкостей и возможность просто и быстро менять направление фильтрации жидкости в образце (см. рисунок). Сосуд с фильтрующейся жидкостью 1, пьезометр 2 и керновый зажим 4 с образцом 5 помещали в термостатируемый шкаф, температура в котором автоматически поддёрживалась равной 35° С при помощи контактного термометра типа ТК-6. В качестве [c.94]

    Попробуйте, наконец, провести эксперименты того типа, которые вы собираетесь выполнить иа этом приборе. Сначала испытайте простые образцы, свойства которых вам уже известны, а затем сложные, которые вы еще никогда не исследовали. Попробуйте очень разбавленные и очень концеитрированиые образцы (не удивляйтесь, дефекты электроники приемника могут проявиться как раз на интенсивных сигналах). Посмотрите, нет ли в спектре выбросов на частоте передатчика, других выбросов, квадратурных пиков и т.д. Получите спектр без использования фазового цикла Y LOPS й посмотрите, насколько он ухудшился. Попробуйте зарегистрировать спектр одновременно с выполнением серьезной вычислительной задачи (например, двумерного преобразования Фурье) часто компьютер или система его дисков могут наводить помехи в радиочастотном канале спектрометра. [c.258]

    К счастью, многие из упомянутых проблем могут быть преодолены при использовании методов обработки, названной нами интенсивной пластической деформацией (ИПД) [3, 8]. Задачей методов ИПД является формирование нанострук1ур в массивных металлических образцах и заготовках путем измельчения их микроструктуры до наноразмеров. Хорошо известно, что путем значительных деформаций при низкой температуре, например, в результате холодной прокатки или вытяжки [9-11], можно очень сильно измельчить структуру металлов. Однако полученные структуры являются обычно ячеистыми структурами или субструктурами, имеющими границы с малоугловыми разориентировками. Вместе с тем рассматриваемые наноструктуры являются ультра-мелкозернистыми структурами зеренного типа, содержащими преимущественно большеугловые границы зерен [8, 12]. Создание таких наноструктур может быть осуществлено методами ИПД, позволяющими достичь очень больших деформаций при относительно низких температурах в условиях высоких приложенных давле- [c.6]

    Задания для самостоятельных работ первого типа (копирующих) заключают в себе требование выполнить те или иные действия по образцу или осуществить, как говорят, ближний псренос знаний. Указания в них в основном предписывают, как н в какой последовательности надо решать ту или иную задачу. Хотя эти задания и требуют в основном воспроизведения знаний, однако они, несомненно, оказывают определенное развивающее влияние на учащихся. Выполняя работу, учащиеся перестраивают и систематизируют приобретенные знания. Самостоятельная работа в этих случаях служит цели лучшего осмысления нового и закрепления в памяти изученного материала. Примером задания, рассчитанного на самостоятельную работу копирующего типа, может служить работа по ознакомлению учащихся с лабораторным оборудованием в VH классе. Учитель объясняет и демонстрирует устройство газовой горелки, правильный способ нагревания. Затем учащиеся самостоятельно выполняют те же операции по зажиганию газа, регулированию пламени, нагреванию воды в пробирке, пользуясь оборудованием, имеющимся иа их столах. [c.12]

    В приложениях, направленных на выяснение того, является ли продукт синтеза тем, который ожидали или планировали, образец вводят в прибор непосредственно при помощи штока или через газовый хроматограф. Последний вариант имеет то преимущество, что можно проанализировать относительно меньшие количества образца кроме того, собственно масс-спектрометрическому анализу предшествует предварительное разделение образца. Применяя метод ГХ-МС, можно получить масс-спектры нескольких компонентов смеси за один аналитический цикл и (или) обеспечить отделение интересующего компонента от вероятных мешающих компонентов в режиме on-line. В настоящее время для решения этих задач имеются относительно простые, дешевые и легкие в использовании настольные ГХ-МС-приборы (квадрупольные или с ионной ловушкой). Наиболее распространенным типом ионизации является электронный удар, хотя исследования в области органического синтеза все в большей степени связаны с полярными и лабильными соединениями, что требует различных подходов. Идентификация и подтверждение соединений осуществляется при помощи поиска в библиотеках масс-спектров и (или) при помощи интерпретации полученных масс-спектров, как обсуждалось в разд. 9.4.3. [c.300]

    Комбинируя частичные структуры, найдите возможные общие структуры молекулы исследуемого вещества. Проверьте соответствие найденного решения всем имеющимся данным. Для однозначного решения задачи необходимо сравнение исследуемого масс-спектра с масс-спектром аутентичного образца. В то же время ие следует забывать, что в отличие от ИК-, УФ- и ЯМР-спектров интенсивности пиков в масс-спектрах, зарегистрированных на разных приборах, moi заметно различаться. Иноща, например, некоторые пики обусловлены продуктами термического разложения, наблюдающегося в системе ввода пробы только одного из двух типов масс-спектрометров. С ледовательио, для того чтобы подтвердить предложенную структуру, лучше сравнивать более воспроизводимые ИК- или ЯМР-спектры изучаемого вещества и аутентичного образца. [c.227]

    Независимо от типа магнита при использовании ЯМР высокого разрешения для решения задач структурной химии к однородности поля предъявляются чрезвычайно высокие требования. Так, для ЯМР-спектрометра высокого разрешения с рабочей частотой 600 МГц и разрешением 0,1 Гц эта величина составляет 2 10 . Теоретически такое разрешение может быть достигнуто при использовании сверхпроводящего магнита, однако на практике такая однородность не может быть достигнута, так как магнитная восприимчивость изменяется от образца к образцу. С помощью дополнительных резистивных катушек, которые устанавливаются между основной сверхпроводящей катушкой и образцом, удается провести коррекцию поля в ограниченных пределах, что позволяет достичь однородности поля до 10по объему образца. Остаточную небольшую неоднородность поля в плоскости, перпендикулярной Во, можно устранить путем механического вращения образца вдоль оси. [c.50]

    Микрошприцем проба через самоуплотняющуюсяч мембрану вводится либо в испаритель хроматографа, либо непосредственно в колонку. Выбор способа дозирования зависит от природы образца, решаемых аналитических задач, типа и режима работы колонок. [c.137]

    Производится множество типов жидкостных кювет, широко различающихся по своим основным качествам. При выборе конструкции для работы в лаборатории нужно иметь в виду следующие факторы 1) легко ли она заполняется, не попадает ли при этом раствор на наружные поверхности окон 2) удобно ли из нее удалять вещество и промывать 3) возможно ли разбирать кювету, чистить, переполировывать окна и вновь собирать ее в лабораторных условиях 4) соответствует ли объем кюветы обычно используемым количествам образца 5) соответствует ли стоимость кюветы тем задачам, для которых ее предполагается использовать. Рекомендуется предварительно опробовать несколько конструкций, прежде чем выбрать стандартную. [c.125]

    Если приходится решать часто повторяющиеся задачи контроля на одинаковых или по крайней мере очень похожих образцах, то руководителю отдела контроля рекомендуется разработать соответствующую инструкцию и обеспечить ее осуществление силами обученных контролеров. На основе полученных рекламаций и опыта разрушающего контроля должны быть известны предположительный тип, величина и расположение дефектов, которые нужно контролировать, чтобы избежать ненужных затрат. В инструкции должны иметься следующие сведения наименование изделия, возможно с эскизом, путь (траектория) сканирования и предположительные места расположения дефектов, настройка прибора с искателем для каждой операции контроля с траекторией сканирования и предположительного расположения детектов, ссылка на возможные эхо-импульсы, которые не следует путать сКэхо-импульсами от дефектов. Как правило, при массовом контроле оператора не следует заставлять подготавливать отчет навдотив, он должен за короткое время сам принять решение о забраковании изделия на основе эхо-импульсов от дефектов. В случае дорогостоящих изделий целесообразна отсортировка сомнительных изделий, поручаемых для повторного контроля более опытному руководителю отдела. [c.397]


Смотреть страницы где упоминается термин Типы задач я образцов: [c.331]    [c.206]    [c.206]    [c.192]    [c.50]    [c.276]    [c.142]    [c.270]    [c.430]    [c.607]    [c.182]   
Смотреть главы в:

Экстракционная хроматография -> Типы задач я образцов




ПОИСК







© 2025 chem21.info Реклама на сайте