Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ. Выводы

    Можем ли мы применить, исходя из этой информации, полученной при исследовании неферментативного катализа, выводы о механизме для ферментативного катализа реакции декарбоксилирования Некоторые декарбоксилазы действительно образуют шиффовы основания со своими субстратами, а важная группа декарбоксилаз (содержащих витамин биотин) содержит также связанные ионы Мп +. [c.171]


    Необходимо особо отметить выдающиеся исследования М. И. Темкина (1935—1938 гг.), давшего впервые вывод уравнений абсолютных скоростей процесса адсорбции и гетерогенного катализа. Вывод общего уравнения кинетики гетерогенных реакций в струе газа сделал Г. М. Панченков (1948 г.). [c.6]

    Однако в случае, если такого рода силы реально действуют, отличить их влияние от влияния неоднородности можно с помощью изотопных методов, предложенных в нашей лаборатории для этой цели [19, 8]. Из-за приведенных выше и некоторых других обстоятельств (см. ниже 3 этой главы) истолкование кинетических уравнений, описывающих течение каталитических процессов при заданных условиях, в значительной мере утрачивает однозначность, характерную для многих гомогенных реакций. Часто из-за этого в гетерогенном катализе вывод стадийного механизма из кинетики без ряда дополнительных измерений делается недостаточно обоснованным. [c.12]

    В 1894 г. Оствальд составлял реферат статьи о теплоте сгорания продуктов, который он собирался опубликовать в своем журнале. Однако он не был согласен с выводами автора и, чтобы подкрепить свои возражения, привлек в качестве примера явление катализа. [c.115]

    Наличие такого переменного фактора приводит к выводу, что в данном случае катализ практически далеко не соответствует идеальному классическому определению катализатора. Согласно последнему катализатор должен лишь ускорить реакцию, не изменяясь при этом. При каталитическом крекинге катализатор изменяется довольно быстро, хотя изменение его носит не постоянный характер, [c.150]

    Предложено множество теоретических и эмпирических уравнений для расчета адсорбционного равновесия. Одним из наиболее ранних и простых является уравнение Лэнгмюра, Которое исключительно хорошо объясняет и характер адсорбции, и явления гетерогенного катализа. При выводе этого уравнения были сделаны определенные допущения адсорбированные молекулы не взаимодействуют между собой поверхность является гладкой и однородной в отношении адсорбционной емкости образуется только моно- [c.207]

    Технологические схемы процессов дегидрирования различных парафинов аналогичны. В реакторе с неподвижным слоем катализатора все операции проводятся в одном аппарате и для обеспечения непрерывности работы производства устанавливают несколько реакторов. Регенерация обычно осуществляется при 600—650 °С и подаче воздуха. Использование псевдоожиженного слоя мелкозернистого катализатора позволяет иметь один реактор работающий непрерывно. В этом случае подготовленный/катализа тор непрерывно поступает в реактор, а отработавший выводится Регенерация катализатора осуществляется также в псевдоожи женном Слое, но в отдельном аппарате — регенераторе. Подго товка катализатора включает восстановление и десорбцию воды и проводится либо в отдельном аппарате, либо в аппарате, встроенном в реактор или регенератор. Технологическая схема процесса дегидрирования парафиновых углеводородов в псевдоожиженном слое мелкозернистого катализатора представлена на рис. 4. В процессе эксплуатации были усовершенствованы конструкции реакторов и регенераторов [35, 36]. [c.657]


    Деактиваторы металлов (пассиваторы металлов). Катализ окисления углеводородных топлив ионами металлов заключается в генерировании радикалов, обусловливающих развитие окислительных цепей и требующих дополнительного расхода антиокислителя на вывод из сферы реакции вновь образующихся пероксидных радикалов. [c.197]

    Кроме гидрирования ароматических углеводородов на гомогенных катализаторах удалось осуществить самые разнообразные реакции гидрирования Результаты этих работ были использованы для объяснения закономерностей гетерогенного катализа Наиболее важными выводами являются следующие. [c.138]

    Катализаторы со временем могут терять свою активность. Это объясняется тем, что обычно побочные химические процессы, в результате которых каталитически активный центр — атом, молекула, ион, каталитический центр на поверхности —блокируется, выводится из сферы реакции. Такими процессами могут быть реакции нейтрализации в кислотно-основном катализе, комплексообразования, когда катализатор в виде ионов комплексуется с определенными лигандами и выходит из сферы реакции реакции образования нерастворимых соединений и др. Потеря каталитической активности может быть обусловлена химическим распадом в результате термических или фотохимических процессов. Явления, когда активность катализатора резко уменьшается при прибавлении незначительных количеств некоторых веществ, иногда падая до нуля, называется отравлением катализаторов. Вещества, резко понижающие активность катализатора, называются каталитическими ядами. Сильное действие каталитического яда объясняется тем, что в большинстве каталитических процессов концентрация катализатора очень мала и для блокирования каталитических центров нужны незначительные количества каталитического яда. [c.622]

    В уравнения (228.11), (228.12), (228.16) и (228.17) входят термодинамические функции переходного состояния и и катализатора А/(Зр и Ау Яр. Эти величины были введены формально, их нельзя определить экспериментально. Но полученные уравнения позволяют объяснить ряд опытных фактов в области гетерогенного катализа и сделать выводы о возможных путях регулирования активности катализаторов. [c.648]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    Воздействие реакционной смеси на свойства катализатора должно учитываться в кинетических зависимостях реакций гетерогенного катализа. В подавляющем большинстве случаев при выводе кинетических уравнений молчаливо предполагается неизменность твердого катализатора и независимость его свойств от состава реакционной смеси и ее воздействия на катализатор. В действительности же под воздействием реакционной среды часто изменяется химический состав катализатора, что может приводить к фазовому превращению активного компонента, изменению объемного состава катализатора в приповерхностном слое. Вот почему при изменении состава и температуры реакционной смеси скорость реакции меняется также и в результате изменения свойств катализатора. Зависимость скорости реакции от концентрации реагентов должна поэтому включать две функции, одна из которых f[ (t) 6(с( ))] ха- [c.13]

    Для вывода уравнений реакторов, рассматриваемых в данной главе, нужно установить выражения для скорости каталитического процесса, которые учитывали бы совокупность явлений, происходящих при проведении такого процесса. Поэтому возникает необходимость обсуждения механизма каталитических действий. Так как этот вопрос рассмотрен в очень многих работах, не будем повторять здесь их содержание. Следует только отметить, что развитие теории гетерогенного катализа приводит к установлению различных типов кинетических уравнений общего и частного характера. [c.214]

    Таким образом при сравнении процессов во взвешенном (кипящем) и неподвижном (фильтрующем) слоях катализатора можно сделать заключение, что применение кипящего слоя в промышленности будет сильно возрастать. Метод кипящего слоя не вытеснит метода неподвижного слоя во всех каталитических процессах, но нарушит его доминирующее положение. Особенно большие перспективы применения кипящего слоя катализатора ввиду преимуществ перед неподвижным открываются для сильно экзотермических процессов, для катализа концентрированных газов, в процессах, требующих приближения к изотермичности, при переработке запыленных газовых потоков, при катализе взрывоопасных газовых смесей, в процессах с необходимостью частого или непрерывного вывода катализатора из реактора для регенерации или замены и т. п. [c.107]


    Каталитический крекинг, как и каталитический риформинг, применяют на так называемых комбинированных нефтеочистительных заводах для сокращения промежуточных дистиллятов и увеличения выхода автомобильного бензина и ненасыщенных газов, которые являются полупродуктами для последующей химической переработки. Сырьем обычно служит тяжелый газойль и даже парафин, разлагающийся при высокой температуре в присутствии кремнеземно-глиноземного катализатора. Большинство современных крупных реакторов каталитического крекинга работает по принципу подвижного (текучего) катализа , при котором сырье и свежая порция катализатора непрерывно подаются в реакционную колонку, откуда одновременно выводится отработанная порция катализатора, направляемая в регенерационный резервуар для реактивации посредством обработки горячим воздухом. Чистый продукт из реакционной колонки разгоняется в первичном сепараторе на легкие фракции, промежуточные дистилляты и тяжелые фракции. Верхние погоны (смесь жидких метана, этана и каталитического бензина) отбираются и сепарируются в абсорбционной колонке с помощью легкой абсорбционной нефти на неконденсированный газ (метан, этилен и этан) и на абсорбированную фракцию, состоящую из СНГ и бензина. Насыщенный абсорбент ( жирная нефть) десорбируется от содержащихся в нем легких фракций, которые сепарируются на бензиновую фракцию и СНГ в голове колонки-дебутанизатора. [c.21]

    Сравнивая теорию Тейлора с выводами П. Д. Данкова, можно видеть, что не пики Тейлора, а впадины на поверхности являются как будто наиболее активными местами при адсорбции и катализе. Различия в активности мест I, 2 и 3 особо резки в случаях слабых покрытий, характерных для гетерогенного катализа. О поверхностных механизмах по П. Д. Данкову, см. стр. 144. [c.113]

    Идеи Д. И. Менделеева и Д. П. Коновалова в дальнейшем развил и углубил Н. Д. Зелинский с учениками. Располагая огромным собственным экспериментальным материалом, опытом и правильным подходом к явлениям катализа, он дал ряд ценных обобщений и выводов. Свои воззрения на катализ Н. Д. Зелинский изложил в ряде работ [32], положив в основу бутлеровскую теорию строения органических соединений и принципы катализа Д. И. Менделеева. Н. Д. Зелинский указывал на доминировавший в то время в науке неверный подход к объяснению каталитических процессов и отметил, что определение катализа по И. Берцелиусу и В. Оствальду неправильны и не могут разрешить вопроса о механизме каталити- [c.124]

    Такой же способ рассмотрения применим и для основного катализа. Вывод при этом состоит в следующем если общий кислотноосновной катализ наблюдается в реакции, сопровожлаюи[ейся только одним переносом протона, то этот перенос и определяет скоросп. реакции. Однако было бы рискованным сделать обратное заключение, то есть считать, что субстрат и катализатор находятся действительно в равновесии в тех реакциях, для которых опыт показывает, что они катализируются специфически ионами водорода или гидроксила. Это объясняется тем, что (как показано в разделе П, 4) катализ веществами, иными, чем Н и ОН , часто может быть не замечен н создается ложное впечатление наличия специфического катализа. [c.31]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

    Изучая кислотный катализ, мы до сих нор ограничивались рассмотрением протонизующихся (т. е. способных отдавать протон) кислот или кислот Бренстеда. Однако существование кислот Бренстеда, определяемых как доноры протонов, приводит к выводу о существовании оснований Бренстеда, которые могут действовать как акцепторы протонов. Такие основания могут служить акцептором протонов благодаря наличию свободной [c.498]

    Исследования процесса отравлеЕ1ия сыграли большую роль в развитии теории катализа. Практический же вывод из результатов этих исследований следующий. Необходимо тщательно предохранять катализаторы от отравления и предъявлять специальные требования к аппаратуре и к очистке исходных веществ. [c.301]

    Применение электронных представлений к гетерогенному катализу приводит к интересным, хотя пока только качественным результатам, показывающим, что каталитическая активность связана с электронным состоянием катализирующей по-нерхности. Однако следует помнить, что все теоретические построения связаны с идеальным кристаллом. Поэтому выводы мектронной теории оказываются применимыми лишь в предельном случае и практически количественно не могут быть пока сопоставлены с опытными данными. Интенсивное развитие в последние годы этого раздела теории катализа позволяет надеяться, что в недалеком будущем будут разработаны количественно сопоставимые с опытом варианты электронной теории катализа. [c.368]

    Существенным осложняющим фактором, который необходимо принимать во внимание нрн решении практических задач гетерогенного катализа, является дезактивация, или отравление , катализатора в процессе его промышленной эксплуатации. Под контактным отравлением понимаются все с.пучаи понижения активности катализатора иод влиянием поглощения посторонних веществ. Механизм этого понижения может быть весьма различен. Отравление может быть обусловлено а) невыгодным для катализа изменением адсорбционных и кинетических констант поверхности из-за внедрения яда в поверхностный слой решетки катализатора б) выводом из процесса отдельных участков в силу адсорбции на них яда в) макроскопической блокировкой, обусловленной заливанием пор и капилляров легко конденсирующие мися жидкостями или образованиед корки из твердых продуктов реакции, затрудняющей доступ к активной поверхности. [c.13]

    Деактиваторы металлов, взаимодействуя с ионами металлов и образуя с ними растворимые комплексные соединения, выводят из сферы действия основную часть катализатора. При этом гетерогенный катализ окисления ювенильными поверхностями металлов не подавляется деактиваторами металлов. К де= активаторам металлов относятся салицилидены, аминофенолы и др. С антиокислительными присадками они ооразуют ШнёрпГ-ческие пары [206]. Эффективность деактиваторов металла при окислении в присутствии медной пластинки при 100 °С приведена в табл. 6.7. За рубежом для реактивных топлив разрешен к применению К,Ы -дисалицилиден-1,2-пропилендиамин (см. табл. 6.4), но добавление его не является обязательным. [c.197]

    Химическая кинетика и катализ. Формальная кинетика. Вывод кинетических уравнений и определение основных кшетических характеристик химических реакций. Теории химической кинетики. Лимитирующая ст адия п]10цесса. Зависимость скорости реакции от смнсрату-ры. Энергия активации и стерический фактор. Кш етика цепных реакций. [c.9]

    Эти выводы теории А. А. Баландина ( принцип энергетического соответствия ) в общем виде подтверждаются многими примерами, однако применение теории для расчета энергий активации весьма ограничено отсутствием в большинстве случаев данных о прочности связей с катализатором. Во всяком случае слишком слабое (ЕСкх < С АВ + ( св) или слишком сильное (X Ркх > Сав + + Q D) взаимодействие с катализатором ведет к высокому значению энергии активации, и катализ не осуществляется. В нервом случае реагенты активируются катализатором в малой степени, а во втором происходит по существу реатоия с поверхностью катализатора с образованием прочных поверхностных соединений. [c.150]

    Поскольку скорость спилловера водорода на алюмоплатиновом катализаторе лимитируется скоростью диффузии на поверхности оксида алюминия, концентрация атомарного водорода должна быть наибольшей на участках носителя, примыкающих к платине. Поэтому можно ожидать, что закоксованность этой зоны носителя будет .ф.лее дакрй,, , ощж,аиие водорода в коксе ...более высоким. -6де< ланныи вывод в известной мере подтверждается экспериментальными данными работ [96, 971. Представляется вероятным, что подобные участки оксида алюминия с малыми о-уюжениями кокса играют. наиболее активную, возможно определяющую, роль в бифункциональном катализе реакции углеводородов. [c.57]

    В учебном пособии рассматриваются основные вопросы физической химии строение вещества, химическая и статистическая термодинамика, электрохимия, химическая кинетика, катализ. Изложение теоретических вопросов подтверждено математическими выводами. Книга написана на современном уровие с использованием новых достижений в области квантовой химии, химической кинетики н катализа, электрохимии и т. п. Количествеияые характеристики приведены в Международной системе единиц СИ. [c.2]

    В условиях дегидрогенизационного катализа алкилбензолы претерпевают дегидроциклизацию с образованием нафталина, инда-на или их гомологов, дегидрирование, изомеризацию и расщепление боковой алкильной цепи. Соотношение этих реакций в значительной степени зависит от природы катализатора. При этом с увеличением кислотности носителя в продуктах-реакции повышается доля углеводородов с пятичленным циклом. Это влияние кислотности катализатора на соотношение продуктов Се- и Сз-дегидроциклизации особенно ярко проявляется в случае превращения н-бутилбензола на платине и на носителях различной кислотности (5102, АЬОз и А Оз—З Ог). На основании работ Б. А. Казанского с сотр. сделан вывод о том, что образование пятичленного цикла на Р1/С при 310 °С протекает путем непосредственного замыкания цикла между углеродными атомами боковой цепи и бензольного кольца, минуя стадию олефинообразования. Однако при более высокой температуре на Pt/Al20з определяющую роль может играть и образование непредельных углеводородов [97]. [c.138]

    При одинаковой скорости подачи жидкого сьфья способность к каталитическому крекингу выше у фракций с более высокой средней температурой кипения. Однако это только кажущаяся закономерность, потому что у фракций с более низкой средней температурой кипения более низкий средний молекулярный вес, в связи с чем в данном объеме или массе сьфья содержится большее количество молекул. Следовательно, в единицу времени над одним и тем же катализатором можно подвергнуть крекингу одинаковое количество молекул высоко- и низкокипящих нефтяных фракций. Тем не менее для высококипящих фракций число крекированных молекул составляет больший процент от общего числа молекул. По этой причине крекинг одного и того же числа молекул этих двух фракций соответствует разньпи степеням превращения. Этот пример показывает, что, пользуясь понятием "объемная скорость" (в обшем-то очень полезньп понятием в катализе), можно прийти в случае крекинга к сомнительньпи выводам. [c.47]

    В соответствии с выводами теории константы скорости в HjO оказываются значительно большими, чем в DgO. Например, в реакции мутаротации глюкозы h,0+/ Dj0+= 1.37 ku,o/ko,o = = 3,8. При катализе этой же реакции основанием СН3СОО изотопный эффект равен 2,38. [c.255]

    В верхнюю часть реактора через штуцеры вводятся пары сырья. Они равномерно контактируют с катализатором, двигаясь сверху вниз через реакционную зону. Под реакционной зоной находится сепарацион-ное устройство для вывода продуктов реакции— гирлянда патрубков с прорезями, защищенными колпачками от попадания катализатора. Все патрубки нижним открытым концом соединяются со сборной камерой, из которой через штуцеры пары продукта удаляются из реактора. Ниже имеется зона зaтopa /- ижнУрасп м отпарки адсорбированных на катализа- дГ ыводаТа  [c.233]

    В эту переломную эпоху перехода от фактов, ждущих своего объяснения, к теоретическим выводам в совершенно новой и мало понятной области химии—катализе—большие услуги оказала физическая химия, устанавливающая закономерности на основе каталитических реакций. В 1870 г. Л. Вильгельми открыл кинетический закон действия масс при каталитическом исследовании инверсии тростникового сахара под действием разбавленных кислот. Это позволило позднее в 1867 г. К. Гульдбергу и П. Вааге сформулировать общий закон действия масс в виде динамического равновесия. К этому времени относятся классические исследования Я. Вант-Гоффа по законам кинетики (принципы различия моно-, ди- и по-лимолекулярных реакций), работы М. Боденштейна по газовым реакциям и их кинетике и исследования В. Оствальда по катализу. [c.18]


Смотреть страницы где упоминается термин Катализ. Выводы: [c.138]    [c.244]    [c.257]    [c.473]    [c.12]    [c.93]    [c.339]    [c.276]    [c.169]    [c.639]    [c.286]    [c.212]    [c.92]    [c.529]    [c.303]    [c.92]   
Смотреть главы в:

Механизмы неорганических реакций -> Катализ. Выводы




ПОИСК







© 2025 chem21.info Реклама на сайте