Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Важнейшие методы получения ферментов

    Крупные открытия в науке обычно делаются при разработке фундаментальных проблем. Мы разделяем мнение большинства врачей о том, что последние достижения биотехнологии, нашедшие применение в самых важных отраслях медицины, оказывают и будут оказывать революционизирующее воздействие на диагностику, лечение и понимание основ патологии многих тяжелых заболеваний. Ориентируясь на читателей, не имеющих медицинской подготовки, мы расскажем о том, какую важную роль играют в клинической практике некоторые новые подходы, а также широко используемые методы диагностики. Мы по необходимости ограничимся лишь немногими примерами, но читатель может без труда дополнить их множеством других использованием в терапии белков, которые можно синтезировать при помощи видоизмененных методами генетической инженерии микроорганизмов, применением моноклональных антител, ферментов и т. д. Мы не обсуждаем использующиеся при этом технологические процессы сколько-нибудь подробно (о них речь идет в других главах) исключение составляет лишь раздел о синтезе инсулина человека дело в том, что инсулин был первым белком, полученным с помощью технологии рекомбинантных ДНК и испытанным на людях, а также первым или одним из первых) препаратом такого рода, нашедшим применение в клинике. [c.325]


    Вполне уместно завершить эту книгу разделом о кристаллизации ферментов, поскольку получение кристаллов част представляет собой конечную стадию очистки и изучения фермента. Часть этого раздела следовало бы поместить в гл. 3,, потому что кристаллизация как метод осаждения—это очень-хороший и часто используемый способ очистки ферментов. Но-все же более уместно обсудить его в общих чертах в этом разделе. Кристаллизация играет важную роль в научных исследованиях по меньшей мере четырех типов она используется -1) как метод очистки ферментов, 2) для подтверждения гомогенности ферментных препаратов, 3) как метод стабилизации ферментов при хранении и 4) для определения третичной структуры ферментов методом рентгеноструктурного анализа. [c.332]

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]

    ВАЖНЕЙШИЕ МЕТОДЫ ПОЛУЧЕНИЯ ФЕРМЕНТОВ [c.124]

    До тех пор, пока всеобъемлющий термин биотехнология не стал общепринятым, для обозначения наиболее тесно связанных с биологией разнообразных технологий использовали такие названия, как прикладная микробиология, прикладная биохимия, технология ферментов, биоинженерия, прикладная генетика и прикладная биология. Если не принимать в расчет производства мыла, то первая же из числа возникших технологий такого рода стала предшественницей прикладной микробиологии. Наши предки не имели представления о процессах, лежащих в основе таких технологий. Они действовали скорее интуитивно, но в течение тысячелетий успешно использовали метод микробиологической ферментации для сохранения пищи (например, при получении сыра или уксуса), улучшения вкуса (например, хлеба и соевого соуса) и производства спиртных напитков. Пивоварение до сих пор остается наиболее важной (в денежном исчислении) отраслью биотехнологии. Во всем мире ежегодно производится около 10 литров пива стоимостью порядка 100 млн, фунтов стерлингов. В основе всех этих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов в анаэробных условиях. В конце XIX в. благодаря трудам Пастера были созданы реальные предпосылки для дальнейшего развития прикладной (технической) микробиологии, а также в значительной мере и биотехнологии. Пастер установил, что микробы играют ключевую роль в процессах брожения, и показал, что в образовании отдельных продуктов участвуют разные их виды. Его исследования послужили основой развития в конце XIX и начале XX вв. бродильного производства органических растворителей (ацетона, этанола, бутанола и изопропанола) и других химических веществ, где использовались разнообразные виды микроорганизмов. Во всех этих процессах микробы в бескислородной среде осуществляют превращение углеводов растений в ценные продукты. В качестве источника энергии для роста микробы в этих условиях используют изменения энтропии при превращениях веществ. Совсем иначе обстоит дело в аэробных процессах при контролируемом окислении химических веществ до углекислого [c.11]


    Изучение свойств ферментов, разработка методов определения активности ферментов и, наконец, получение ферментов в чистом виде окончательно опровергли виталистические представления о ферментах, что создало широкие перспективы для развития ферментологии. Вместе с этим удалось выявить специфические особенности ферментов как биологических катализаторов, отличающие их от обычных катализаторов, являющихся чаще всего неор1 аническими веществами и иногда несложными по своей структуре органическими соединениями. Специфические особенности ферментов определяются их белковой природой. Коллоидальное состояние, большая чувствительность к изменениям температуры и разрушение при 80° и выше, строгая зависимость активности ферментов от концентрации водородных ионов отличают ферменты от обычных катализаторов, не относящихся к белкам. Однако самыми замечательными свойствами, характерными для биологических катализаторов — ферментов, является специфичность их действия и чрезвычайно высокая активность. Эти свойства позволяют считать ферменты идеальными катализаторами, играющими важную роль в процессах обмена веществ, лежащих в основе жизнедеятельности организмов. [c.176]

    Изучение деструкции биологических полимеров — белков, нуклеиновых кислот, целлюлозы и др.— является одним из важнейших методов исследования состава и строения этих полимеров. Деструкция полимеров используется для получения мономеров из природных полимеров, например для получения аминокислот и нуклеотидов. Наконец, изучение кинетики и механизма деструкции биологических полимеров под действием ферментов представляет большой интерес в связи с тем, что эти процессы являются важными звеньями обмена веществ в живых организмах. [c.372]

    Изучение деструкции биологических полимеров — белков, нуклеиновых кислот, целлюлозы и др. — является одним нз важнейших методов исследования состава и строения этих полимеров. Деструкция полимеров используется для получення мономеров из природных полимеров, например для получения аминокислот и нуклеотидов. Наконец, изучение кинетики и механизма деструкции биологических полимеров под действием ферментов представляет большой интерес в связи с тем, что эти процессы являются важными звеньями обмена веществ в живых организмах. Поскольку все важнейшие природные полимеры получаются путем поли конденсации, то их деструкция, представляющая собой обратный процесс, идет путем гидролиза этих полимеров. [c.436]

    Важно также быть уверенным в том, что трехмерная структура, определенная для кристалла, сильно не отличается от структуры фермента в растворе. Два типа данных показывают, что это именно так. Кристалл белка содержит большое количество кристаллизационной воды, и в некоторых случаях субстраты могут диффундировать через кристалл, нормально реагируя по мере диффузии. Аналогичным образом прямые структурные исследования белков в растворе методом ЯМР показывают там, где сравнение возможно (например, в случае лизоцима [48]), близкое соответствие структуре, полученной методом рентгеноструктурного анализа. [c.485]

    Чистый желудочный сок, полученный по методу И. П. Павлова, имеет pH = 0,9 — 1,6 благодаря наличию свободной соляной кислоты в желудочном соке. Сильная кислотность в желудке способствует набуханию белков, благодаря чему облегчается действие протеолитических ферментов и в связи с этим ускоряется процесс гидролитического распада белка. Это имеет особенно важное значение для расщепления таких белков, как коллаген (в мясе, рыбе, сухожилиях и др.) и эластин (в селезенке, сосудах, сухожилиях и др.). Кроме того, указанная кислотность является благоприятной для действия протеолитического фермента желудочного сока. [c.329]

    Другие аминокислоты входят в цикл при помощи ацетил-КоА. Это вещество играет важную роль в подготовке жиров к окислению. Жиры, расщепляющиеся гидролитически под влиянием липаз, дают жирные кислоты и глицерин. Глицерин образует глицерофосфат и в гликолитической системе превращается в пировиноградную кислоту. Механизм окисления жирных кислот долгое время был предметом споров. В настоящее время имеются данные, полученные изотопными методами, которые позволяют с большой уверенностью принять схему, очень похожую на схему Кноопа, предложенную им еще в начале XX в. [3]. Существенным дополнением схемы Кноопа является введение в нее KoA-SH и разъяснение характера действия различных ферментов. Основной особенностью процесса надо считать последовательное отщепление от молекулы жирной кислоты двухуглеродных фрагментов, получающихся в виде ацетильного производного КоА. [c.110]

    Ступенчатый синтез. Этот метод получения П. заключается в построении полпнептидной цепи путем последовательного присоединения различных аминокислотных остатков. Ступенчатым синтезом получепь[ многие важные природные П., панр. грамицидин С, вазо-ирессин, окситоцин и даже фермент рибонуклеаза, [c.15]


    В настоящее время наиболее пригодными и удобными методами разделения аминокислот являются методы, основанные на применении стереоспецифических ферментов. Бергман и его сотрудники [517—520] нашли, что папаин в присутствии N-карбо-бензокси-ОЬ-аминокислот и анилина катализирует синтез ани-лидов М-карбобензокси-Ь-аминокислот с большей скоростью, чем синтез соответствующих анилидов D-ряда. L-Анилиды выпадали в осадок первыми, что позволяло разделить изомеры. Позднее этот общий метод получения изомеров аминокислот применяли многие исследователи, используя при этом разнообразные ацилпроизводные и различные ферменты (ср. [521, 522]). Хотя этим методом удается получить чистые изомеры аминокислот, он все же страдает некоторыми недостатками. В частности, фермент может синтезировать анилиды не только L-, но и D-изомеров. Склонность к образованию D-анилидов зависит от строения аминокислоты, природы ацильной группы и других условий. Так как L-анилид обычно образуется быстрее, чем D-форма, очень важно вовремя остановить реакцию. Если реакция обрывается слишком рано, то D-изомер выделяется с примесью L-изомера. Обратное положение возникает в том случае, если оптимальное время реакции превышается. Однако, собирая осадки на протяжении реакции через определенные промежутки времени, можно получить фракции, состоящие из чистых изомеров. [c.93]

    Твердофазная ферментация — процесс достаточно известный. Он применялся для получения ферментов, органических кислот, антибиотиков и других микробных продуктов. Особенно широко реализуется твердофазная ферментация на Востоке и в некоторых развивающихся странах для производства различных типов ферментированных продуктов, грибных метаболитов и биоконверсии растительных отходов и животных (А1с1оо е а ., 1982). Из более ранних процессов следует отметить сыроделие, процесс койи, получение уксуса, галловой кислоты. Несколько позже (1900—1920 гг.) процесс использовался для получения грибных и других микробных ферментов. Новым способом ферментации явилось производство глюконовой кислоты, появившейся в 1920—1940 гг. И что особенно важно, этот процесс осуществлялся во вращающемся барабанном ферментере, который применяется и сейчас. 1940—1950 гг. отличались бурным развитием промышленности микробиологического синтеза в связи с открытием антибиотиков. Хотя и не долго, твердофазный метод использовался для производства первых партий коммерческого пенициллина. [c.113]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    Многие из общих подходов к исследованию механизма действия ферментов также применимы и к изучению роли ионов металлов в ферментативном катализе. Схемы координации, описывающие взаимодействие фермента, металла и лиганда, могут быть изучены методами, применяемыми при определении стехиометрии и сродства связывания белками небольших молекул. Эти методы включают гель-фильтрацию в присутствии или в отсутствие небольших молекул [49], метод скоростного диализа [50], ультрафильтрацию, метод ультрацентрифугирования по Хейесу — Велику [52], равновесный диализ [53], а также методы для измерения только сродства взаимодействия [54—58]. Выбор схемы координации ионов металлов и лигандов с ферментами с помощью этих методов возможен только при отсутствии влияния других факторов. Например, если образуется комплекс Е — лиганд — М +, фермент должен проявлять значительное сродство к иону металла только в присутствии лиганда. И, наоборот, если образуется комплекс Е — М + — лиганд, то не должно происходить значительного связывания лиганда в отсутствие иона металла. Однако практически ферменты часто проявляют склонность к связыванию обоих компонентов комплекса, невзирая на выбранную схему координации. Следовательно, важны данные, полученные с учетом стехиометрических и кинетических критериев. Такие важные типы комплексов, как Е — лиганд — М + и Е — М + — лиганд, обычно содержат все три компонента в эквимолярных количествах. Более [c.449]

    Принципы и техника электрофореза не требуют специального описания [14—16]. Обнаружение одиночного пика при двух или трех достаточно далеких значениях pH является признаком гомогенности. Применение для этой цели интерференционной онтики менее удовлетворительно, несмотря на ее высокую чувствительность, поскольку полученная кривая требует дифференцирования. Электрофоретическая подвижность зависит как от заряда молекулы, так и от гидродинамического сопротивления, причем оба эти фактора независимы. Они могут компенсироваться, давая в результате одинаковую подвижность для двух физически совершенно различных молекул, по это не может происходить при различных значениях pH. Поэтому важно проверить устойчивость гликопротеина в изучаемом интервале pH многие гликонротеины неустойчивы, особенно при высоких pH [17—19]. Полезная дополнительная информация может быть получена, если гликопротеин содержит заметные количества концевой сиаловой кислоты. В таких случаях заряд молекулы онределяется главным образом этим компонентом, и в большинстве случаев сиаловую кислоту можно почти полностью удалить с помош ью нейраминидазы. Если используемое количество фермента таково, что его можно обнаружить при последуюш,ем электрофоретическом анализе, фермент лучше сначала удалить, если это можно сделать удобным способом. Часто для этого пригодна гель-фильтрация. Молекулярный вес нейраминидазы холерного вибриона составляет около 9 -10 (Лэйвер [20]). Если после обработки нейраминидазой наблюдается два или более электрофоретически различных компонента вместо одного, наблюдавшегося перед обработкой, это значит, что материал, несмотря на его электрофоретическую гомогенность, содержит молекулы, различающиеся по химической природе остатков, от которых зависит заряд молекулы. Эта процедура может повысить степень полидисперсности, если реакция пе доведена до конца, но она не будет превращать гомогенные препараты в гетерогенные. Очевидно, важно убедиться, что используемая нейраминидаза не обладает никакой иной ферментативной активностью, особенно протеолитической. Описаны методы получения нейраминидазы необходимой чистоты [21, 22]. Проверке по этому способу был подвергнут а1-кислый гликопротеин человека [23], после обработки нейраминидазой наблюдалось два электрофоретических ника, несмотря на кажущуюся гомогенность необработанного материала в широком интервале рЬ1. [c.45]

    Четвертая причина, которую всегда выдвигал на должное место учитель автора Л. И. Курсанов (см. предисловие к книге Лилли В., Барнетт Г. Физиология грибов. М., 1953) состоит в потребности практики в подобных знаниях, в частности чрезвычайно разросшихся в последние 20 лет промышленных методов получения с помощью грибов очень многих продуктов их жизнедеятельности, важных для пищевой промышленности, сельского хозяйства и медицины, таких как белки, ампнокислоты. витамины, ростовые вещества растений, ферменты, антибиотики и другие бшзлогически активные вещества, необходимые в медицине и ветеринарии. [c.5]

    Еще один важнейший аспект получения белков для практических целей был обозначен акад. А. С. Спириным в докладе на юбилейной сессии Академии наук СССР (март 1987 г.). Он сводится к преодолению клеточного уровня биосинтеза белков и переходу к масштабированному их синтезу в бесклеточных системах трансляции непрерывного действия, работающих в проточном режиме. Это откроет возможность получать биологически значимые белки (интерферон, инсулин, ах-антитрипсин) и пептиды медицинского назначения, позволит конструировать и производить белки с любыми заданными свойствами, поднимет на новый уровень изучение закономерностей химической коэволюции белков и нуклеиновых кислот. Решающую роль здесь играет наработка необходимых количеств соответствующих мРНК в системах, содержащих РНК-зависимую РНК-полимеразу типа репликазы фага Qp. Уже создана и опробована на РНК-4 вируса мозаики костра, РНК фага М82 и мРНК кальцитонина установка для твердофазной трансляции типа реактора непрерывного действия. Указанные работы по внеклеточному синтезу белка ведутся в рамках Государственной научно-технической программы Новейшие методы биоинженерии . Уже сегодня в лабораторных условиях на небольших биореакторах этим методом можно получать достаточное для дальнейших исследований количество пептидных гормонов, антигенов для диагностических целей, белковых токсинов и антитоксинов, антивирусных защитных белков, некоторых ферментов. Революция в молекулярной биологии и биотехнологии продолжается. [c.305]

    Точность этого метода определяется тем, насколько полно выявляется активность исследуемого фермента во фракции хлоропластов и в надосадочной жидкости. Некоторые ферменты типа РуБФ-карбокс-илазы при попадании в бесклеточный экстракт становятся лабильными или ингибируются. Поэтому очень важно, чтобы активность фермента в суммарном бесклеточиом экстракте (полученном без применения осмотически активных веществ) была равна сумме активностей этого фермента во фракции хлоропластов и в надосадочной жидкости. [c.560]

    Достижения биогехнологии позволяют в принципе превратить солнечную энергию, запасенную в биомассе растений, в исходное сырье для химической промышленности. Надо еще учесть, что в настоящее время мы находимся в самом начале развития этой области науки и техники. Тем не менее уже имеются примеры успешного использования ферментов (биохимических катализаторов с высокой избирательностью действия) для получения ряда веществ. Сейчас методами биотехнологии в широких масштабах получают шесть важных химических соединений, включая этанол и уксусную кислоту. Они, конечно, сейчас болс е дороги, чем получаемые из нефти. Но со временем цена нефти растет, а биотехнологические способы становятся более конкурентоспособными. Весьма вероятно, в недалеком будущем основой большой химии будут нефть, уголь и биомасса. Конкретный вклад каждого из источников будет опред, 1яться экономической ситуацией в каждой конкретной стране. [c.229]

    Другой важный результат был получен методами нестационарной кинетики — это константы скоростей весьма быстрой бимолекулярной стадии образования промежуточного фермент-субстратного комплекса (табл. 34). Можно было бк думать, согласно (7.2), что эти значения гораздо больше величины, которую дает оценка их нижнего предела. Однако из табл. 34 видно, что наиболее распространенные значения кх = 10 — 10 М" -с и, следовательно, они того же порядка, что и величины Кт.каж, опрбделяющие общую скорость ферментативной реакции (см. табл. 33). [c.269]

    В 20-40-е гг. получили развитие физ.-хим. методы анализа Б. Седиментациоиными и диффузионными методами были определены мол. массы многих Б., получены данные о сферич. форме молекул глобулярных Б. (Т. Сведберг, 1926), выполнены первые рентгеноструктурные анализы аминокислот и пептидов (Дж. Д. Бернал, 1931), разработаны хроматографич. методы анализа (А. Мартин, Р. Синг, 1944). Существенно расширились представления о функциональной роли Б. был выделен первый белковый гормон-инсулин (Ф. Бантинг, Ч. Г. Бест, i922 антитела были идентифицированы как фракция у-глобулинов (1939) и тем самым обнаружена новая ф-ция Б.-защитная. Важным этапом явилось открытие ферментативной ф-ции мышечного миозина (В.А. Энгельгардт, М. Н. Любимова, 1939) и получение первьк кристаллич. ферментов (уреазы-Дж. Б. Самнер, 1926 пепсина-Дж.X. Нортроп, 1929 лизоцима-Э. П. Абрахам, Р. Робинсон, 1937). [c.248]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    К недостаткам ферментативных методов относится то, что обларть их применения ограничивается только аминокислотными остатками с /-конфигурацией и свободными а-амино-или а-карбоксильными группами. Кроме того, пептидные связи, образованные некоторыми аминокислотными остатками, не разрываются под действием ферментов, а влияние предшествующих остатков может оказаться достаточным для того, чтобы воспрепятствовать гидролитическому отщеплению остатков, которые, судя по данным о специфичности действия фермента, могли бы отщепляться. Наиболее важным условием успешного применения рассматриваемых ниже ферментов является отсутствие примесей эндопептидаз. Небольшие количества этих примесей приводят к разрыву внутренних пептидных связей, в результате чего появляются новые субстраты для фермента. Субстрат также должен быть настолько чйстьш, чтобы примеси не могли помешать, истолкованию полученных результатов. [c.232]

    Определение кислотности казеина имеет большое значение для> установления качества продукта. Кислотность в нем создается продуктами распада и есть результат действия главным образом ферментов. Для установления количества этих продуктов можно пользоваться различной методикой. Для этой цели годна нефелометрия, методы определения аминного азота, определение сухого остатка в вытяжке, определение числа основности путем титрования кислотой. По стандарту установлен метод определения числа Тернера, но описание методики в стандарте усложнено и пропущена одна важная деталь. Усложнение касается промывки на фильтре с доведением общего объема фильтрата до 200 см . Стандарт, вводя промывку фильтра, стремится как бы к более тщательному извлечению веществ, определяющих кислотность, а на деле путем разбавления фильтрата и оставления без учета воды, оставшейся на фильтре, только снижает полученный результат и усложняет операцию. Коллоидный раствор фильтруется крайне медленно, и в силу большего коэфициента (80), на который множится полученный результат, ошибка опыта увеличивается. Серьезная деталь, пропущенная в стандарте, касается необходимости определенным образом измельчать казеин. Когда при определении кислотности из казеина извлекаются коллоиды, необходимо Считаться с поверхностью исследуемого продукта, так как извлечение касается только поверхнссти. Ниже приводятся цифры градусов Тернера, полученные при анализе одного и того же казеина, но различной степени измельчания  [c.105]

    Чистый желудочный сок, полученный по методу И. П. Павлова, имеет pH=0,9 — 1,6 благодаря наличию свободной соляной кислоты в желудочном соке. Сильная кислотность в желудке способствует набуханию белков, благодаря чему облегчается действие протеолитических ферментов и в связи с этим ускоряется процесс гидролитического распада белка. Это имеет особенно важное значение для расщепления таких белков, как коллаген (в мясе, рыбе, сухожилиях и др.) и эластин (в селезенке, сосудах, сухожи- [c.311]


Смотреть страницы где упоминается термин Важнейшие методы получения ферментов: [c.14]    [c.397]    [c.433]    [c.567]    [c.121]    [c.130]    [c.14]    [c.402]    [c.249]    [c.62]    [c.248]    [c.469]    [c.198]    [c.62]    [c.62]    [c.621]    [c.420]    [c.644]    [c.280]   
Смотреть главы в:

Биологическая химия Издание 3 -> Важнейшие методы получения ферментов

Биологическая химия Издание 4 -> Важнейшие методы получения ферментов




ПОИСК





Смотрите так же термины и статьи:

Ферменты получение



© 2025 chem21.info Реклама на сайте