Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ химического соединения (соли)

    АНАЛИЗ ХИМИЧЕСКОГО СОЕДИНЕНИЯ (СОЛИ) [c.159]

    Наконец, соли могут образовывать новые соли при реакциях о другими солями и различными классами соединений. Эти способы получения солей рассмотрим при анализе химических свойств солей. [c.251]

    Аналитическая химия изучает методы исследования состава веществ или их смесей. Она подразделяется на два основных раздела качественный анализ и количественный анализ. Задачей количественного анализа, как показывает само название, является определение количественного содержания элементов в веществе. Качественный анализ позволяет определить, из каких элементов состоит вещество. Анализ химических соединений большей частью проводят в водных растворах. При растворении в воде большинство солей, кислот и оснований распадается — диссоциирует на ионы следовательно, качественный анализ химических соединений в растворе сводится к открытию отдельных ионов. Отсюда следует, что для изучения анализа необходимо иметь представление о строении атомов и молекул, а также о теории электролитической диссоциации. [c.7]


    ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ— исследование зависимостей между химическим составом и физическими свойствами систем (электропроводность, твердость, вязкость, показатель преломления и др.). Ф.-х. а. применяют для исследования металлических сплавов, минералов, полупроводников, различных соединений, солей, карбидов, оксидов и др. [c.262]

    Каждое индивидуальное вещество характеризуется определенной температурой плавления (за исключением неплавких веществ или некоторых полимеров). Система из двух или более компонентов плавится при температуре, значение которой зависит от соотношения компонентов. По характеру этого изменения можно установить, образуется ли из компонентов химическое соединение или же они дают сплавы. Анализу на плавкость могут быть подвергнуты системы, составленные из металлов, солей или органических веществ. [c.187]

    Менее 30 лет назад химический анализ проводили главным образом при помощи методов, которые сейчас громко называются классическими . Компоненты сложного образца определяли при помощи ряда независимых методик, а для устранения влияния мешающих компонентов использовали предварительное химическое отделение, которое часто занимало много времени. Определение индивидуальных элементов в большинстве случаев было основано на образовании химических соединений, имеющих ограниченную растворимость в воде, или на реакциях между ионами в растворах. Реакции между ионами использовали в тит-риметрических методах, малорастворимые соли отделяли и взвешивали, т. е. применяли их в гравиметрическом анализе. [c.16]

    Основные научные работы относятся к общей и неорганической химии. Был одним из первых сторонников химической атомистики Дж. Дальтона, активно ее пропагандировал и содействовал ее развитию. Написал монографию История химии (1830—1831), хронологически доведенную до 1820-х. Усовершенствовал методы количественного анализа. Изучал калиевые соли щавелевой кислоты, различные минералы и растительные вещества, а также соединения золота, серебра, свинца и платины. [c.495]

    Относительная конфигурация многих веществ может быть выяснена различными химическими и физическими методами. Прямое же определение абсолютной конфигурации, напротив, представляет очень трудную задачу, которую пока удалось решить только на одном примере в 1951 г. путем рентгеноструктурного анализа калий-рубидиевой соли Д( + )-винной кяслоты было установлено, что эта кислота обладает абсолютной конфигурацией, изображаемой приведенными выше формулами. Тем не менее одного этого эксперимента достаточно, чтобы решить вопрос об истинном пространственном строении огромного числа оптически деятельных соединений путем корреляции (установления соответствия) их абсолютных конфигураций и сведения этих соединений в стерические ряды. [c.591]


    Основоположник количественного анализа — гениальный русский ученый М. В. Ломоносов (1711 — 1765), впервые применивший весы и взвешивание для количественного контроля химических превращений. М. В. Ломоносовым были теоретически развиты молекулярно-атомистические представления и впервые сформулирован закон сохранения веса веществ. С открытием этого закона количественный анализ получил научное обоснование, появилась возможность точного исследования количественного состава химических соединений. Ломоносов разработал теоретические основы физической химии, оказавшей большое влияние на развитие аналитической химии. В 1748 г. он организовал первую в России хи- мическую научно-исследовательскую лабораторию. Б этой лаборатории гениальный ученый произвел большое количество опытов и исследований. Им написано первое на русском языке ценное руководство по металлургии, в котором были описаны разнообразные химические операции, приме- няемые в аналитической практике, а также методы анализа руд, металлов, солей и т. д. В 1744 г. М. В. Ломоносов впервые применил микроскоп для изучения химических процессов. [c.7]

    Типы химических соединений и ионов, на которые они распадаются в различных условиях электролитической диссоциации в зависимости от применяемых растворителей, имеют большое значение для современной аналитической химии. На этом основаны методы распределительной хроматографии, ионного обмена в неводных растворителях, экстракционного анализа, неводного титрования, адсорбционного анализа и др. Растворимость различных солей, кислот и оснований в воде, константы их диссоциации, константы нестойкости, окислительно-восстановительные потенциалы, потенциалы ионизации атомов химических элементов — все эти свойства тесно связаны с положением соответствующих химических элементов в периодической системе. [c.16]

    Процесс растворения соли связан с сольватацией (гидратацией) ее ионов и образованием водородных связей (рис. 4, 5). Методом рентгеноструктурного анализа установлено, что кристаллы электролитов состоят из противоположно заряженных ионов, расположенных в узлах кристаллической решетки в определенном порядке, характерном для данного химического соединения. При растворении таких кристаллов в воде происходит прежде всего гидратация составляющих их ионов, и последние переходят с поверхности кристалла в окружающий его раствор. Соль растворима в воде, если притяжение ее ионов молекулами воды больше энергии притяжения между ионами в кристаллической решетке. Хорошие растворители (вода, спирт, гликоль, серная кислота, фенолы) легко образуют водородные связи с частицами растворяемого вещества. [c.53]

    Качественным называется химический анализ, с помощью которого определяют наличие элементов,, входящих в состав анализируемого вещества. Существует много методов качественного анализа. Наиболее распространенным является мокрый способ анализа. Сущность этого метода состоит в том, что определение состава веществ проводят из их растворов. При этом к раствору анализируемого вещества добавляют другой раствор — реактив. Между этими двумя растворами происходит характерная химическая реакция выпадение осадка, исчезновение осадка, выделение газов, изменение цвета и т. д. Мокрый способ анализа неорганических соединений связан главным образом с водными растворами солей, кислот и щелочей, обладающими рядом особенностей по сравнению с чистой водой. [c.22]

    Для анализа проб используют разнообразные физико-химические методы фотометрические, хроматографические, полярографические, спектральные атомно-абсорбционные, хроматомасс-спектрометрические и др. Следует обратить внимание на те моменты, которые являются общими для всех методов. Калибровка приборов осложняется отсутствием эталонов или стандартных смесей. Далеко не для всех веществ можно приготовить и сохранить такие смеси по многим причинам (агрегатное состояние, высокая токсичность, неустойчивость, трудности с получением чистых образцов вещества и т. д.). Это, например, можно отнести к анализу аэрозолей, оксидов азота, серы, ядовитых или агрессивных газов и т. д. Поэтому для калибровки приборов часто используют не само вещество, а его нелетучие соединения — соли. К чистоте этих веществ предъявляются особые требования. Такая калибровка удобна, но имеет недостаток. Например, калибровка прибора по ЫаЫОг удобна, но имеет тот недостаток, что газообразный N02 дает нестехиометрическое количество N02 , и поэтому при расчете нужно вводить пере-счетный коэффициент. [c.26]

    Выше мы видели, что в эти годы у Берцелиуса уже сложилось представление о парности состава неорганических соединений, которое легло затем в основу электрохимической теории. Результаты выполненных им анализов органических соединений, однако, ие подтвердили, что эти вещества можно рассматривать как парные, подобно, например, неорганическим солям. Органические вещества можно было скорее отнести к тройным и четверным соединениям. На этом основании Берцелиус вначале сделал попытку разграничить неорганические и органические вещества по чисто химическим признакам. К первым он отнес не только минеральные соли, кислоты и основания, но и парные органические соединения такие, как болотный газ, циан, гипотетический ангидрид щавелевой кислоты и др. К органическим веществам были отнесены тройные и четверные соединения (органические кислоты и др.). Однако такое деление оказалось явно необоснованным, так как вскоре обнаружилось существование углеводородных соединений, которые можно было рассматривать как парные. [c.202]


    Аналитическая классификация катионов, сложившаяся на основе многолетних лабораторных исследований, долгое время считалась условной. Один из основоположников системы — И. А. Меншуткин считал созданную им сульфидную систему искусственной, построенной на свойствах и реакциях некоторых химических соединений, применяемых в анализе Зарубежные школы химиков также рассматривали аналитическую классификацию как чисто условную группировку, основанную на специфической растворимости солей, не связанную с классификацией общих химических свойств элементов . [c.17]

    Глава XVIII АНАЛИЗ ХИМИЧЕСКОГО СОЕДИНЕНИЯ (СОЛИ) [c.160]

    Анализ работы систем оборотного водоснабжения ряда УЗК (табл.1) показал.что агрессивность вода гидрорезки объясняется присутствием в воде растворимых химических соединений (соли, кислоты.щелоча, фенол и др.) и наличием механических цримесей (коксовая мелочь, частицы песка и цродуктов коррозии оборудования) Ц 1-3 . [c.139]

    При анализе химических соединений, содержащих тяжелые металлы, к которым относятся и только что названные, пользуются азотной кислотой, которая энергично действует почти на все металлы, переводя их в растворимые сола. Работа 16. Обработка цинкового сырья азотной кислотой Приготовив средньэю пробу цинкового сырья, отвесьте 5 г его, поместите в высокий химический ста-, канчик с носиком, емкостью в 100 Под тягой в несколько приемов налейте на пробу кубиков 15 крепкой азотной кислоты. [c.227]

    Раздел физико-химического анализа, лосвященный изучению зависимости температуры кристаллизации или плавления исследуемой системы от ее состава, называется термическим анализом. Объектами термического анализа служат самые разноо бразные вещества металлы, органические соединения, соли и др. Данные термического анализа оформляются в виде диаграммы плавкости. Зкопериментально систему А—изучают во всем интервале концентраций от чистого компонента А до чистого компонента В. Интервал температур выбирают так, чтобы на диаграмме получили отражение не только равновесие жидких фаз с другими жидкими или твердыми фазами, но и превращения, протекающие в системе ниже температуры ее полной кристаллизации. [c.60]

    Для изучения свойств соединений часто получают их в чистом состоянии, применяя для этого кристаллизацию, выпаривание, сублимацию, фильтрование, перегонку и другие операции. Это—приемы препаративного метода исследования. Использование этого метода ограничено. С его помощью не всегда удается исследовать растворы, сплавы, стекла. Часто встречаются и экспериментальные трудности например, отделить кристаллы от маточного раствора становится сложным, если он обладает большой вязкостью, а соль разлагается под действием растворителей, служащих для отмывания раствора. Еще труднее отделить твердое вещество от жидкого при высоких температурах или разделить сплав на составные части. Для того чтобы выяснить характер взаимодействия веществ, т. е. узнать, дают ли они между собой механические смеси, растворы или химические соединения, необходимо /ибо отделить их друг от друга, либо применить другой метод, позволяющий установить природу и состав образующихся в системе соединений, не прибегая к их выделению и анализу, а именно метод физико-химического анализа. С его помощью устанавливают зависимость между изучаемым свойством и составом системы и выражают результаты исследования в виде диаграммы состав—свойство. Это целесообразнее, чем воспроизведение результатов опытов в виде таблиц (они недостаточно наглядны и требуют интерполяции) или формул (их составление трудоемко и не всегда осуще твимо). А главное — анализ диаграммы состав—свойство позволяет определить число и химическую природу фаз, г]заницы их существования, характер взаимодействия компонентов,наличие соединений, их состав и относительную устойчивость — словом, получить обширную и содержательную информацию. [c.254]

    При массовых фотоколориметрических анализах не сравнивают каждый раз светопоглощение испытуемого раствора со светопогло-щением эталонного раствора. Определение концентрации анализируемого раствора производится с помощью так называемой калибровочной кривой, которая выражает зависимость оптической плотности раствора исследуемого вещества от концентрации. Для построения калибровочной кривой готовят серию эталонных растворов, имеющих различные известные концентрации определяемого вещества. Эталонные растворы можно готовить из соответствующих химических соединений марки х. ч. или из стандартных образцов соответствующих материалов (например, солей, чугунов, сталей, бронз, руД и т. д.). В качестве стандартных образцов для приготовления эталонных растворов используют специальные стандартные образцы для химического и спектрального анализа, выпускаемые Уральским институтом металлов. [c.288]

    Сойер и Брэннан [82] изучали многоатомные спирты, оксикислоты и производные о-глюконовой кислоты. Анализ этих соединений они проводили в ОгО, используя хлорид тетраметиламмония в качестве внутреннего стандарта. Линии резонанса метильной группы соответствовал химический сдвиг, равный 2,17 млн относительно линии натриевой соли 3-(триметилсилил)-1-пропансульфокислоты. Из многоатомных спиртов Сойер и Брэннан анализировали этиленгликоль, глицерин, сорбит и эритрит и определили [c.148]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    По стойкости к коррозии в подкисленных растворах хлоридов сплавы титана с никелем превосходят чистый титан [136, 137]. Пассивирующее действие никеля и облегчение выделения хлора при анодной поляризации связывается [136] с образованием интер-металлидов TijN, на которых слои смешанных окислов обладают повышенной электронной проводимостью. Рентгеноструктурный анализ смеси окислов титана и никеля, полученных спеканием их при 1000 °С при соотношении TiO 2 NiO = 1, показал наличие только одной фазы химического соединения NiO-TiOj при других соотношениях помимо этого соединения обнаруживаются также окислы ТЮ, или NiO в зависимости от того, какой из них взят в избытке [138]. Образование титаната никеля при термическом разложении смеси солей титана и никеля отмечено при температурах выше 370 °С и особенно видно при 600 °С [139, 140]. С увеличением доли титана в сплаве Ni — Ti максимальный пик растворения при анодной поляризации в серной кислоте снижается [141]. [c.131]

    Применение тонкослойной хроматографии для определения антиоксидантов в резине. Сол.одова Г. М., Малышев А. И., Ростовцева Е. Е. Физические и физико-химические методы анализа органических соединений (Проблемы аналитической химии, т. I). М., Наука , 1970, стр. 91—94. [c.341]

    Развитие рентгеноструктурного анализа — это увлекательная история, начинающаяся с выяснения структуры одноатомных металлов и минеральных солей. В настоящее время этот метод используют для изучения очень сложных молекул, таких, как белки и вирусы. Число органических и металлорганических соединений, изученных с помощью рентгеноструктурного анализа, приближается к 50 ООО. Результаты этих исследований собраны в банке структурных данных [136], обеспечивающем порядок и полноту информации [137]. Целью этой главы являлось рассмотрение факторов, определяющих развитие метода, а именно наличие автоматических дифрактометров, цифровых вычислительных. машин, систем и комплексов кристаллографических программ. Прогресс в кристаллографии тесно связан с прогрессом в технологии компьютеров и ди-фрактрометров (пример — успешная разработка координатного детектора [138]), а также с развитием новых методов решения и уточнения структуры. Благодаря доступности метода и программ современная кристаллография стала популярным методом исследования. В исследовательских проектах, требующих точных структурных данных, неспециалисты в кристаллографии получают результаты, которые невозможно получить другими методами. Мы не пытались рассмотреть здесь многочисленные публикации, посвященные изучению разнообразных химических соединений. [c.269]

    Как представитель аналитического периода в развитии химии Рихтер занимался анализами сложных соединений, прежде всего солей, с целью установления в них численных соотношений между содержанием кислот и оснований. Но этим он не ограничился. На основе данных многочисленных анализов он составил ряды относительных весовых количеств кислот, которые необходимы для нейтрализации определенного количества какой-либо ш елочи и, наоборот, ш,елочей, необходимых для нейтрализации определенного количества какой-либо кислоты. Такие ряды, называвшиеся Рихтером рядами масс, згли рядами нейтрализации, вполне соответствовали стремлениям химиков того времени к систематизации фактов и, прежде всего, к нахождению закономерностей химического сродства мен ду кислотами и основаниями. [c.422]

    Функциональный анализ. Одним из необходимых шагов в структурном анализе органических соединений является определение природы и числа функциональных групп. На функциональные группы обращали внимание уже сторонники теории радикалов и теории типов. Поэтому и до появления теории химического строения было известно немало реакций для открытия функциональных групп. Б Введении к полному изучению органической химии Бутлеров упоминает о таких реакциях, например, на гидроксильную группу (в спиртах) с металлическим натрием образование алкоголята с хлорокисью фосфора продукта замещения гидроксильной группы на хлор с кислотами сложных эфиров, особенно характеристический и свойственный собственно алкоголям случай замещения водорода водяного остатка [25, с. 133]. Те же реагенты могут действовать и на гидроксильную группу кислот, однако при этом образуются соли, галогенангидриды кислот, которые в отличие от га-логенпроизводных алкогольных радикалов легко разлагаются водой. Подобный анализ имеет не только качественный, но и количественный характер, так как по числу атомов замещенного водорода в гидроксильных группах или самих этих групп можно судить, например, об атомности и основности оксикислот. К характерным реакциям альдегидов, открытым ранее, относится их легкая способность окисляться до кислот, восстанавливая окись серебра (Либих, 1835), а также способность к прямому соединению с аммиаком (Деберейнер, 1832). Кетоны резко отличаются от альдегидов тем, что не присоединяют кислород, а при действии окисляющих веществ, в отличие от альдегидов, распадаются. Бутлеров упоминает также о бисульфитной реакции на альдегиды и кетоны (Бертаньини, 1853). Были известны также реакции не только на аминогруппы, но и для [c.298]

    Эмпирическая классификация металлов (катионов) сохранила свое значение (как это показано в табл. 1, стр. 21) до настоя-цих дней. Однако теоретического обоснования она до сих пор не толучила и с периодическим законом Д. И. Менделеева не связывалась. Напротив, Н. А. Меншуткин называет ее искусственной, построенной на свойствах и реакциях некоторых химических соединений, применяемых в анализе . Зарубежные школы рассматривают эту классификацию как условную, основанную на специфической растворимости солей (Тредвелл и Голл ), и с периодическим законом не связанную казалось бы естественным при разделении металлов на аналитические группы расно-пожить их согласно периодической системе элементов. Однако [c.25]

    Потенциометрический метод применяется в анализе органических соединений для определения содержания веществ в исследуемом растворе при титровании кислот и оснований, при окислительно-восстановительных реакциях и реакциях осаждения. Кроме того, его часто используют для определения кислотности среды, в особенности в тех случаях, когда имеются сильно окрашенные или неводные растворы, в которых определение pH посредством индикаторов затруднено или даже невозможно. ь. Многие анализы, применяющиеся в анилинокрасочной промышленности, основаны на реакции диазотирования (см. стр. 142). Для определения первичных аминов с помощью азотистой кислоты можно пользоваться потенциометрическим методом. Этот метод удобен для титрования сильно окрашенных растворов, при нанесении которых на иодкрахмальную бумагу трудно наблюдать конец реакции. Например, определение содержания аминоазобензо-ла потенциометрическим титрованием (методика приводится ниже) белее точно, чем определение обычным титрованием с иодкрахмальной бумагой. При анализе кубовых красителей, содержащих галоид, часто бывает необходимо определять содержание хлора и брома. При анализе кубовъ х красителей, а также при определении содержания поваренной соли в красителях и промежуточных продуктах, потенциометрический метод имеет преимущества перед химическими методами, так как он проще, надежнее и при этом затрачивается меньше времени. Достоинством этого метода титрования кислот и оснований является также возможность определять концентрацию ионов водорода в любой момент титрования. [c.376]

    Изоморфизм позволяет иным путем связать атомные веса металлов и неметаллов, Мнчерлих в 1819 г. установил, что некоторые соли имеют одинаковые кристаллические формы, и пришел к заключению, что такие соли имеют одинаковые химические формулы, причем один вид атомов в одном соединении в изоморфной соли замещен атомами другого вида. Анализ состава так11х солей непосредственно дает относительные атомные веса этих атомов. Таким путем в 1828 г. был установлен итомный вес селена, вслед за открытием изоморфизма сульфата и селената натрия и сульфата и селената серебра. Следу-юище примеры иллюстрируют способ, при помощи которого атомные [c.205]

    Обогатился также ассортимент химических реактивов, применяемых в аналитической практике. Появились новые высокочувствительные реактивы на катионы, анионы и функциональные группы химических соединений внедрены в производство методы получения ряда комплексонов и индикаторов для комплексометрического титрования организован выпуск редких и рассеянных металлов, их окислов, гидроокисей и солей создан ассортимент сорбентов, инертных носителей, неподвижных фаз, растворителей, хроматографически чистых эталонов для газовой, газо-жидкостной, ионообменной и бумажной хроматографии резко расширилась номенклатура специальных реактивов и препаратов для научных исследований в области биологической химии, молекулярной биологии и смежных с ними наук значительно пополнился ассортимент реактивов для медицинских анализов и диагностики. [c.9]


Смотреть страницы где упоминается термин Анализ химического соединения (соли): [c.397]    [c.33]    [c.5]    [c.251]    [c.90]    [c.346]    [c.264]    [c.171]    [c.4]    [c.211]    [c.654]    [c.19]    [c.173]    [c.16]   
Смотреть главы в:

Аналитическая химия -> Анализ химического соединения (соли)

Аналитическая химия Издание 3 -> Анализ химического соединения (соли)




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Анализ химических соединений

Соли, анализ

Химическое соединение



© 2024 chem21.info Реклама на сайте