Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная и ковалентная связи. Электроотрицательность

    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]


    Ионная и ковалентная связи. Переход электрона при взаимодействии атомов А и В, резко отличающихся по электроотрицательности, превращает эти атомы в противоположно заряженные ионы  [c.134]

    Соединения с отрицательной степенью окисления углерода. С менее электроотрицательными, чем он сам, элементами углерод дает карбиды. Поскольку для углерода характерно образовывать гомоцепи, состав большинства карбидов не отвечает степени окисления углерода —4. По типу химической связи можно выделить ковалентные, ионно-ковалентные и металлические карбиды. [c.396]

    В таблице видно, что при данном среднем значении главного квантового числа валентных электронов ширина запрещенной зоны растет С ростом разности электроотрицательности ДЭО элементов в соединении. При и > 5 связи переходят в металлические и ДЕ 0. Уменьшение п приводит к упрочнению ковалентных и ионно-ковалентных связей, Д сильно возрастает и становится больше 5 эв при п —2. При [c.254]

    При разности электроотрицательностей больше 2,0 связь может считаться ионной при разности 0,4-2,0 возникает ковалентная связь с частично ионным характером, и при разности меньше 0,4 связь считается чисто ковалентной. [c.406]

    Наиболее электроотрицательный характер атома бериллия и его малый радиус приводят к тому, что бериллий не образует соединений с ионным типом связи. Для магния соединения с ковалентной связью становятся нетипичными, а у соединений кальция, стронция и бария преобладает ионная связь. [c.260]

    При проведении стехиометрических расчетов окислительно-восстановительных реакций органических соединений удобно пользоваться формальным представлением о степени окисления атомов. Под степенью окисления атома подразумевают заряд, которым обладал бы атом, если бы все его ковалентные связи с атомами других элементов превратились бы в ионные. Направление смещения электронной пары ковалентной связи определяется на основании сопоставления электроотрицательности атомов, участвующих в ее образовании. Ниже приведен ряд относительной электроотрицательности по Полингу  [c.200]

    Теоретические расчеты химической связи показывают, что энергия смешанной ионно-ковалентной связи больше, чем энергия чисто ковалентной или чисто ионной связей. Эту дополнительную энергию связи называют ионно-ковалентной резонансной энергией и обозначают А [ур. (4-7)]. Очевидно, если А О, связь в некоторой мере будет ионной. Так как ионный характер связи зависит от различия в электроотрицательности связанных атомов, А дает количественную оценку свойства, которое некоторым образом связано с понятием электроотрицательности. Если сравнить свойства галогеново-дородов, приведенные ниже, то можно заметить, что величина А уменьшается по мере уменьшения различия в электроотрицатель-ности соединенных атомов  [c.118]


    Атомы металлов, входящие в состав силикатов, связаны с атомами кислорода ионно-ковалентными связями, степень ионности-ковалентности которых зависит от природы металла (его электроотрицательности). Атомы металлов I и II групп периодической системы элементов образуют с кислородом связи с высокой степенью ионности, а элементы главных подгрупп III—VI групп —связи более ковалентного характера. По сравнению с большинством металлов, входящих в силикаты, кремний имеет наибольшую электроотрицательность, поэтому, как правило, степень ионности связи [c.11]

    Проведенное выше рассмотрение характера связи в HF показывает, что не сушествует чисто ионных, как и чисто ковалентных связей. Не существует и принципиального различия между этими двумя типами связи-они лишь являются предельными случаями непрерывного ряда связей с различной полярностью. В рамках теории молекулярных орбиталей гораздо большее значение, чем оценка ионного характера связи, имеет близость энергетических уровней взаимодействующих орбиталей двух атомов. Эта степень близости уровней связана с электроотрицательностью атомов. [c.537]

    Ионно-ковалентные связи. Электроотрицательность. Если атомы А и В образуют молекулу с чисто ионными связями (А+В ), то предполагается, что атом А потерял электрон, а атом В приобрел его. При этом предполагается, что оба иона представляют собой несжимаемые шары, так что сумма их радиусов равна межатомному расстоянию в молекуле. Однако давно стало ясным, что такие допущения неоправданны. Недостаток чисто ионных представлений пытался исправить Фаянс путем введения понятия поляризации ионов (см. гл. X, 8), в результате чего в характере связи начинает проявляться ковалентность . Однако такая попытка подойти к пониманию ионно-ковалентных связей, если так можно выразиться, со стороны ионных связей не получила в дальнейшем большого развития. Гораздо более эффективным оказался подход со стороны ковалентных связей . [c.212]

    Теоретические расчеты химической связи показывают, что энергия смешанной ионно-ковалентной связи больше, чем энергия чисто ковалентной или чисто ионной связей. Эту дополнительную энергию связи называют ионно-ковалентной резонансной энергией и обозначают Д [см. ур. (4-7)]. Очевидно, если А О, связь в некоторой мере будет ионной. Так как ионный характер связи зависит от различия в электроотрицательности связанных атомов. [c.122]

    Кристаллические структуры некоторых простых окислов перечислены в табл. 17, в которой приведены типы структур и координационные числа атомов, входящих в состав данного окисла в порядке М 0. Структуры расположены в соответствии с типо.м комплекса в кристалле. Сначала перечислены ионные трехмерные комплексы, представленные структурами флюорита, рутила и др. с высокими координационными числами ионов металла. Затем идут структуры цинковой обманки, вюрцита и др., в которых атом металла обладает тетраэдрической или более низкой координацией, после чего следуют слоистые и цепочные структуры. Наконец, приведены окислы, содержащие отдельные молекулы, в состав которых входят наиболее электроотрицательные элементы. Изменения в типе структуры могут быть связаны вообще с изменением типа связей—от чисто ионных структур через слоистые и цепочные структуры к чисто ковалентным молекулярным окислам. Эти изменения можно показать на структурах двуокисей элементов четвертой периодической группы. Для каждого соединения в таблице приведены координационные числа для М и О и тип структуры. Начиная от молекулярной СОд, мы переходим через структуры силикатов с ионно-ковалентными связями к преимущественно ионным структурам двуокисей более тяжелых металлов. [c.359]

    Следовательно, в силикатных структурах кремний окружен четырьмя ионами кислорода, образуя тетраэдрическую группу [5104]Форма и размеры кремнекислородного тетраэдра в различных структурах изменяются незначительно. Расстояние между атомами кремния и кислорода около 0,16, а между соседними атомами кислорода 0,255—0,27 нм. Связь 51—О является промежуточной между чисто ионной и чисто ковалентной, т. е. имеет смешанный характер. Степень ковалентности связи 51—О, вычисленная из соотношения величин электроотрицательности элементов, составляет 50%. Ковалентность связи 51—О обусловливает ее сравнительно высокую прочность и направленность. [c.177]

    Если связующая пара электронов окажется на равном расстоянии от обоих ядер, ковалентная связь считается неполярной. При смещении электронной пары в сторону атома, более склонного к их присоединению (более электроотрицательного), связь становится полярной, и если это смещение выражено весьма резко, связь считается ионной. Примеры строго неполярных связей (С—С, Н — Н, С1—С1), полярных (С —С1, Н—С1, Н —Вг), ионных (Ыа—С1, К — Вг) показывают, что чем больше различие в природе соединяющихся атомов, тем более их связь является полярной и, наконец, ионной. Однако целиком ионных связей нет, так как атом, отдавая электрон, получает способность притягивать его обратно и, следовательно, отрицательный заряд в молекуле не строго локализован около другого, более электроотрицательного атома. Это ограничение ионного характера связи имеет существенное значение для оценки различных свойств соединений. Огромному большинству соединений свойственны связи различной степени полярности — слабополярные (8 — С1, С — О), более полярные Н — С1, Н — Р. Ионные связи встречаются сравнительно редко (в галидах и оксидах щелочных и щелочноземельных металлов), но и в этих случаях с вышеуказанным ограничением. В молекулах, составленных из одинаковых атомов На, Ог, За ИТ. П., связи неполярные. [c.67]


    ИОННАЯ И КОВАЛЕНТНАЯ СВЯЗИ. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ [c.15]

    Сандерсон (149] считает, что электроотрицательности двух атомов уравниваются в момент установления между ними ионно-ковалентной связи. Тогда валентные электроны больше половины всего времени связаны с атО)МОм, обладающим вначале наибольшей электроотрицательностью, что и определяет ионный аспект связи. Примерно этим рассуждениям мы и следовали (ом. гл. VII, 3), когда исходили из ионных формул каждого атома и вводили их во взаимную поляризацию мы допускали, что разные перемещенные заряды Д и Лп уравниваются ввиду изменения каждого заряда на [c.171]

    Ионная и ковалентная связи. В результате перехода электронов прп взаимодействии атомов А и В, резко отличающихся по электроотрицательности, эти атомы превращаются в противоположно заряженные ионы, которые притягиваются друг к другу в соответствии с законом Кулона, образуя молекулы. [c.68]

    Ковалентная связь является полярной в тех случаях, когда элементы, которым принадлежат взаимодействующие атомы, заметно различаются по своей электроотрицательности, но это различие не достигает такой степени, при которой связь становится чисто ионной. [c.64]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

    В соединениях неметаллов, ие включающих водород и кислород, неметалл с большей электроотрицательностью считается отрицательно заряженным. Степень окисления такого неметалла полагается равной заряду его наиболее распространенного отрицательного иона. Например, в I4 степень окисления хлора - 1, а углерода + 4. В СН4 степень окисления водорода + 1, а углерода - 4, В SF степень окисления фтора - 1, а серы + 6, но в S2 степень окисления серы - 2, а степень окисления углерода -I- 4. В молекулах типа N4S4 с ковалентными связями (где соединяющиеся атомы имеют близкие или совпадаюшие электроотрицательности) понятие степени окисления теряет смысл. [c.416]

    В данной главе будет рассмотрен простой метод описания ковалентных связей с использованием структурных схем Льюиса. Мы занищем льюисовы структуры для известных молекул и ионов и дадим им объяснение, пользуясь представлениями об обобществлении электронных пар и построении замкнутых валентных оболочек такого типа, как у атомов благородных газов. Затем мы объясним степени окисления атомов в соединениях на основе соображений о неравномерности обобществления электронных пар атомами, обладающими разной электроотрицательностью, после чего перейдем к установлению взаимосвязи между кислотностью некоторых молекул и электронным строением их центрального атома. В последней части главы будет показано, как для предсказания формы молекул используется метод отталкивания валентных электронных пар (ОВЭП). [c.465]

    Жесткие кислоты связывают жесткие основания главным образом за счет ионных сил. Мягкие же кислоты связывают мягкие основания главным образом с помощью ковалентных связей. Для осуществления прочного ковалентного связывания атомы должны быть близких размеров и близкой электроотрицательности. [c.245]

    С нач. 20 в. осн. внимание в Н. х. уделяется составу и строению хим. соединений. А. Ле Шателье, Н. С. Курнаков, Г. Тамман, У. Робертс-Остен изучают сплавы металлов и металлиды. Н. С. Курнаков создает основы термич. анализа, А. Вернер, И. Тиле, Л. А. Чугаев и др. разрабатывают основы координац. химии. В- Коссель, Г. Льюис и др. создают электронную теорию валентности. Вводятся понятия об ионных и ковалентных связях, электроотрицательности, измеряются д и1пы связей и валентные углы для мн. простых молекул, нх энергии диссоциации, определяется и уточняется кристлл п1ч. структура в-в. Синтезируются новые классы соединений, напр, фториды благородных газов (Н. Бартлетт, 1962), кластеры, соединения внедрения графита. [c.373]

    Литий, обладая высокой плотностью заряда на поверхности катиона, образует прочные ионно-ковалентные связи с кислородом и фтором, поэтому, в отличие от других щелочных металлов, литий имеет больше труднорастворимых соединений (LiF, ЫдСОз и LI3PO4). Но соли лития с менее электроотрицательными элементами, например, хлорид, обладают повышенной растворимостью. Li l расплывается на воздухе, поглощая влагу. Растворение его — экзотермический процесс, тогда как хлориды других щелочных металлов растворяются эндотермически и слабо гигроскопичны. Причина — в высоком экзоэффекте гидратации катиона лития. [c.135]

    В решетках галоидных солей металлов побочных подгрупп (Си, Ад, Аи и т. п.) наблюдается большая степень примеси ковалентной связи — электроотрицательности этих элементов относительно высоки. Ионы, подобные Си+, Ад+ и Аи+, имеют псевдоконфигурацию инертного газа (пх , лр , п 1 °), такие катионы (при малом радиусе) обладают высокой поляризующей способностью, что обусловливает возникновение полярной связи (ковалентной связи с большой степенью разделения заряда) металл — галоген. Все же и в этом случае, по крайней мере при исследовании диффузионных процессов, с некоторой осторожностью можно ограничиться моделью чисто ионных кристаллов. [c.12]

    Понятие электроотрицательности было введено По лингом [128] в 1932 г. Оно является свойством атомов сгруппированных в молекулы или кристалл, но яе изо лированных. Это сила притяжения электронов ато мом . Значит, разность электроотрицательности межд двумя атомами М и X, обраэующими молекулу МХ является мерой переноса электронов с момента уста новления ионно-ковалентной связи. Полинг заметил, что энергия связи МХ, оцениваемая по теплоте образования соединения, была обычно больше средней арифметической энергии связи М —-М и X — X и что отклонение б казалось росло с разностью электроотрицательности Дж, между М и X. Полинг предложил следующую формулу  [c.142]

    Выяснение эффективных зарядов позволяет нам вернуться к понятию электроотрицательности. Как уже указывалось (см. гл. VI,3), разность электроотрицательностей двух ато1мов М м X, образующих молекулы МХ, является мерилом переноса электронов, происходящих вследствие установления ионно-ковалентной связи. Если согласиться с подобным положением, то получается, что можно построить таблицу электроотрицательностей, исходя из знаний эффективных зарядов. Действительно, [c.170]

    В зависимости от типа менее электроотрицательного, чем кремний, элемента тип связи в силицидах изменяется от ионно-ковалентного до металлического. Силициды X- и -элементов I и II групп, например Са231, СаЗ и Са312,— полупроводники. В химическом ошошении силициды этого типа неустойчивы. Они более или менее легко разлагаются водой и особенно кислотами. [c.412]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Ионная связь в чистом виде может образоваться только между атомами элементов, сильно различающихся по своей электроотрицательности, а неполярная ковалентная связь образуется, когда взаимодействующие атомы принадлежат элементам одинаковым или почти одинаковым в этом отношении. В остальных случаях электронная пара, связывающая атомы, будет принадлежать им не в одинаковой степени. Она будет в той или иной степени как бы смещенной к одному из них или, точнее говоря, электроны этой пары в среднем во вр,смени будут больше принадлт жать одному, из атомов, чем другому, т. е. больше времени находиться вблизи одного из них. Такая связь является полярной. [c.57]

    ОН-. Вследствие прочной и устойчивой электронной оболочки, а также соответствующего строения электронных орбиталей эти ионы не имеют склонности к образованию ковалентных связей с катионами. Рассматривая реакционную способность воды как донора пары электронов, можно отметить, что, например, при гидратации катионов, кислород молекулы воды как раз является жестким центром. Относительно высокая электроотрицательность атомов азота — причина того, что азотные основания (ННз, ЫгН4 и их замещенные производные) являются жесткими основаниями. Анионы кислородсодержащих кислот, таких, как СЮ4-, 504 ", Р04 ", СОз , также имеют малодеформируемую структуру. [c.396]

    Как было установлено, при образовании ковалентной связи электронные пары располагаются симметрично относительнв ядер связывающих атомов и атомы в молекулах никаких зарядов не несут. При образовании ионных связей валентные электроны полностью переходят от менее электроотрицательных к более электроотрицательным атомам, в результате чего образуются ионы, заряд которых определяется количеством отданных или присоединенных электронов. В молекулах с полярными связями валентные электроны лишь частично смещаются к более электроотрицательному атому, при этом на взаимодействующих атомах также возникают электрические заряды, но их величины не являются целочисленными. Например, в молекуле НС на водороде существует положительный, а на хлоре отрицательный заряды, но кх величины меньше единицы. [c.87]

    ИЛИ чем больше электроотрицательность центрального иона. Эти два свойства помогают объяснять естественный порядок устой чивости комплексов (например, MпZп). Следует отметить, что теория кристаллического поля рассматри вала только и е -орбитали и расщепления, которые могли ароисходить с этими орбиталями в различных полях. Заметим также, что как теория кристаллического поля, так и теория мо лекулярных орбиталей предсказывают расщепление З -орбита лей при образовании комплекса. В первом случае причиной рас щепления являются электростатические поля, во втором — образование ковалентных связей. По этому обе теории могут быть не пользованы для объяснения этих важных явлений. [c.270]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Названия соединений двух элементов, образованных ионной или полярной ковалентной связью, составляются, как правило, из двух слов. Первое из них — корень латинского названия элемента, являющегося электроотрицательной частью соединения, с добавлением суффикса ид, а второе — русское название элемента, являющегося электроположительной частью соединения, в родительном падеже. Например, SnS — соединение с частично ионной, частично ковалентной связью. В нем олово является электроположительной, а сера — электроотрицательной частью соединения. Латинское название серы — sulfur, корень этого слова suif. Следовательно, название SnS — сульфид олова. [c.30]

    При связывании атомов элементов с одинаковой электроотрицательностью (Ха = Хв) распределение электронной плотности вдоль оси связи (показана валентным штрихом) симметрично и ковалентная связь А—В окажется неполярной (/). При связывании атомов элементов с разной электроотрицатель-1юстью (например, %а<Хв) это распределение асимметрично и ковалентная связь А—В окажется полярной (2). Полярность связи передается указанием заряда 5+ на атомах абсолютное значение заряда тем больше, чем вьиие различие в электроотрицательности элементов А и В. В предельном случае (например, = происходит полное разделение зарядов с образованием ионов А" и В", такую связь называют ионной (5). [c.156]

    Ионная решетка. Если в узлах кристаллической решетки расположены ионы противоположных знаков, то такая решетка называется ионной. Ионные решетки характерны для соединений элементов, сильно оФличающихся по электроотрицательности и образующих молекулы с ионными (или сильно полярными ковалентными) связями. Типичные ионные вещества — фториды и хлориды щелочных металлов — образуют прозрачные бесцветные кристаллы правильной формы с четкими гранями. Так как связи между ионами прочны, большинство ионных кристаллов обладает высокими температурами плавления, твердостью и хрупкостью, но в отличие от металлов не проводят электричество. Расплавы их, правда, проводят электричество, но их проводимость на несколько порядков ниже, чем у металлов. В отличие от ионных кристаллов молекулярные кристаллы, плавясь, образуют молекулярные жидкости, практически не проводящие электричество. [c.36]


Смотреть страницы где упоминается термин Ионная и ковалентная связи. Электроотрицательность: [c.405]    [c.407]    [c.79]    [c.259]    [c.28]    [c.41]   
Смотреть главы в:

Геометрия молекул -> Ионная и ковалентная связи. Электроотрицательность




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ионные связи.— Ковалентные связи.— Полярные связи.— Электроотрицательность.— Валентность.— Переменная валентность.— Радикалы.— Применение значений валентности.— Химические уравнения.— Составление химических уравнений.— Типы химических реакций.— Общие правила и выводы Кислород

Ковалентность

Ковалентные связи электроотрицательность

Связи ковалентные Связи

Связь ковалентная

Частично-ионный характер ковалентных связей и относительная электроотрицательность атомов Переход от одного предельного типа связи к другому

Электроотрицательное ь и тип связи

Электроотрицательность



© 2024 chem21.info Реклама на сайте