Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижная селективность

    В жидких мембранах, где происходит ассоциация противоионов с группами, уменьшающая подвижность последних по сравнению с подвижностью противоионов, селективность снова становится зависимой от свойств растворителя. Если же группы становятся более подвижными, селективность начинает зависеть от свойств как растворителя, так и групп. [c.93]

    Из (7.82) видно, что селективность электрода зависит не только от константы обмена, но и от отношения подвижностей обменивающихся ионов, и коэффициент селективности Ка представляет собой произведение отношения подвижностей ионов на константу обмена  [c.177]


    Малая доля свободного объема и весьма незначительная подвижность структурных элементов силикатных стекол должны приводить к неудовлетворительным сорбционным н диффузионным характеристикам для большинства газов, с и в металлических мембранах возможен процесс диссоциации двухатомных молекул и их диффузия в атомарной или даже протонной, как у водорода, формах, то в стеклах происходит миграция молекул растворенных газов. В результате проницаемость стекла с увеличением молекулярных характеристик диффундирующего газа резко падает, в частности для кварца при 400 °С коэффициенты проницаемости метана и азота равны 6-10-2 моль-м/(м2-с-Па), т. е. примерно на шесть порядков ниже, чем проницаемость гелия. Высокая селективность мембран из силикатных стекол наряду с удовлетворительной проницаемостью по гелию является главным технологическим преимуществом этих систем при выделении гелия. Основные проблемы внедрения связаны с хрупкостью стеклянных трубчатых мембранных элементов. [c.120]

    В результате селективной сборки наименьшие зазоры или натяги в подвижных и неподвижных (прессовых) посадках увеличиваются, а наибольшие уменьшаются, приближаясь с увеличением числа групп точности к среднему значению зазора или [c.127]

    Характер аналитических задач, решаемых с помощью важнейшего из этих методов — инструментальной или регистрационной колоночной ЖХ,— определяется природой используемых стационарной и подвижной фаз, а также принципом детектирования элюатов. Универсальные детекторы (рефрактометрический, диэлькометрический, транспортные и др. [109, 111, 2541) использовались для количественного анализа самых различных ГАС (аминов [255, 256], порфиринов [257], жирных кислот [258, 259], фенолов [260], сернистых соединений [261 ]) в условиях адсорбционной или координационной хроматографии, а также для определения молекулярно-массового распределения высокомолекулярных веществ [69, 109, 262, 2631 при эксклюзионном фракционировании или разделении на адсорбентах с неполярной поверхностью, например, на графитирован-ных углях. Качественная идентификация элюируемых веществ в этих случаях проводится по заранее установленным параметрам удерживания стандартных соединений и при изучении смесей неизвестного состава часто затруднена из-за отсутствия таких стандартов. Групповая идентификация ГАС отдельных типов существенно облегчается при использовании специфических селективных детекторов спектрофотометрических (УФ или ИК), флю-орометрического [109, 111, 254 и др.], пламенно-эмиссионного [264], полярографического [111], электронозахватного [265] и др. [c.33]


    Усовершенствование и интенсификация процессов со стационарным полиметаллическим катализатором позволили за счет снижения давления, оптимизации температуры и распределения объема катализатора по реакторам увеличить октановое число до 100 пунктов (И.М.). Однако резкое возрастание коксообразования приводило к быстрой дезактивации катализатора, снижению селективности процесса и, в конечном счете, к сокращению продолжительности работы циклов, что резко снижало экономические показатели комбинированного завода. Сутки простоя такого НПЗ связаны с потерей продукции на один и более миллионов рублей. Риформинг с подвижным слоем катализатора позволяем увеличить календарное время работы установки в 3-4 раза и создать условия бесперебойной работы всего комбинированного завода в течение 3- 4 лет. Непрерывная или периодическая регенерация повышает равновесную активность катализатора, способствует углублению процесса, росту его селективности и увеличению качества и выхода водорода в 1,5- 2,5 раза. [c.160]

    Рафинаты селективной очистки, полученные из парафинистых нефтей, содержат твердые высокомолекулярные углеводороды, которые при понижении температуры выделяются в виде кристаллов. Вследствие этого масла теряют подвижность и становятся непригодными к эксплуатации в условиях низких температур. [c.348]

    Своего расцвета хроматография достигла после разработки А. Мартином и А. Джеймсом газо-жидкостной распределительной хроматографии, в основе которой лежит различие в коэффициентах распределения компонентов анализируемой смеси между жидкой неподвижной фазой и подвижной газообразной. Этот вариант хроматографии оказался наиболее универсальным, чувствительным и селективным методом анализа. [c.11]

    Эффективность. Рассмотренные свойства системы адсорбат — адсорбент определяют селективность хроматографической колонки. Одпако для полноты разделения смеси кроме селективности необходима еще и высокая эффективность. Она зависит от процессов диффузии и массопередачи как в подвижной, так и неподвижной фазах и определяется величиной ВЭТТ (Я). В гл. I было выведено уравнение ВЭТТ (1.24), связывающее Я со свойствами системы и [c.70]

    В отличие от газовой хроматографии, в которой подвижной фазой служит газ-носитель, выполняющий лишь функцию переносчика вешества и влияющего только на эффективность колонки, в жидкостной хроматографии в функцию подвижной фазы входит еще и влияние на селективность колонки. Это свойство подвижной жидкой фазы имеет первостепенное значение для ЖАХ, так как оно позволяет достигать оптимальных условий разделения не только выбором соответствующего селективно действующего адсорбента, что не всегда просто, но и подбором системы растворителей, действующих селективно. [c.79]

    При введении в подвижную фазу веществ, обладающих различной адсорбционной активностью, вымывание компонентов анализируемой смеси происходит в зависимости от активности как вымывающих, так и вымываемых веществ. В идеальном случае можно получить градиентную хроматографию, т. е. метод, при котором состав подаваемой в колонку подвижной фазы непрерывно изменяется, причем так, что ее вытесняющая способность возрастает. Здесь подвижная фаза, выполняя присущие ей обычные функции, оказывает еще влияние и на селективность колонки. [c.79]

    Уравнение (42) по форме идентично выражению (41) для твердой мембраны. Из него следует, что селективность жидкой мембраны зависит от отношения коэффициентов распределения и подвижностей диссоциированных ионов. Следовательно, селективность при полной диссоциации определяется только природой растворителя и не зависит от природы растворенного органофильного вещества. [c.108]

    Хроматографией называется физико-химический метод разделения смеси веществ, заключающийся в перемещении смеси потоком подвижной фазы вдоль слоя сорбента (неподвижная фаза). Вследствие различия коэффициентов распределения для отдельных компонентов смеси между подвижной и неподвижной фазами происходит селективное замедление движения компонентов, что приводит при достаточной длине слоя сорбента к образованию зон отдельных компонентов смеси. [c.45]

    Существует несколько механизмов ионного транспорта. Согласно механизму подвижных переносчиков ионофор Т-, вызывающий селективную проводимость мембраны, образует на поверхности мембраны комплекс с ионом С+ С+4-Т Х [СТ]. Этот нейтральный комплекс диффундирует к противоположной стороне мембраны и диссоциирует, так что С+ переходит в водную фазу, а Т" под действием электрического поля возвращается обратно  [c.140]

    Относительно природы активных центров, ответственных за хемосорбцию и катализ в реакциях окислительного дегидрирования, в литературе пока мало данных. Полагают, что катализатор должен иметь окисленное (дублет 20) и восстановленное (2) места на поверхности. Адсорбция молекулы углеводорода (ее аллиль-ного фрагмента) происходит на катионитах Мо + или В1 + за счет л-связывания, а атом водорода связывается с кислородным анионом приповерхностного слоя. Атом кислорода решетки должен обладать определенной подвижностью для осуществления селективного окисления, достижения прочности связи углеводорода (и продуктов его превращения) с поверхностью катализатора и т. п. [c.181]


    Величина Кмв в уравнении (IX.94) — основная характеристика свойств ИСЭ. Согласно изложенной выше теории она двояким образом зависит от этих свойств. С одной стороны, она связана с относительной подвижностью ионов в мембране чем больше относительная подвижность мешающего иона В+, тем больше его влияние на потенциал А+-селективного электрода. С другой стороны, /Са/в зависит от селективности поглощения мембраной иона при ионном обмене. [c.525]

    Значение т может изменяться от О до 1, что зависит от свойств растворителя и ионообменника. Селективность электрода с ассоциированной мембраной определяется отношением (Xr/ ar) ar-br т = 1 и значительной подвижности аниона R-. При условии т = 0 и R- —малоподвижен, т. е. < йд, й , селективность определяется выражением /Сд/в = а-в в/ а- [c.530]

    Здесь следует отметить, что для твердых мембран названные требования находятся в противоречии и удовлетворить их трудно, поэтому большинство мембранных электродов имеют ограниченные области обратимости (низкую селективность). Например, ионы Са + и Mg + связываются поверхностными слоями стекла гораздо прочнее, чем однозарядные Ыа+ и К+, но при этом становятся практически неподвижными, и стеклянных электродов с удовлетворительной функцией двузарядных катионов получить не удается. Лишь для ионов Н+ высокая избирательность их поглощения стеклом не сопровождается потерей подвижности, причиной чего могут служить особые механизмы переноса протонов в твердых телах. В силу отмеченного обстоятельства стеклянные электроды с водородной функ- [c.548]

    У жидких мембран на основе ионообменников и нейтральных переносчиков активные центры, нейтральные и заряженные комплексы сохраняют способность к перемещению, поэтому ограничения в селективности, связанные с подвижностью, в значительной мере отпадают. Электродное поведение таких мембран можно предсказать с помощью констант экстракции (констант ионного обмена). [c.549]

    Мембраны, изменяющие л,-, называются электрохимически активными или ионоселективными. Тогда, когда в переносе участвуют только противоионы (п, = 1, подвижные ионы другого знака отсутствуют), говорят об идеальной электрохимической активности (или селективности) мембран. [c.216]

    Селективность зависит также от соотношения подвижностей ионов М" и М в мембране, уменьшаясь с увеличением этого соотношения. [c.469]

    Существенное значение для селективности имеют специфические взаимодействия. К ним относят образование водородных связей, ион-ионное взаимодействие, а также образование комплексных соединений. Умелое использование различий во взаимодействиях веществ с подвижной и неподвижной фазами — основа успешного решения аналитической задачи при помощи хроматографии. Более подробно проблемы селективности будут рассмотрены в разделах, посвященных каждому виду хроматографии. [c.594]

    Прочность связи иона с его окружением в мембране оказьшает прямо противоположное влияние на юзнстанту обмена и на величину подвижности. Если из двух участвующих в обмене ионов и первый связан прочнее, чем второй, то константа обмена Мл—будет больше единицы, но подвижность М1" меньше, чем М. Так, например, константа обмена иона Ыа+ на ион К+ для типичного К+-селективного стекла и сост.авляет примерно 100, а фактический коэффициент селективности не превышает 10, т. е. подвижность ионов К+ в мембране н 10 раз меньше подвижности ионов N3+. [c.177]

    Рядом авторов выполнено сравнение реакторов с восходящим п нисходящим движением газожидкостного потока на примере процессов гидрообессеривания неочищенных или тяжелых масел [48—51] и селективного гидрирования фенилацетилена в растворе стирола [52]. Были отмечены следующие преимущества аппаратов с восходящим движением потоков газа и жидкости более высокая конверсия исходных реагентов, лучшая селективность, более длительный срок службы катализатора, лучший температурный контроль. По сравнению с полыми барботажными колоннамп рассматриваемые реакторы обеспечивают значительное снижение продольного перемешивания в обеих подвижных фазах и уменьшение коалесценции пузырей газа. [c.240]

    Резкая разница в подвижности молекул воды и гидрофобных комплексов обусловливает положительную селективность разделения водных растворов неполярных веществ (рис. IV-12, кривая 1). Причем с повышением температуры селективность должна возрастать, так как увеличивая подвижность молекул воды, температура не влияет на дисперси- [c.185]

    В терминах подвижности кислорода решетки качественная оценка селективности окисных катализаторов неполного окисления дана в работах Захтлера с сотрудниками А5] и Трифиро, Иру и сотрудников [16 ]. В работе [15 ] установлена четкая симбатность между селективностью реакции окисления бензальдегида в бензойную кислоту и параметром д АН х)/дх (где АН — энтальпия окисла х — степень восстановления окисла в долях). В работе [16 ] для реакций окислительного аммонолиза пропилена и его окисления показана обратная зависимость селективности от скорости диффузии кислорода в решетке окисла. Обе эти работы свидетельствуют о той, что селективность реакций неполного окисления связана с вероятностью дальнейшего взаимодействия первичного продукта реакции за время его сорбционного состояния с поверхностным кислородом окисла. Такое взаимодействие тем менее вероятно, чем меньше подвижность кислорода решетки. Соответственно окислы с очень высокой подвижностью кислорода мало селективны в реакциях неполного окисления. [c.155]

    Ацетилен является иримесью, загрязняющей пропан, этан и бутан, которые подвергают крекингу с целью получения этилена для производства полиэтилена или этиленгликоля. Ацетилен мешает протеканию двух последних процессов, п его удаляют каталитически или промывкой. Каталитическое удаление ацетилена гидрированием в этилен представляет собой одни из лучших примеров селективного катализа. Эту реакцию осуществляют в промышленности нри температуре 200—250°С на никелевом катализаторе, сульфидироваппом в строго определенной степени. В силу того что в ходе процесса происходит частичное гидрирование серы и она удаляется с катализатора, в реактор следует постоянно вводить некоторое количество серы для компенсации ее потерь и поддержания определенного уровня селективности катализатора. Гидрирование можно вести при давлениях 200—1000 фупт/дюпм . В качестве катализатора обычно используют никель на оксиде алюминия, содержащий иногда небольшие добавки кобальта и в некоторых случаях хром. Ценность добавок хрома проблематична, так как он повышает устойчивость катализатора к сульфидированию, увеличивает подвижность серы, что ведет к быстрой потере селективности. [c.126]

    Степень влияния температуры на селективность процесса определяется природой амина и в большей степени заметна при использовании третичных аминов. Влияние температурного фактора на селективность МДЭА-очистки сырого газа от кислых компонентов связана с различным характером взаимодействия третичного амина с углекислым газом. Если первичные и вторичные амины способны быстро напрямую реагировать с СО2 с образованием карбамата (соли замещенной карбаминовой кислоты), то третичные амины, у которых нет подвижного атома водорода в аминовой группе, не могут образовывать карбаматы, а образование карбоната и бикарбоната лимитируется медленной стадией образования и диссоциации угольной кислоты. Взаимодействие НгЗ с любыми аминами протекает с образованием гидросульфида и сульфида мгновенно. Повышение температуры до некоторого предела (до 70 °С) будет прежде всего сказываться на образовании малоустойчивой угольной кислоты, что и приводит к значительному снижению степени извлечения СО . Степень извлечения Нз8 [c.26]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    Сульфофторидная группа значительно менее подвижна, чем сульфохлоридная, что имеет особенное значение в тех случаях, когда желательно сохранить в целости сульфогалоидную группу. Сульфофториды обладают также несколько необычной селективной активностью по отношению к различным грзшпам. Так, [c.271]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    При элюировании смеси в колонке, заполненной адсорбентом, в качестве подвижной фазы применяют не индивидуальный растворитель, а раствор одного или нескольких веществ в каком-либо растворителе. При этом в качестве растворителя применяют вещество, слабо или совсем не адсорбирующееся на выбранном адсорбенте, и в него добавляют вещества, адсорбирующиеся сильнее всех или некоторых компонентов анализируемой смеси (вытеснитель). При этом получается сочетание проявительного метода с вытеснительным. Слабо адсорбирующиеся компоненты смеси вымываются из колонки первыми вследствие вымывающего действия растворителя (элюента). Здесь разделение смеси соседних компонентов обе- спечивается селективным действием адсорбентов. Затем колонку начинают промывать раствором вытеснителя в этом же растворителе. Происходит вытеснительная десорбция и элюирование компонентов в порядке возрастания их адсорбционной активности. [c.79]

    Успех хроматографического разделения смеси веществ зависит не только от селективности выбранных фаз, но и от эффективности колонки. Последняя связана с такими физическими свойствами применяемых жидкостей, как вязкость и коэффициент диффузии. Подвижные фазы в ЖЖХ должны обладать относительно низкой вязкостью, чтобы давление, необходимое для продавливания раствора через слой носителя в колонке, было минимальным. Поэтому в качестве подвнжных фаз рекомендуется применять жидкости с малой молек лярной массой. [c.216]

    В практической работе обычно используют заранее построенную градуировочную кривую зависимости электрической проводимости раствора от концентрации тех или иных электролитов. В связи с относительно близкими значениями подвижностей ионов кондуктометрические измерения дают информацию главным обра юм лишь об общей концентрации ионов в растворе. Малая селективность кондуктометрического метода существенно ограничивает его применение. [c.219]

    Эффективным оказалось сочетание газовой (подвижная фаза - газ) хроматофафии с другими методами исследования ИК-спектроскопией, масс-спекфомефией и др., - а также использование селективных и последовательно работающих детекторов. [c.293]

    Подвижную фазу с постоянным значением pH можно применять лишь в случае ионита, обладающего различными селективными свойствами по отношению к разным ионам. Это бывает редко, поэтому обычно применяют метод, аналогичный методу градиентного элюирования, т. е. ступенчато или непрерывно повышают концентрацию ионов водорода в растворе. Часто применяют и добавку комплексантов для повышения селективности подвижной фазы. Действенность этих методов можно показать на примере разделения ионов калия и натрия. Ионы натрия при pH 9 образуют устойчивый комплекс с диацетоурамилом в отличие от ионов калия. Раствор анализируемой пробы вместе с комплексантом в буферном растворе пропускают через катионит и промывают раствором комплёксанта. В результате происходит четкое разделение ионов натрия и калия при проведении обмена в небольших колонках с небольшим количеством элюата [54]. [c.381]

    Из соотношения (1.25) видно, что селективность в системе ионов К + и К2+ зависит от отношения коэффициентов распределения и подвижностей диссоциированных ионов. Избирательность при полной диссоциации определяется только растворителем и не зависит от природы растворенного оргаиофильного веш ества. [c.17]

    Подвижные фазы в ЖКХ различают по их элюирующей способности. В адсорбционной хроматографии на полярных. сорбентах элюирующая сила тем больше, чем полярнее растворитель. Экспериментально уста ювленную последовательность растворителей с возрастающей элюирующей силой называют элюот-ропным рядом. Элюирующая сила е, как правило, возрастает с увеличением диэлектрической проницаемости растворителя. Чаще всего используют насыщенные углеводороды (гексан, гептан), тетрахлорид углерода, хлороформ, этанол, метанол, воду (растворители расположены в порядке возрастания элюирующей силы). Элюирующую силу можно изменять в необходимых пределах добавлением к растворителю с низкой элюирующей силой более активного растворителя. Элюирующая способность смеси резко возрастает при небольших добавлениях полярного растворителя к неполярному (рис. 28.8). Если различие в элюирующей силе растворителей незначительно, то зависимость близка к линейной. В том случае, если к неполярному элюенту добавляют полярный, способный к образованию водородных связей (спирты, эфиры и др.), удерживание и селективность определяются специфическими взаимодействиями вещество— адсорбент, вещество — элюент и элюент — адсорбент. Эту систему применяют для разделения полярных, сильноудерживаемых соединений. Водородные связи образуются как между сорбентом и веществом, так и между веществом и элюентом, что резко сказывается на хроматографическом поведении соединений. Так, фенол и анилин в элюен-те, не способном к образованию Н-связи, выходят в указанной последовательности, а в подвижной фазе, содержащей спирты, порядок противоположный. Это объясняется тем, что анилин, в состав молекулы которого входит аминогруппа —NH2, обладает большей способностью к образованию водородных связей с молекулами спирта, чем фенол. [c.600]


Смотреть страницы где упоминается термин Подвижная селективность: [c.26]    [c.91]    [c.222]    [c.14]    [c.34]    [c.339]    [c.279]    [c.215]   
Высокоэффективная жидкостная хроматография (1988) -- [ c.42 , c.43 ]

Высокоэффективная жидкостная хроматография (1988) -- [ c.42 , c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте