Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение цепи и температура плавления

    Если обычный технический парафин, содержащий от 20 до 35 углеродных атомов преимущественно нормального строения, имеет температуру плавления, не превышающую 50—55°С, то температуры плавления разветвленных алканов той же молекулярной массы более низки. Молекулярные массы парафинов лежат в пределах от 300 до 450, а церезинов — от 500 до 750, что соответствует содержанию в цепи примерно от 36 до 55 углеродных атомов. [c.170]


    Первая и вторая-фракции практически с одинаковым углеводородным составом-имеют близкие значения поверхностного натяжения. При переходе к третьей и четвертой фракциям значение ст снижается за счет уменьшения длины боковых цепей в молекулах нафтеновых углеводородов, что и подтверждается более низкой температурой плавления этих фракций при небольшом изменении фактора симметрии. Пятая фракция-смесь нафтеновых углеводородов с длинными боковыми цепями нормального строения (высокая температура плавления)-обладает наиболее высоким поверхностным натяжением и, следовательно, более высокими адгезионными свойствами. [c.41]

    Высшие парафины. Практическое значение в качестве исходных веществ для органического синтеза имеют в основном высшие парафины с прямой цепью углеродных атомов. Индивидуальные их представители до ie при комнатной температуре представляют собой жидкости, свыше ie — твердые вещества, температура плавления которых постепенно возрастает с удлинением углеродной цепи. Температура плавления н-парафинов обычно выше, чем у соответствующих разветвленных изомеров, и они выкристаллизовываются при охлаждении. Другим отличием н-парафинов явл.яется их способность давать кристаллические аддукты с карбамидом, в которых на 10 атомов С приходится примерно 8 молекул (ЫНг)гСО. Из-за своего прямоцепочечного строения н-парафины способны также проникать в мельчайшие поры цеолитов (молекулярных сит) и сорбироваться ими. Все эти свойства используют для выделения н-парафинов из их смесей с углеводородами других классов. [c.24]

    Углеводороды с разветвленной цепью кипят при более низкой температуре, чем соответствующие им соединения нормального строения, а температура плавления, наоборот, выше у изомеров с разветвленной цепью. [c.48]

    Для всех классов углеводородов температуры плавления повышаются с увеличением молекулярного веса и температуры кипения. Однако для углеводородов всех классов при одном и том же молекулярном весе температура плавления может колебаться в очень широких пределах. Более того, температура плавления более высокомолекулярного углеводорода часто оказывается значительно более низкой, чем менее высокомолекулярного. Наиболее высоки значения температур плавления имеют углеводороды с очень симметрично построенными молекулами, особенно ароматического характера, в которых 5 или 6 атомов водорода бензольного кольца заменены одинаковыми радикалами. Высокими температурами плавления обладают также углеводороды, имеющие большую прямую цепь, с увеличением длины цепи температура плавления повышается. По мере разветвления цепи температура плавления углеводорода понижается. Вообще, чем асимметричнее молекула, тем ниже ее температура плавления. За исключением нескольких наиболее симметрично построенных низкомолекулярных углеводородов, из всех парафиновых углеводородов наибольшим значением -температуры плавления обладают углеводороды нормального строения. [c.185]


    Твердые циклические углеводороды с боковыми цепями нормального строения имеют температуру плавления значительно более высокую, чем углеводороды с разветвленными цепями. Это видно из сопоставления температур плавления углеводородов, образующих и не образующих комплексы с мочевиной. [c.207]

    У парафиновых углеводородов с короткой цепью сильно разветвленное строение может привести к значительному повышению температуры плавления. Так, например, н-октан плавится при —57°, 2,2,3,3-тетра-метилбутан — при 100,7° н-пентан плавится при —129,7°, в то время как тетраметилметан (неопентан)—прп +16,6°. [c.51]

    С изменением температуры алканы подвергаются фазовым превращениям. Это плавление, переход из одной кристаллической формы в другую, например из гексагональной в ромбическую [19]. Одновременно может протекать насыщение и перенасыщение фаз. В связи с тем, что алканы, независимо от строения цепи, неполярны, то взаимодействие их с друг классами соединений весьма незначительно. При температурах вьппе температуры их плавления практически все алканы находятся в молекулярном состоянии в дисперсионной среде. [c.22]

    Кристаллы церезинов имеют игольчатое строение. В их состав наряду с парафиновыми углеводородами входят твердые нафтеновые ароматические углеводороды с длинными боковыми цепями. При одной и той же температуре плавления церезины характеризуются большими по сравнению с парафинами плотностью, вязкостью и молекулярным весом, что видно из приведенных ниже данных  [c.23]

    С увеличением длины метиленовой цепочки в полиуретанах и повышением нерегулярности строения цепи понижается их температура плавления, улучшается водостойкость и растворимость, увеличивается эластичность, но снижается химическая стойкость. [c.85]

    Выделяющаяся из топлива твердая фаза представляет собой высокоплавкие углеводороды, преимущественно парафинового ряда, а также ароматические и нафтеновые углеводороды с длинными боковыми цепями и некоторые бициклические углеводороды — прежде всего ароматические. Температура плавления этих углеводородов зависит от их строения и молекулярного веса. Как правило, с увеличением молекулярного веса, а следовательно, и температуры кипения температура плавления повышается. Однако температура плавления углеводородов одного и того же молекулярного веса в зависимости от строения колеблется в очень широких пределах в ряде случаев температура плавления высокомолекулярных углеводородов ниже, чем пизкомолекулярных. [c.137]

    Кристаллизация твердых углеводородов нефти (технических парафинов). Большая часть твердых углеводородов нефти относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одним нз условий появления смешанных кристаллов является наличие длинных алкановых цепей (в основном нормального строения) в н- и изоалканах, нафтеновых и ароматических углеводородах, составляющих твердую фазу, которая выделяется при охлаждении нефтяных фракций. Кристаллы образуются в результате последовательного выделения из раствора и отложения на кристаллической решетке молекул твердых углеводородов с постепенно понижающимися температурами плавления. [c.87]

    Парафины с температурами плавления 40—00°, выделенные из различных нефтей, состоят главным образом из углеводородов нормального строения, содержащих в цепи 24—30 углеродных атомов. [c.367]

    В товарный образцах парафина, выделенных из нефтей различных месторождений и имеющих температуру плавления от 40 до 60° С, преобладают парафины нормального строения, содержащие в своей цепи от 24 до 30 углеродных атомов. [c.107]

    Твердые углеводороды нефтяных фракций, так же как и жидкие, представляют собой сложную смесь парафиновых углеводородов нормального строения разной молекулярной массы изопарафиновых, различающихся по числу атомов углерода в молекуле, степени разветвленности и положению заместителей нафтеновых, ароматических и нафтено-ароматических с разным числом колец и длинными боковыми цепями, как нормального, так и изостроения, Температура плавления твердых углеводородов зависит от структуры их молекул, что видно иа примере трех типов углеводородов с одинаковым числом атомов углерода в молекуле (рис. 46), но с разными структурой и положением заместителя. Так, наиболее резко температура плавления углеводородов снижается при перемещении заместителя от первого атома углерода в цепи, у-алкана ко второму. При дальнейшем перемещении заместителя к центру молекулы температура плавления продолжает снижаться, причем насыщенные заместители (см. кривые 2 и 3) оказывают более сильное влияние л а снижение температуры плавления углеводорода, чем фенильные радикалы. [c.151]

    Карбамид (ЫН2)2СО представляет собой белое кристалличе-ское вещество, гигроскопичное, легко растворимое в воде и низших спиртах, с температурой плавления 132,5°С. При нагреваиии с водой в щелочной среде карбамид разлагается на двуокись углерода и аммиак. Карбамид обладает способностью к образованию кристаллических комплексов с алканами нормального строения, у которых число атомов углерода в молекуле не менее шести (см. 11). Углеводороды гибридного строения, имеющие в составе молекулы длинные неразветвленные алифатические радикалы, также образуют карбамидные комплексы. Способность углеводородов к комплексообразованию и прочность полученного комплекса повышаются с увеличением длины неразветвленной цепи алифатического углеводорода. Образование комплекса сопровождается выделением теплоты, количество которой возрастает с увеличением молекулярной массы углеводородов, [c.311]


    Следующей структурной характеристикой, определяемой химическими методами, является расположение мономерных звеньев, которое может носить линейно-регулярный и пространственно-регулярный характер. Пример структуры первого типа, в которой мономерные звенья упорядоченно расположены в полимерной цепи, приведен на рис. 2.1, а. При этом различают варианты присоединения голова к хвосту (рис. 2.1, а слева) и голова к голове (рис. 2.1, а справа). Полимерные молекулы, которым присуща пространственная упорядоченность, называют стереорегулярными. Эта особенность строения имеет большое значение в случае полимеров (а-олефинов), таких, как полипропилен. Так, изотактический полипропилен — это жесткий полукристаллический полимер с температурой плавления 165 °С, в то время как атактический полипропилен аморфен, мягок и липок уже при комнатной температуре. [c.37]

    Высокомолекулярные вещества обладают некоторыми общими свойствами, определенной механической прочностью и др., нередко они разлагаются при высоких температурах без предварительного плавления. Свойства высокополимеров зависят не только от химического состава структурной единицы полимера (мономера), но в очень большой степени от величины молекулярного веса, геометрической формы макромолекул, строения цепей, характера и интенсивности взаимодействия между ними. [c.274]

    Ф Ф г расположены стереорегуляр- но, то выступы одной макромолекулы могут входить во впадины соседней, как это схематично показано на рис. 11. В этом случае достигается максимальное взаимное сближение всех атомов как главной цепи, так и боковых групп и прочная связь между отдельными атомами. Благодаря этому в сумме создается большая сила межмолекулярного притяжения, что обусловливает очень высокую температуру плавления, а также повышенную жесткость стереорегулярных полимеров в сравнении с аморфными полимерами того же химического строения. Так, стереорегулярный полистирол плавится при 220—225° С, тогда как обычный аморфный полистирол начинает размягчаться (перестает быть твердым, стеклообразным) при 80—85° С. [c.24]

    Вследствие симметричного строения макромолекул политетрафторэтилена и малого размера атома фтора большая часть их правильно ориентирована и образует упорядоченную структуру. Упорядоченная кристаллическая часть достигает большой концентрации (80—90%). Большой процент кристаллической части и неупорядоченная аморфная фаза обусловливают, с одной стороны, высокую температуру плавления, достаточную твердость, а с другой — хорошую гибкость и чрезвычайно низкую температуру хрупкости. Температура стеклования аморфной фазы —120° С. Ниже этой температуры аморфная фаза теряет каучукоподобные свойства, но полимер все же еше не становится хрупким. Температура разрушения (плавления) кристаллитов, т. е. превращения их в аморфную фазу, 327° С. Она значительно выше, чем у полиэтилена, вследствие того, что энергия взаимодействия между атомами фтора соседних цепей (2000 кал/моль) намного больше, чем энергия взаимодействия между атомами водорода. Полимер в аморфном состоянии, т. е. при температуре выше 327° С, не является вязко-текучим, а остается в высокоэластическом состоянии. Нагревание вплоть до температуры разложения (415° С) не превращает полимер в вязко-текучее состояние. Поэтому обычные методы переработки термопластичных масс (горячее прессование, литье под давлением, шприцевание) для политетрафторэтилена не применимы. [c.145]

    Бается смещенной друг относительно друга. Вследствие этого снижается прочность связи между цепями, что вызывает более легкую растворимость и более низкую температуру плавления у смешанных полиамидов, чем у полиамидов регулярного строения. Смешанные полиамиды растворяются в водных растворах метилового и этилового спиртов. Это преимущество позволяет использовать их для получения лаков. В СССР смешанный полиамид, получаемый сополиконденсацией капролактама и ади- [c.235]

    Температуры кипения и плавления углеводородов зависят и от их строения. Нормальные углеводороды кипят выше, чем углеводороды изостроения. С другой стороны, самую высокую температуру плавления имеет тот изомер, цепь которого наиболее разветвлена (см. табл. 5). [c.50]

    Полимеры с сопряженной системой связей отличаются повышенной плотностью, главным образом за счет уменьшения среднего расстояния между атомами, входящими в систему сопряжения, и высокими температурами плавления. Последнее объясняется, по-видимому, жесткостью макромолекул вследствие ограничения свободного Вращения вокруг кратной связи или полициклическим строением полимерной цепи. Следует иметь в виду, что система сопряжения в полимерах не всегда [c.409]

    Озокерит горный вос/ состоит главным образом из твердых предельных углеводородов с разветвленной цепью углеродных атомов. Как было раньше указано, углеводороды с сильно разветвленными цепями обычно имеют более высокие температуры плавления, чем соответствующие изомеры нормального строения. Этим объясняется сравнительно высокая температура плавления озокерита. [c.71]

    Оксикарбоновая кислота (II) является мономером типа АВ и получается к виде смеси изомеров (6- и 7-изомеры). В то время как полиэфир, полученный из чистого изомера (не установлено какого — G- или 7-изомера), обладает т. пл. выше 300° и плавится с разложением, полиэфир из смеси изомеров (синтез которой приводится ниже) устойчив выше температуры его плавления (210 ). Это является еще одним примером влияния строения цепи на свойства в ряду сополимеров с хаотическим распределением звеньев в макромолекулах. [c.147]

    НОЙ цепи. Температура плавления н-парафинов обычно выше, чем у соответствуюш,их разветвленных изомеров, н они выкристаллн-зозываются ири охлаждении. Другим отличием н-парафинов является их способность давать кристаллические аддукты с карбамидом, в которых на 10 атомов С приходится примерно 8 молекул (NH2)2 0. Из-за своего прямоцепочечного строения н-пара-фины способны также проникать в мельчайшие поры молекуляр-ньх сит (цеолиты) и сорбироваться ими. Все эти свойства используют для выделения н-парафинов из их смесей с углеводородами других классов. [c.24]

    Парафины представляют собой продукты белого или желтого цвета, состоящие преимущественно из парафиновых углеводородов нормального строения. По температуре плавления различают парафины жидкие (<27°С) и твердые (28—70°С) твердые парафины делятся на мягкие (28—45°С), среднеплавкие (45—50°С) и твердые (50—65 °С). В цепях жидких парафинов содержится от 9 до 24 атомов углерода, они на 90—99% состоят из н-алканов и выкипают в пределах 180—370 С. Твердые парафины — кристаллические продукты, содержащие от 20 до 40 атомов углерода в цепи. Помимо н-алканов (75—987о) в твердых парафинах содержатся изоалканы, значительно меньше нафтеновых и еще меньше ароматических углеводородов с длинными боковыми цепями. Молекулярная масса парафиновых углеводородов составляет 350—420. [c.402]

    Высшие парафины. Практическое значение в качестве исходных веществ для органического синтеза имеют в основном высшие парафины нормального строения с прямой цепью углеродных атомов. Индивидуальные их представители до при комнатной температуре представляют собой жидкости, выше i6 — твердые вещества, температура пла1вления которых постепенно возрастает с удлинением углеродной цепи. Температура плавления н-парафинов обычно выше, чем у соответствующих разветвленных изомеров, и это иопользуют при выделении твердых к-парафинов из смесей кристаллизацией. [c.28]

    Нафтены присутствуют в жидкой и твердой (кристаллической) фазах, входя в состав церезинов. Наиболее легко кристаллизуются нафтены с длинной боковой алкильной группой нормального строения. При наличии разветвленной боковой цепи или нескольких боковых цепей меньшей длины вместо одной длинной температура плавления нафтенов значительно понижается. Но в то же время нафтены, молекулы которых в.место одной длинной боковой цепи при циклическом ядре имеют несколько боковых цепей с тем же числом атомов углерода в них, обладают значительно большей вязкостью и худшими вязкостно-температурными свойствами. Аналогичное влияние на вязкостные свойства оказывает наличие и размеры боковых цепей также у других циклических углеводородов — ароматических и нафтеноароматических. [c.140]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Известно, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство твердых углеводородов относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что форма кристаллов и в особенности их размеры в оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, зфтя и относящихся к разным классам, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов оказывает вязкость дисперсионной среды (масла) чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т. е. тем вероятнее возникновение новых центров кри- [c.150]

    Температура плавления зависит не только от молекулярной массы, но и от строения. Наибольщег понижение температуры плавления наблюдается с приближением заместителя к середине цепи. [c.113]

    Сопоставление состава и свойств туймазинского парафина и индивидуальных парафинов С25—Сзо нормального строения показывает, что более низкомолекулярные фракции его (молекулярный вес 300—400, температура плавления 49—60° С) состоят преимущественно из предельных углеводородов нормального строения во фракциях парафина с молекулярным весом выше 400 заметно повышается доля разветвленных структур предельных углеводородов. Так, по данным, полученным при нитровании, фракция туймазинского парафина молекулярного веса 454 температура плавления 66° С) содержала уже только 56% углеводородов нормального строения. Около половины ф )акции составляли разветвленные формы парафиновых углеводородов, что приближает ее к шорсинскому церезину. Элементарный состав фракции с температурой плавления 68,8° С отвечает общей формуле H2n+i,5- Это указывает, что в ее составе уже появились парафиновые углеводороды с циклическими заместителями в длинной цепи. Таким образом, результаты исследования парафина из туймазинской нефти в общем согласуются с данными, полученными американскими исследователями для парафинов мидконтинентской нефти и советскими исследователями для парафинов грозненской нефти. [c.96]

    В указанных соединениях преобладают монофенилзамещенные парафины нормального строения с заместителем на конце цепи (в положении 1—5), о чем можно судить по температурам плавления, так как известно, что монофенилзамещенные парафины с понижением заместителя ближе к центру неразветвленной цепи, например положения 7—9, характеризуются значительно более низкими (на 15— 18° С) температурами плавления. [c.200]

    Присутствие в товарных маслах углеводородов с 12 и более углеродными атомами в боковой цепи при условии нормального строения этой цепи практически невозможно, так как такие углеводороды имеют высокую температуру плавления и должны отделяться от жидких углеводородов в процессе депарафиниза-ции. Таким образом, у высокомолекулярных ароматических углеводородов цепь должна быть разветвленной или атомы углерода должны распределяться между несколькими боковыми цепями. [c.32]

    Так, Карпентер [И] считал, что существуют две аллотропические разновидности кристаллов парафина с точкой перехода около 10—15° ниже температуры плавления. Первая модификация характеризуется пластинчатым строением, вторая — игольчатым. Один и тот же парафин может образовывать игольчатые или пластинчатые кристаллы в зависимости от условий кристаллизации, К таким же выводам пришли Карпентер [12 и Кац [13. Л, Г, Гурвич [2], однако, считал, что форма кристаллов м-парафинов не зависит от условий кристаллизации. Родс, Мезон и Сьютон полагали, что игольчатые кристаллы являются вторичными, образующимися в результате закручивания пластинок [14], Грей [15], Эдварс [16] и др,, исследовавшие строение кристаллов н-парафинов и других соединений с длинными цепями, показали, что полиморфизм обычен для таких соединений, и переход кристаллов из одной формы в другую часто происходит в твердой фазе. По данным Грея, чистые н-парафины кристаллизуются в четырех формах гексагональной (а-форма), орторомбической (/3-форма), монокли-нической или триклинической с углом наклона 73° (у-форма) или 61°30 ( -форма). [c.90]

    Первые три представителя гомологического ряда этилена — газы начиная с С5Н10 (амилена, или пентеиа-1) — жидкости, а с С яНзи — твердые тела (табл. 5), С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены с углеродной цепью нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температура ки- [c.66]

    Свойства полиамидов и области их применения. Полиамиды— твердые роговидные полимеры с высокой температурой плавления (например, 218°С у капрона, 264°С у найлона). Высокая температура плавления объясняется значительным процентом кристаллической фазы и образованием водородных связей между цепями (рис. 66, а). Полиамиды обладают хорошими механическими свойствами. Они весьма стойки к истиранию и отличаются высокой разрывной прочностью (700—750 кгс1см ). Плотность 1,14. Полиамиды регулярного строения очень стойки к действию обычных растворителей. Только сильно полярные соединения, такие, как фенол, крезолы, муравьиная кислота, растворяют полиамиды такого типа. Смешанные полиамиды растворяются при нагревании в низших алифатических спиртах (метиловом, этиловом) в смеси с небольшими количествами воды (от 10 до 20%). При остывании и хранении растворы смешанных полиамидов преврашаются в гелеобразную массу. При нагревании гель можно снова превратить в прозрачный раствор. [c.236]

    Свойства углеводородов и их производных определяются не только длиной углеродной цепи, но и ее формой. Так, например, известно, что среди изомеров строения самую низкую температуру плавления всегда имеет наиболее разветвленный изомер. Этот факт объясняется тем, что атомы углерода, у которых происходит ветвление, по пространственным соображениям не столь легко участвуют в дисперсионных взаимодействиях, как атомы углерода, окруженные лишь маленькими атомами водорода. Сопоставим температуры кипения трех изомеров строения С5Н12 (заметим, что эти три изомера относятся к разным гомологическим рядам)  [c.117]

    Физические свойства. Углеводороды ряда этилена — бесцветные тела. Температуры кипения и температуры плавления гомологов этилена нормального строения возрастают по мере увеличения в их составе числа углеродных атомов. Первые три члена ряда — газы, начиная с амиленов и кончая углеводородами СюНз2 — жидкости, высшие этиленовые углеводороды — твердые тела. В табл. 7 приведены физические свойства гомологов этилена с нормальной цепью и с двойной связью при первом углеродном атоме. Изомерия положения двойной связи и изомерия цепи также 01ражаются на свойствах этиленовых углеводородов. [c.68]

    Жиры депо создают один из метаболических энергетических резервов живых систем. Это преимущественно триацилпроиз-водные глицерина (разд. 5.2). В целом триглицериды животного происхождения отличаются от триглицеридов многих растительных масел высоким содержанием насыщенных ацильных групп. Существует четкая корреляция между степенью ненасы-щенности и температурой плавления триглицеридов. Высоконенасыщенные растительные масла имеют очень низкую температуру плавления, тогда как животные жиры при обычной температуре обычно твердые вещества. В результате промышленной гидрогенизации растительных жиров образуется маргарин — продукт, обладающий физическими свойствами, сходными со свойствами типичного животного жира. Различие в физических свойствах обусловлено различием строения молекул насыщенных и ненасыщенных жирных кислот, которое особенно наглядно проявляется при рассмотрении формы молекулы с растянутой конформацией углеродных цепей  [c.332]

    Физические свойства. Углеводороды нормального строения имеют плотности и температуры кипения выше, а температуры плавления ниже, чем их изомеры с раз-в твленной цепью углеродных атомов (табл. 16.3). Это связано с различной плотностью упаковки в жидкой и твердой фазах линейных и шарообразных молекул. Предельные углеводороды очень плохо растворяются в воде. [c.242]


Смотреть страницы где упоминается термин Строение цепи и температура плавления: [c.50]    [c.62]    [c.210]    [c.51]    [c.56]    [c.164]    [c.185]   
Смотреть главы в:

Поликонден -> Строение цепи и температура плавления




ПОИСК





Смотрите так же термины и статьи:

Температура плавления



© 2025 chem21.info Реклама на сайте