Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллообразование в водных растворах ПАВ

    Определить графически изменение критической концентрации мицеллообразования водного раствора олеата натрия при введении в него поверхностно-активных алифатических спиртов. Оптическим методом получены следующие экспериментальные данные  [c.83]

    Мицеллообразование в растворах коллоидных ПАВ является наиболее термодинамически выгодным процессом по сравнению с процесса ми образования истинного раствора или разделения фаз. Это обуслов/[ено переходом углеводородной или полярной части дифильных молекул ПАВ в подобную им по полярности фазу. Например, полярные группы молекул ПАВ обращаются к воде, поскольку они гидратированы, а углеводородные радикалы выталкиваются из водной ( зазы. Оба эти процесса сопровождаются выделением теплоты, что способствует умень.ше-нию энергии Гиббса системы. [c.130]


    Работа 22. ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДЛИНЫ УГЛЕВОДОРОДНОЙ ЦЕПИ МОЛЕКУЛ ПАВ НА ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ АДСОРБЦИИ И МИЦЕЛЛООБРАЗОВАНИЯ В ВОДНЫХ РАСТВОРАХ [c.137]

Таблица 4. Критические концентрации мицеллообразования ПАВ в водных растворах Таблица 4. <a href="/info/8811">Критические концентрации мицеллообразования</a> ПАВ в водных растворах
    В водном растворе молекулы ПАВ выше определенной концентрации (критическая концентрация мицеллообразования, ККМ) агрегируют, образуя так называемые мицеллы [98, 991  [c.114]

    Важной характеристикой ПАВ, образующих мицеллярные растворы ПАВ в водных растворах является критическая концентрация мицеллообразования (ККМ). [c.180]

    Причины мицеллообразования. Выше критической концентрации мицеллообразования ПАВ в водных растворах начинается агрегация молекул и образуются мицеллы. [c.405]

    Заканчивая рассмотрение процесса мицеллообразования, отметим, что мицеллы могут образоваться не только в водных растворах коллоидных ПАВ, но и в растворах ПАВ в углеводородах. При этом молекулы ПАВ в мицелле ориентированы полярными группами внутрь мицеллы, а углеводородными концами обращены к растворителю. Вместе с тем необходимо указать, что в спирте ПАВ обычно дают молекулярные растворы. Это объясняется тем, что спирт по своей полярности стоит между водой и углеводородами и, следовательно, является растворителем как для полярной, так и для неполярной части молекул ПАВ. [c.410]

    Процесс адсорбции мицеллярных ПАВ на границе полярная твердая поверхность — жидкость имеет особенности, отличающие его от адсорбции на границе жидкость — газ. (В случае неполярной поверхности в водном растворе адсорбция ПАВ с ориентацией неполярной цепью к поверхности протекает аналогично адсорбции на границе раздела вода — воздух или вода— масло). Так, для заряженной поверхности в растворе, содержащем поверхностно-активные противоионы, первой стадией адсорбции будет ионный обмен между противоионами поверхности и ПАВ (электростатическое взаимодействие твердое тело — ионы ПАВ), в результате чего поверхность покроется слоем ионов ПАВ, ориентированных полярной группой к твердой, неполярной — к жидкой фазе. В дальнейшем с ростом концентрации ПАВ происходит мицеллообразование на поверхности ТЖ (например, бислойных мицелл, где углеводородные цепи будут ориентированы внутрь мицеллы, а полярные головки — в сторону раствора). Такому механизму адсорбции соответствует двухступенчатая изотерма, в которой первое плато соответствует в первом приближении ИЭТ (нейтрализация зарядов поверхностных групп), а второе —ККМ. [c.360]


    Найти критическую концентрацию мицеллообразования олеата.калия в его водном растворе, используя экспериментальные данные осмометрического метода  [c.84]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента, в зависимости от его природы, может либо затруднять мицеллообразование, либо (что наблюдается чаще) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярных органических веществ, например низших спиртов. Такие вещества увеличивают молекулярную растворимость ПАВ и вследствие этого затрудняют мицеллообразование. Введение этих же веществ, но в малых количествах, и особенно добавление неполярных углеводородов приводит к некоторому понижению ККМ, т. е. облегчает мицеллообразование. При этом существенно изменяется строение мицелл введенный в качестве добавки третий компонент входит в состав мицеллы. В результате практически нерастворимые в чистой воде углеводороды растворяются в мицеллярных дисперсиях ПАВ. Это явление — включение в состав мицелл третьего компонента, нерастворимого или слабо растворимого в дисперсионной среде, называется солюбилизацией. Различают прямую солюбилизацию (в водных дисперсиях ПАВ) и обратную (в углеводородных системах). [c.232]

    ГС жидкостей могут иметь различное происхождение, а следовательно, и свойства, ГС, сформированные водными растворами электролитов (двойным слоем адсорбированных ионов), ч) ствительны к изменению концентрации раствора, его состава и температуры. ГС, возникшие под действием поверхностных сил твердого тела, по-видимому, не достигают значительной толщины (до 5,0-15,0 нм) и мало зависят от состава жидкости. ГС растворов ПАВ в углеводородных жидкостях могут иметь толщину порядка нескольких сотен и более нанометров. Это связано с мицеллообразованием в объеме раствора. Толщина и механические свойства таких ГС зависят от состава и концентрации ПАВ и природы растворителя, а их изучение обусловливает решение ряда технических задач [80]. [c.30]

    Критическая концентрация мицеллообразования ОП-Ю находится в интервале от 0,006 до 0,01%. Поэтому в опытах использовали водный раствор концентрации 0,004%, которая ниже ККМ. Результаты измерения коэффициента диффузии ОП-10 из 0,004%-ного водного раствора в чистую воду при температуре 20° С сведены в табл 8. Таблица такой формы удобна для записи и обработки данных опыта и дает представление о всех параметрах, используемых при расчете коэффициента диффузии. Из табл. 8 видно, что при начальной высоте водяного столба 1,410 см в течение 51 ч концентрация ОП-Ю в капилляре повысилась до 1,295 -10 %. В течение этого времени коэффициент диффузии не претерпел сколько-нибудь заметного изменения из-за обратной диффузии, обусловленной конечными, размерами диффузионного столба. [c.64]

    При критической концентрации мицеллообразования резко изменяются некоторые свойства водных растворов ПАВ, такие как поверхностное натяжение, электропроводность, моющие свойства и др. Дальнейшее повышение концентрации ПАВ (выше ККМ) приводит к очень медленному изменению этих свойств и к увеличению расхода ПАВ без улучшения свойств раствора. [c.293]

Таблица 2.10. Некоторые типичные поверхностно-активные вещества, их критические концентрации мицеллообразования и число ассоциированных в мицелле молекул в водных растворах при 25 °С [268] Таблица 2.10. <a href="/info/1545407">Некоторые типичные</a> <a href="/info/3063">поверхностно-активные вещества</a>, их <a href="/info/8811">критические концентрации мицеллообразования</a> и число ассоциированных в мицелле молекул в водных растворах при 25 °С [268]
    Критическая концентрация мицеллообразования (ККМ) эмульгатора С-10 в 10 раз ниже, чем у неионогенного аналога ОП-10, и не превышает 0,025 кг/м . В отличие от ОП-10, имеющего Т = = 70ч-80°С, эмульгатор С-10 не выпадает из водного раствора при его нагревании и поэтому не ограничивает температурных [c.27]

    Для молекул коллоидных поверхностно-активных веществ (ПАВ) характерно, с одной стороны, наличие развитого углеводородного радикала — гидрофобной неполярной части молекулы. С другой стороны, полярная карбоксильная группа является носителем сильного гидрофильного начала. Свойства коллоидных ПАВ характеризуются следующими особенностями незначительной величиной максимально возможной концентрации их в растворе в молекулярной (ионной) форме способностью адсорбироваться на поверхности раздела фаз образованием в водных растворах при концентрациях выше критической концентрации мицеллообразования (ККМ) коллоидных агрегатов — мицелл способностью при концентрациях выше КММ поглощать значительные количества углеводородов внутри мицелл, т. е. солюбилизировать их. [c.59]


    В сильно разбавленном водном растворе эмульгатор существует либо в ионизированном, либо в молекулярном состоянии. При возрастающей концентрации эмульгатора внезапно наступает скачкообразное изменение различных свойств раствора эмульгатора, например поверхностного натяжения, вязкости, осмотического давления и других. Это вызвано тем, что молекулы эмульгатора собираются в молекулярные агрегаты (мицеллы), причем гидрофобные части молекул направлены внутрь мицелл, а гидрофильные— наружу, к водной фазе. Концентрация эмульгатора, при которой происходит молекулярная агрегация, называется критической концентрацией мицеллообразования [27] она характерна для каждого эмульгатора. Концентрация эмульгатора при эмульсионной полимеризации должна быть всегда выше критической концентрации мицеллообразования обычно она составляет 0,5— 5% (масс.) по отношению к мономеру. Количество воды в эмульсии варьируется в пределах от половинного до учетверенного количества мономера. [c.57]

    Так, для предотвращения гидролитического разложения водных растворов метилметионин-сульфония хлорида эффективной оказалась добавка ПВП в концентрации 10%. Ингибирующий эффект ПАВ связан с мицеллообразованием. Так, для торможения гидролитического разложения растворов дикаина в их состав вводят неионные и анионные ПАВ. Кроме того известно, что в зависимости от механизма процессов гидролиза изменения скорости деструкции лекарственных веществ можно достичь путем добавления индифферентных солей, способных воздействовать на гидролитический распад за счет изменения концентрации ионов.  [c.644]

    Проследим, что происходит в водном растворе детергента при повышении его концентрации. Сначала при самых низких концентрациях молекулы свободно движутся в растворе независимо друг от друга — раствор молекулярно дисперсен, т. е. истинный (рис. 67,а). При определенной концентрации, называемой критической концентрацией мицеллообразования (ККМ), начинают образовываться мицеллы. Это [c.142]

    Определить графически критическую концентрацию мицеллообразования водного раствора некаля, используя экспериментальные данные оптического метода  [c.83]

    Кондуктометрическим методом исследуется мицеллообразование водных растворов стеарата натрия — yHsg OONa. Так как стеарат натрия растворим в воде только при высоких температурах, то измерения велись при 90°С. Исходная концентрация с = = 25.10 г-экв/л, W — 4 л1г.экв. [c.86]

    Поскольку в литературе отсутствуют данные об изменении псвер.хностного натяжения водных растворов смоляных и жирных кислот, а также щелочного лигнина от их концентрации, нами были проведены такие исследования. Лигнин и суммарно смоляные и жирные кислоты были выделены из сточных вод и приготовлены водные растворы щелочного лигнина и натриевых солей кислот различной концентрации. Поверхностное натяжение разбавленных водных растворов щелочного лигнина и натриевых солей смоляных и жирных кислот (суммарно) определено методом максимального давления пузырька воздуха в приборе П. А. Ребиндера при 20° С. Как видно из приведенных данных (рис. 1), поверхностное натяжение водных растворов солей смоляных и жирных кислот с повышением их концентрации до 4,8 г/л (критическая концентрация мицеллообразования — ККМ) резко падает. Дальнейшее повышение концентрации мыл не оказывает влияния на поверхностное натяжение растворов. В сульфатном мыле смоляные и жирные кислоты содержатся в соотношении 1 1с небольшим отклонением в ту или другую сторону. Из жирных кислот главным образом содержится пальмитиновая кислота и в небольшом количестве олеиновая и лино-левая кислоты. Для всех этих кислот характерно линейное строение их молекул, причем длина их значительно превышает поперечные размеры. Смоляные кислоты представляют собой смесь, по составу близкую к абиетиновой кислоте. Все они имеют кольчатое строение, причем длина и поперечник молекул имеют одинаковые размеры. Имея различное строение, смоляные и жирные кислоты обладают и различными поверхностно-активными свойствами. Поверхностные свойства у смоляных кислот выражены несколько слабее, чем у жирных. Этим и следует объяснить, что ККМ смеси кислот достаточно высока. Критическая концентрация мицеллообразования водных растворов олеата натрия при 20° С составляет 1 г/л. Лигнин обладает очень слабой поверхностной активностью, ККМ лигнина составляет 10 г/л, при этом поверхностное натяжение растворов 66 дин см К [c.43]

    Введение некоторых количеств неорганических солей в водный раствор эмульгатора способствует снижению критической концентрации мицеллообразования (ККМ), повышению солюбилизации эмульгируемых мономеров, снижению поверхностного натяжения и повышению устойчивости образующегося латекса, улучшению его реологических свойств. В отсутствие электролитов образуется латекс, характеризующийся высокой вязкостью, вследствие чего нарушается нормальный отвод теплоты реакции полимеризации. В особенности высокую вязкость имеют латексы, полученные с применением жирнокислотного эмульгатора. В производстве бутадиен-стирольных каучуков применяются хлорид калия и тринат-рийфосфат (НазР04 12НгО), которые вводят в раствор эмульгатора совместно или в отдельности. Выбор указанных электролитов основан на отсутствии их влияния на скорость полимеризации и высаливание эмульгатора. [c.245]

    Так, термин мицелла впервые был введен Мак-Бэиом в 1913 г, для обозначения агрегатов дифильных электролитов в водных растворах. Как известно, фундаментальной характеристикой мицеллообразующих веществ является дифильность их молекул, т, е, наличие в молекуле полярной и неполярной частей. В основе современных представлений о структуре мицеллы лежит модель Дж. Хартли, согласно которой мицеллы имеют жидкоподобное ядро, образованное из полярных головок или углеводородных хвостов (в зависимости от типа мицеллярного раствора). Граничный слой образован соответственно углеводородными частями или полярными группами тех же самых молекул, что формируют ядро мицеллы. Процесс мицеллообразования носит кооперативный характер и начинается по достижении критической концентрации мицеллообразования. Сегодня же понятие мицелла используют не только в его первоначальном смысле, но и более широко для обозначения упорядоченных областей в полимерах, органических коллоидных частиц, обнаруженных в угле, глинах и т. д. Такая трансформация термина мицелла не оправдана. Именно поэтому на Международном симпозиуме по мицеллообразоваиию, солюбилизации и микроэмульсиям было предложено применять его в первоначальном смыс.ш Г1191. [c.71]

    Истинная растворимость ПАВ обусловлена, главным образом, увеличением энтропии при растворении и в меньшей мере энтал ь-пийной составляющей (взаимодействием с молекулами воды) [см. уравнение (VI, 25)]. Для ионогенных ПАВ характерна диссо- циация в водных растворах, благодаря чему энтропия растворения их значительна. Неионогенные ПАВ не диссоциируют и слабее взаимодействуют с водой, поэтому их растворнмость существенно меньше при том же размере радикала. Чаще растворение ПАВ сопровождается поглощением тепла (ДЯ > 0), и поэтому их растворимость увеличивается с повышением температуры. Малая рас-творпмость ПАВ проявляется в положительной поверхностной активности, а с ростом концентрации — в ассоциации молекул ПАВ, переходящей в мицеллообразование. [c.293]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    Мицеллообразование а неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с растворителем. Образующиеся мицеллы обращенного вида содержат внутри негидратироваиные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число агрегации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела. [c.299]

    Для практических целей обычно ограничиваются определением температурной координаты точки Крафта (Ткр). Более полную характеристику поведения ПАВ в водных растворах дает фазовая диаграмма системы ПАВ — вода в области точки Крафта. Такая диаграмма позволяет определить оба критических параметра мицеллообразования — температуру (Ткр) и концентрацию (ККМкр) начала мицеллообразования в системе. [c.146]

    Одновременно с растворением ПАВ происходит объединение углеводородных частей молекулы ПАВ в водной среде — так называемое гидрофобное взаимодействие. Причиной гидрофобного взаимодействия является ослабление структуры воды при переходе углеводородных цепочек из водных растворов ПАВ в ядро мицеллы, где между ними возникают ван-дер-ваальсовы связи. Разрушение структуры воды, а также увеличение конформационной энтропии углеводородных цепочек в ядре мицеллы по сравнению с их энтропией в водной фазе приводят к повышению энтропии системы. В работах Немети и Шерага, а также в исследованиях П. А. Ребиндера и 3. Н. Маркиной показано, что процесс образования мицелл является типичным случаем гидрофобного взаимодействия. Это означает, что в энергетическом балансе мицеллообразования появляется новая со-- ставляющая — увеличение энтропии системы, что и определяет во многих случаях энтропийный характер мицеллообразования. Конечно, не следует забывать, что при образовании миЦелл идет и противоположный процесс — падение энтро- пии. В результате в качестве компромисса возникают малые мицеллы, так как при образовании крупных мипелл происходила бы значительная убыль энтропии. [c.406]

    Отметим, что при малых концентрациях и весьма разбавленных водных растворах все обычные моющие, т. е. мылообразные вещества (за исключением неионогенных), могут проявлять себя как гидрофобизаторы и поэтому их можно использовать в качестве флотореаген-тов-собирателей в соответствующих условиях. Поэтому эти поверхност-но-активные вещества применяются только в достаточно высоких концентрациях, выше критической концентрации мицеллообразования. Кроме того, поверхностно-активные моющие вещества всегда применяются на практике в форме моющих средств — сложных смесей, включающих, кроме основного поверхностно-активного агента, еще и слабо поверхностно-активные структурообразующие стабилиза--торы (защитные коллоиды или загустители типа карбоксиметилцеллюлозы), а также электролиты, в том числе щелочные, создающие благоприятную среду для моющего действия и проявления оптимальной эффективности поверхностно-активного вещества. [c.73]

    Термодинамической движущей силой мицеллообразования являются гидрофобные взаимодействия углеводородная часть дифильной молекулы выталкивается из водной среды, чтобы избежать, насколько возможно, контакта цепп с водой. В результате образуются мицеллы, внутренняя часть которых, так называемое ядро, состоит из жидкого углеводорода (объединивщихся плотно упакованных углеводородных цепей), а внешняя, обращенная к водному раствору — из полярных групп. [c.319]

    Движущей силой мицеллообразования — объединения углеводородных радикалов в ядро мицеллы (как и выхода из воды молекул ПАВ в поверхностный слой при адсорбции на границе водный раствор — воздух или водный раствор — углеводород) является увеличение энтропии системы в целом за счет разрушения айсберговых структур [c.228]

    Движущей силой мицеллообразования — объединения углеводородных радикалов в ядро мицеллы (как и выхода из воды молекул ПАВ в поверхностный слой при адсорбции на границе водный раствор — воздух или водный раствор — углерод) является увеличение энтропии системы в целом за счет разрушения айсберговых структур воды. Такие структуры существуют вокруг радикалов, когда молекулы ПАВ находятся в растворе. [c.273]

    В предыдущем параграфе рассмотрены двухкомпонентные лиофильные коллоидные системы — дисперсии мицеллообразующих ПАВ. Введение в систему третьего компонента может в зависимости от его природы либо затруднять мицеллообразование, либо (что наблюдается чаиде) способствовать этому процессу. Подавление ассоциации молекул ПАВ в мицеллы происходит при введении в водный раствор ПАВ значительных количеств полярн1>1х органических веществ, например низших спир-278 [c.278]

    Большая работа была проведена в области изучения термодинамических и структурных свойств смешанных растворов поверхностно-активных веществ (ПАВ), их фазового поведения, в области моделирования мицеллярных систем. Изучены диаграммы растворимости для водных смесей двух анионных ПАВ (додецилсульфаты натрия и калия, додецилдиэтокси-сульфат натрия), а также смесей анионного и цвиттерионнохо ПАВ. Установлена граница между мицеллярной и жидкокристаллической фазами, определены значения критических концентраций мицеллообразования (ККМ) для индивидуальных веществ и смесей. Проведено исследование влияния добавок солей, органических соединений разных классов на смещение фазовых границ в растворах смешанных ПАВ. Выполнялись исследования вязкости и электропроводности указанных выше систем. Получены новые результаты по моделированию мицеллярных систем. В рамках псевдофазной модели проведены расчеты ККМ и диаграмм растворимости в водных растворах смесей поверхностно-активных веществ, - в частности, при наличии химических превращений. Результаты прогнозирования свойств тройных систем удовлетворительно согласуются с опытом. [c.109]

    Однако измерение диффузии оптическихми методами при концентрациях ниже 0,01% становится практически невозможным из-за малой величины показателя преломления растворов. Обычно для определения коэффициента диффузии в сильно разбавленных растворах пользуются экстраполяцией кривой зависимости коэффициентов диффузии от концентрации на нулевое значение. Поступить с ПАВ таким образом нельзя, так как критическая концентрация мицеллообразования (ККМ) в растворах ПАВ ниже 0,01%. Известно, что свойства водных растворов ПАВ резко изменяются в определенной области концентраций, в которой происходит образование мицелл. Поэтому возникает необходимость измерения диффузии ПАВ при низких концентрациях, т. е. концентрациях, не превышающих ККМ, когда диффундируют отдельные, не связанные друг с другом молекулы. [c.60]

    ККМ - одна из наиболее легко определяемых и полезных количественных характеристик водных растворов ПАВ с гибкими цепями. Эта величина имеет ряд приложений в термодинамике мицеллообразования и используется при описании свойств мрщелляр-ных растворов. Почти все эти приложения основаны на представлении о ККМ как критической, пороговой величине. [c.54]

    Особый случай представляет собой отделение белка от свободного детергента. Здесь следует помнить о том, что при концентрациях выше некоторых критических детергенты в водном растворе существуют в виде мицелл, достаточно крупных для того, чтобы не проникать в поры, например сефадекса G-25. Например, мицеллы додецилсульфата натрия (ДДС-Na) содержат до 70 молекул, т. е. имеют суммарную молекулярную массу около 20 ООО. Мицеллы Тритона Х-100 еще крупней — до 120 молекул с суммарной массой около 75 000. Критическая концентрация мицеллообразования для ДДС-Na в 0,01 М Na l составляет 0,3%, а для Тритона Х-100 — 0,06%. Это означает, что отделить от детергентов гель-фильтра-дией можно только очень крупные белки на крупнопористых матрицах. К счастью, в случае ДДС-Na проблему можно разрешить, воспользовавшись резким падением его растворимости при понижении температуры. Охлаждением препарата до 0° основную массу [c.138]

    При исследовании адсорбции неионогенных и анионных ПАВ из водных растворов в области концентраций, превышающих критическую концентрацию мицеллообразования (ККМ5), установлено, что после завершения формирования плотноупако-ванного монослоя ионов или молекул ПАВ, ориентированных длинной осью параллельно поверхности адсорбента, наблюдается дальнейшее увеличение адсорбции (рис. IV-13). Причиной такого возрастания -адсорбции может быть ассоциация углево-доро ных цепей молекул ПАВ, присутствующих в адсорбционном слое, сближенных или упакованных с той же плотностью, что и молекулы в объемной мицелле. [c.92]

    В разбавленных водных растворах ассоциация органическил ионов-амфифилов обусловлена сольвофобными и особенно гидрофобными взаимодействиями (см. разд. 2.2.7 и 2.5) [399]. Амфифильные ионы, имеющие длинные неразветвленные углеводородные цепи, обладают ярко выраженными гидрофобными и гидрофильными свойствами, благодаря чему в довольно узком диапазоне концентраций, ограниченном критической концентрацией мицеллообразования (ККМ), они способны образовывать в растворах молекулярные ассоциаты, называемые мицеллами (см. рис. 2.12 в разд. 2.5). Именно мицеллы, а не сами по себе амфифильные ионы, могут изменять скорости и механизмы органических реакций в водных растворах поверхностно-активных веществ. В присутствии подходящего поверхностно-активного [c.370]

    Изучены поверхностно-активные свойства водных растворов натриевых солей 3, 6-дисульфокнслот высших 9-алкилкарбазолов на границе с воздухом, гептаном, толуолом при 20 °С и определены их критические концентрации мицеллообразования (см. табл. 2). [c.156]

    Шерага, Немети и сотр. [8—18] показали, что устойчивость компактной пространственной структуры глобулярных белков в водных растворах обусловлена теми же силами, которые приводят к мицеллообразованию в растворах ПАВ. В результате гидрофобных взаимодействий в глобулах белков и мицеллах ПАВ возникают неполярные области, ответственные за солюбилизацию. Повышение растворимости малорастворимых в воде веществ в растворах глобулярных белков (впервые наблюдавшееся Талмудом [19—21], Талмудом и Вреслером [22] и Дебориным с сотр. [23, 24]) было названо по аналогии с мылами солюбилизацией. [c.7]


Смотреть страницы где упоминается термин Мицеллообразование в водных растворах ПАВ: [c.43]    [c.184]    [c.443]    [c.57]    [c.327]   
Смотреть главы в:

Физико-химические основы извлечения поверхностно-активных веществ из водных растворов и сточных вод -> Мицеллообразование в водных растворах ПАВ




ПОИСК





Смотрите так же термины и статьи:

Мицеллообразование



© 2025 chem21.info Реклама на сайте