Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы разделения на пористых мембранах

    В предыдущей главе были даны термодинамические и кинетические соотношения для описания формирования мембраны с помощью процессов инверсии фаз. Эти соотношения содержат различные параметры, которые оказывают большое влияние на диффузию и процессы фазового разделения и, следовательно, на конечную морфологию мембраны. Показано, что могут быть получены два различных типа мембран, пористые мембраны (микрофильтрационные и ультрафильтрационные) и непористые мембраны (для первапорации и газоразделения), в зависимости от типа механизма формирования, а именно мгновенного фазового разделения или фазового разделения с запаздыванием. [c.139]


    Часто приходится сталкиваться с путаницей при анализе результатов, полученных при испытаниях характеристик пористых мембран. Еще раз подчеркнем, что в данном случае речь идет о размерах пор, которые определяют, какие из присутствующих частиц пройдут через мембрану, а какие задержатся. Поэтому методы испытаний в сущности ограничены определением размера пор. Однако следует иметь в виду, что да ке если размер пор или распределение по размерам пор в мембране были определены вполне корректно, в реальном процессе разделения характеристики мембраны будут зависеть дополнительно совсем от других явлений, а именно от концентрационной поляризации и отложений на поверхности мембраны. [c.167]

    Для мембран первого типа характерно, что матрица исходного материала и компоненты газовой смеси не обладают заметной энергией связи, их взаимодействие ограничено столкновением молекул газа с поверхностью материала мембраны, появление конденсированной фазы разделяемых газов исключено. Химический потенциал компонента смеси является функцией только объемных свойств разделяемой смеси. Влияние свойств матрицы на процесс разделения определяется ее поровой структурой, лимитирующей те или иные виды массопереноса. Примером разделительных систем такого типа являются пористые стекла и достаточно разреженные газовые смеси. [c.13]

    Влияние концентрационной диффузии и фильтрационного переноса на селективность процесса разделения газовых смесей в пористых мембранах исследовалось в работе [20]. На рис. 2.8 приведены результаты расчетов фактора разделения ац, как функции отношения давлений в дренажном и напорном каналах, для смесей N2 и СО2 при различных значениях эффективного радиуса пор, среднего давления газа в мембране и температуры процесса. Видно, что селективность процесса максимальна при малых размерах пор и низком среднем давлении в мембранах, т. е. в условиях, исключающих концентрационную диффузию и фильтрационный перенос и соответствующих свободномолекулярному течению газа в порах мембраны  [c.66]

    Анализ процесса разделения проводят [16] совместным решением уравнений, описывающих массоперенос через селективный слой мембраны и течение проникшего газа через пористый слой (включающий пористый подслой самой мембраны и пористый материал — подложку). При анализе принимают следующие допущения  [c.178]

    Под пористостью /о мембраны в отличие от общей е и открытой ео, будем понимать отношение площади суммарного поперечного сечения всех пор к единице площади мембраны. Для изотропных мембран значения /о и ео совпадают. Для анизотропных мембран ео всегда боль-ще /о, что необходимо учитывать при исследованиях и расчетах мембранных процессов разделения. [c.93]


    Фильтрация — процесс разделения суспензии с помощью пористой перегородки (мембраны), через которую под давлением проходит жидкая фаза (фильтрат), а частицы суспензии задерживаются (осадок). Перепад давления Ар может создаваться гидростатическим давлением слоя суспензии (до 50 кПа), вакуумом (50—90 кПа), или сжатым воздухом (не более 300 кПа). Общее дифференциальное уравнение фильтрации имеет вид, подобный уравнению для потока в пористом теле, нанример, (IV. 93)  [c.242]

    Пористые мембраны нашли широкое применение прежде всего в процессах обратного осмоса, микро- и ультрафильтрации, реже-для разделения газов. Они имеют как анизотропную, так и изотропную структуру. Мембраны с анизотропной структурой имеют поверхностный тонкопористый слой толщиной 0,25-0,5 мкм (называемый активным, или селективным), представляющий собой селективный барьер. Компоненты смеси разделяются именно этим слоем, располагаемым со стороны разделяемой смеси. Крупнопористый слой толщиной примерно 100-200 мкм, находящийся под активным слоем, является подложкой, повышающей механическую прочность мембраны. Мембраны с анизотропной структурой характеризуются высокой удельной производительностью, более медленной закупоркой пор в процессе их эксплуатации. Срок службы этих мембран определяется главным образом химической стойкостью материала мембран в перерабатываемых средах. Для мембран с изотропной структурой характерно быстрое снижение проницаемости вследствие закупорки пор коллоидными или взвешенными частицами, часто содержащимися в разделяемых растворах. [c.315]

    Для процесса разделения испарением через мембрану применяют пористые и непористые мембраны, обычно на основе различных полимеров (например, полипропилена, полиэтилена и др.). На основе неорганических материалов (например, керамики) изготовляют пористые мембраны. Эти мембраны обладают большим гидродинамическим сопротивлением, поэтому их целесообразно изготовлять композитными - в виде закрепленных на пористых подложках ультратонких селективных пленок. Наибольшие селективность и проницаемость наблюдаются у лиофильных систем, т. е. когда полярности мембраны и компонента разделяемой смеси совпадают. [c.334]

    Для разделения смесей газов применяют обычно пористые мембраны или сплошные мембраны из полимеров, стекол или металлокерамических сплавов. Движущей силой процесса в этом случае является перепад давлений на мембране. Используют процесс для отделения водорода от примесей (метана, диоксида углерода и др.), обогащения воздуха кислородом, разделения изотопов и т. д. [c.205]

    Для ускорения процесса разделения фаз рекомендуется соблюдать массовое соотношение дисперсной и сплошной фаз, равное 3 1 (система вода в масле ). Процессы коалесценции и отстаивания существенно ускоряются, если в качестве дисперсной фазы используется соединение полярного строения или если к эмульсии добавляется вещество полярного строения. Повышение степени разделения фаз может быть достигнуто в результате многократной рециркуляции фазы, содержащей остатки диспергированных капель, однако данный метод приводит к увеличению объема рециркулирующей жидкости и снижению производительности аппарата. Для ускорения процесса коалесценции используются электростатические коагуляторы и разделительные мембраны. В коагуляторах эмульсию пропускают через слой пористого или волокнистого материала. При движении эмульсии через слой разрываются вязкие пленки, окружаю- [c.74]

    Интерес к процессам разделения с помощью селективных мембран заметно усилился в настоящее время. Целью настоящей работы явились исследования и разработка мембран, воспроизводящих селективную растворяемость растворителей, используемых в гидрометаллургических процессах разделения. Основное достоинство этого направления — возможность создать мембраны, селективность которых повышена по сравнению с обычными мембранами для диализа и ионного обмена. Молекулярные размеры и плотность заряда, определяющие диффузию сквозь пористые или заряженные мембраны, не являются специфическими свойствами вещества. Растворимость вещества более специфична. Кроме того, если растворимость обусловлена образованием комплексов, то эту специфичность можно существенно усилить. В биологической литературе подобная концепция заложена в некоторых гипотезах [2, 6]. Однако еще не сообщалось об искусственных незаряженных мембранах, проницаемость и селективность которых основана на растворении за счет специфического комплексообразования. Селективность мембран, описанных здесь, невелика и их применение для разделения пока ограничено. [c.373]

    Рассмотрим газоразделение через пористую мембрану. В общем случае для транспортировки компонента разделяемой газовой смеси через пористую мембрану могут быть задействованы одновременно несколько механизмов переноса в зависимости от структуры матрицы мембраны, разделяемой смеси и условий реализации процесса разделения. Так, массоперенос компонентов смеси может быть обусловлен конвективно-диффузионным переносом, различного типа скольжением вдоль поверхности пор, баро-и термодиффузией, кнудсеновской и поверхностной диффузией, пленочным течением, капиллярным переносом конденсированной фазы в анизотропных структурах [72, 73]. Однако не все эти механизмы равнозначны по вкладу в результирующий поток вещества, поэтому при вычислении коэффициента проницаемости необходимо определять механизмы, лимитирующие перенос вещества в пористой мембране. [c.388]


    При определении характеристик мембраны ставится задача установления ее структурных и морфологических особенностей. Независимо от типа мембраны первой задачей после ее приготовления является определение ее характеристик по возможности простыми методами. В зависимости от типа предполагаемого процесса разделения она может быть пористой или непористой. Соответственно совершенно разные методы испытаний будут необходимы в каждом из этих случаев. Для оценки возможных размеров подлежащих отделению частиц или молекул удобно рассмотреть процесс ферментации, поскольку в нем присутствует очень широкий набор объектов разделения (частиц) с различными размерами. Наряду со взвешенными частицами (дрожжи, бактерии и т. д.) имеется широкое разнообразие химических веществ с различными молекулярными массами. Они включают низкомолекулярные компоненты, например, спирты (особенно этанол, присутствующий в вине, пиве и крепких алкогольных напитках), карбоновые кислоты (лимонная, молочная и глюконовая), L-аминокислоты (аланин, лейцин, гистидин, фенилаланин, глютаминовая кислота), а также высокомолекулярные продукты, например, ферменты. [c.165]

    Процесс мембранной дистилляции происходит в системе, в которой две жидкости или два раствора, разделенные пористой мембраной, поддерживаются при различных температурах. Жидкости или растворы не должны смачивать стенки пор мембраны, в противном случае за счет капиллярных сил поры мгновенно заполнятся жидкостью. Таким образом, в случае водных растворов нужно использовать не-смачиваемые пористые гидрофобные мембраны. Схема процесса мембранной дистилляции представлена на рис. У1-37. [c.361]

    Особенно сильно торможение проявляется в процессах микрофильтрации и ультрафильтрации, поскольку пористые мембраны, использующиеся в этих процессах, по своей природе особенно склонны к забиванию. При первапорации и газоразделении забивания использующихся в этих процессах плотных мембран практически не происходит. Таким образом, степень торможения определяется типом задачи разделения и типом применяемых при этом мембран. Поэтому процессы отложения осадков (или забивания) целесообразно рассмотреть в связи с процессами обратного осмоса, ультрафильтрации и микрофильтрации. Все случаи отложения загрязнений грубо можно разделить на три типа  [c.420]

    Есть, однако, основания полагать, что диффузионный метод при удачном подборе материала и структуры диффузионных перегородок и рациональном оформлении процесса может представлять промышленный интерес для разделения некоторых газовых смесей. Очевидно, что эффективность разделения при помощи пористой мембраны зависит в первую очередь от относительных величин газопроницаемости отдельных компонентов. Опубликованы обширные эксиеримептальные материалы, касающиеся изучения проникновения мпогих газов (в том числе этилепа. [c.187]

    Таким образом, если в пористой мембране удается организовать режим свободномолекулярного течения, проницаемость каждого компонента газовой смеси в изотермических условиях определяется структурными характеристиками мембраны, температурой и молекулярной массой газа и не зависит от давления. Разделительная способность является функцией только соотношения молекулярных масс и не зависит ни от свойств мембраны, ни от параметров процесса Г и Р. Из соотношения (2.52) следует, что для мембраны определенной структуры существует комплекс величин, сохраняющий постоянное значение при разделении любых смесей при любых значениях температуры и давления, если Кп>1  [c.57]

    Процессы мембранного разделения газовых смесей основаны на различной проницаемости компонентов газов через жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны. Селективно-проницаемая перегородка состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность. [c.74]

    В настоящее время в промышленности используют четыре основных типа разделительных элементов плоскомерные рулонные трубчатые на основе полых волокон. Плоскомерные элементы просты в установке, но их монтаж и обслуживание весьма трудоемки. Трубчатые разделительные элементы годятся для разделения систем, содержащих взвешенные частицы на них практически не происходит образования осадка в процессе разделения поверхность мембраны легко очищается от осадка. Подача разделяемого раствора может идти внутрь трубки или снаружи. В качестве опорных каркасов используют перфорированные металлические трубки, пористые керамические или пластмассовые трубки, стеклопластиковые трубки. Трубчатые элементы широко используют при ультрафильтрации в процессе электроосаждения на многих промышленных установках. [c.68]

    В табл. 2.3 в качестве примера приведены значения коэффициента проницаемости и фактора разделения для пористой мембраны ( Кис1ероге ) с эффективным диаметром пор <( п>=0,03 мкм [20]. Селективностью процесса разделения в пористых мембранах можно управлять не только изменением поровой структуры и режимных параметров процесса Р и Т. В работе [21] исследована проницаемость селективность пористых стекол с модифицированной поверхностью пор. Изменение состояния поверхности проводили этерификацией силанольных групп спиртами (метанолом, этанолом и 1-пропанолом)  [c.67]

    Модификация поверхности приводила к различному изменению константы Генри и коэффициента поверхностной диффузии для полярных и неполярных газов, в результате существенно изменялась проницаемость и фактор разделения. На рис. 2.9 показан характер изменения коэффициента проницаемости диоксида углерода, пропана, дифторхлорметана СНС1Рг (Н-22)) и 1,2-дихлортетрафторэтана С2С1гр4 (К-114) при полной модифшсации поверхности пористого стекла спиртами (п = = 1—3). Исходное состояние поверхности пористой мембраны (п = 0) принято считать гидрофильным. Селективность процесса извлечения СО2 и СзНе из смеси с фреонами существенно улучшается в мембранах с модифицированной поверхностью. [c.67]

    В целом процесс разделения газовой смеси в мембранном элементе описывается системой дифференциальных уравнений баланса массы, количеств движения и энергии, записанных для каждой области мембранного элемента — напорного и дренажного каналов, собственно мембраны и пористой подложки. Начальные и граничные условия процессов в каждой области взаимосвязаны, поэтому расчет модуля представляет сложную сопряженную задачу, которая должна быть решена при соблюдении ряда технологических и энергоэкономических требований. Обычно расчет процесса разделения проводят при допущениях, сильно упрощающих аналитические выкладки или процедуру численного расчета. Иногда это приводит к заметному искажению результатов, особенно при разделении неидеальных га- [c.157]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]

    На рис. 5.15 приведено сравнение экспериментальных и расчетных данных для разделения воздуха в модуле на основе ПВТМС-мембраны и пористой подложки из мипласта (а°=3,55) при различных вариантах организации потоков. Результаты расчетов по модели параллельного (прямо- и противоположного) движения потоков в напорном и дренажном пространствах модуля совпадают с экспериментальными данными (относительная ошибка не более 3%). Как видно из рисунка, осуществление процесса разделения газов в аппаратах плоскорамного типа с использованием высокопроизводительных асимметричных или композиционных мембран наиболее эффективно при противотоке в напорном и дренажном пространствах. [c.183]

    Полимерные пленки в качестве разделительных мембран. Разделительные мембраны из монолитных или пористых полимерных пленок используют для разделения компонентов газовых смесей, растворов, коллоидных систем, тонких взвесей такие мембраны весьма перспективны в промышленных методах разделения. Для разделения смесей газов используют монолитные мембраны без заметных пор Сам процесс разделения основан на таком свойстве полимерной пленки, как газопроницаемость. Мембраны для разделения газовых смесей изготовляют из весьма ограниченного числа синтетических полимеров, обладающих высокой газопроницаемостью. Так, плоские пленочные мембраны выполняют из фторированного сополимера этилена с пропиленом (толщина 8 = 10 мкм), армированного тканью кремнийорганкческого каучука (8 = 50 мкм ). поливинилтриметилсилана. С помоЩЬю мембраны, полученной из последнего полимера, удается повысить долю кислорода в воздухе с 21 до 35...40 %. [c.81]

    Помимо сильно выраженной седиментации для суспензий характерны такие процессы, как флотация, фильтрация и кольматация. Явление флотации рассмотрено в 19.2. Фильтрация через пористые мембраны приводит к разделению суспензий на твердую и жидкую фазы. Кольматацией называют процесс, используемый для уменьшения водопроницаемости гидротехнических сооружений из грунтов— дамб, плотин и т. д. — путем вмыва в них высокодисперсных глин или ила, частицы которых проникают в поры грунта и закупоривают их. [c.452]

    Мембранные процессы разделения газовых смесей основаны на различной сиособности газов проникать через полупроницаемые перегородки - мембраны иод действием ие-ренада давления. Обычно, иолуироницаемая мембрана имеет асимметричную структуру. Верхний диффузионный слой является иолуироницаемой перегородкой и покоится иа пористой подложке, отвечающей за механические свойства мембраны. [c.488]

    Рассмотрим особенности процессов массопереноса в пористых и непористых мембранах. Существуют как неорганические пористые мембраны, так и полимерные пористые мембраны. Матрицы пористых мембран, применяемых ддя мембранного разделения газов, имеют средние радиусы пор в пределах от 1,5 нм до 200 нм. На ироцессы переноса кошюнептов газа в таких мембранах, оказывают влияние структурные характеристики пористой среды. К их числу относится пористость П, т. е. объемная доля пор, суммарная поверхность всех пор в единице объема пористого тела Sy, средний диаметр пор d. Больщое значение имеет также распределение пор по размерам и степень извилистости каналов. [c.418]

    Разделение через мембраны. Б этом случае Г.р. реализуется благодаря разл. проницаемости компонентов газовой смеси через разделит, мембраны (пористые и непористые перегородки). Эффективность мембраны определяется ее уд. производительностью, т.е. кол-вом газа, прошедшего через пов-сть мембраны за соответствующее время. Аппараты для мембранного Г. р.-замкнутые объемы, разделенные мембранами на две полости. Движущая сила процесса-поддерживаемая постоянной разность парциальных давлений (или концентраций) газов по обе стороны мембраны. В зависимости от назначения мембраны изготовляют из разл. материалов (стекло, металлы, полимерные материалы), к-рым придают форму пластин, трубок, полых волокон, капилляров. Напр., для выделения Hj из продувочных газов произ-ва NH3 используют трубки из сплава Pd для тех же целей применяют полые волокна из полиариленсульфонов. Воздух, обогащенный О , получают с помощью пластин из поливинилтриметилсилана. Важная характеристика мембранных аппаратов-плотность упаковки мембраны, т.е. пов-сть мембраны, приходящаяся на единицу объема аппарата. Плотность упаковки мембран из полых волокон с наружным днам. 80-100 мкм и толщиной стенки 15-30 мкм составляет 20000 м /м , плоских мембран - 60-300 mVm . См. также Абсорбция, Адсорбция, Конденсация фракционная. Мембранные процессы разделения, Мембраны разделительные. Ректификация. [c.465]

    К.Х. разрабатывает научные основы многочисл. технол. процессов, включающих ДС технологии разнообразных дисперсных материалов, в т.ч. совр. композиционных и строит, материалов, силикатов (особенно керамики и стекол), дисперсных пористых структур (катализаторов и сорбентов), пластмасс, резины, прир. и синтетич. волокон, клеев, лакокрасочных материалов технологии мех. обработки твердых тел (в т. ч. бурения горных пород), извлечения нефти из пласта с послед, ее деэмульгированием, флотации руд, мембранных процессов разделения (см. также Мембраны разделительные), процессов водоподготовки. Среди многочисл. примеров практич. приложений достижений К. X.- разработка и применение ПАВ флотореагентов, смачивателей, стабилизаторов пен и эмульсий, пеногасителей и [c.434]

    Мембранное газоразделение. Это процесс разделения на компоненты газовых смесей или их обогащение одним из компонентов. При использовании пористых мембран с преимущественным размером пор 0,005-0,03 мкм разделение газов происходит вследствие так называемой кнудсеновской диффузии. Для ее осуществления необходимо, чтобы длина свободного пробега молекул была больше диаметра пор мембраны, т.е. чтобы частота столкновений молекул газа со стенками пор превышала частоту взаимных столкновений молекул. Поскольку средние скорости молекул в соответствии с кинетической теорией газов обратно пропорциональны квадратному корню их масс, компоненты разделяемой смеси проникают через поры мембраны с различными скоростями. В результате пермеат обогащается компонентом с меньшей молекулярной массой, ретант (концентрат) - с большей. Коэффициент разделения смеси Кр = / 2 = где и 2 число молей компонен- [c.331]

    Гипотеза о механизме обратного осмоса с учетом роли электростатических сил была высказана Глю-кауфом [29]. Его точка зрения основана на том, что свободная электростатическая энергия иона в капиллярах пористой мембраны выше, чем в объеме раствора, так как материал мембраны имеет низкую диэлектрическую постоянную. Поэтому концентрация ионов в порах должна быть значительно ниже, чем в объеме раствора, т. е. на ионы должна действовать выталкивающая сила. Эта гипотеза вполне удовлетворительно объясняет процесс разделения растворов [c.28]

    Обычно плотный слой мембраны определяет ее задерживающую способность (селективность) по отношению к тому или иному компоненту смеси, а пористая ее часть служит субстратом, выполняющим роль несущей подложки. С этой точки зрения понятно стремление иметь максимально тонкий и бездефектный плотный слой. Пористые мембраны служат основой получения составных мембран, полученных наложением друг на друга и соединением нескольких мембран или мембран с другими пористыми материалами с целью увеличения прочности мембраны, изменения ее проницаемости для отдельных компонентов разделяемых смесей, повышения производительности и т. д. Существуют различные варианты составных мембран. Примером таких материалов служат мембраны, полученные путем образования уль-тратонких пленок на пористых мембранах или на различных пористых подложках (ткани, бумаге и пр.). Кроме того, составные мембраны могут быть получены путем заполнения пор материала другим веществом, влияющим на процесс мембранного разделения. Динамические и жидкие мембраны являются также разновидностью составных мембран и их целесообразно выделить в отдельный класс, так как в отличие от других составных мембран они всегда образуются и существуют непосредственно в процессе эксплуатации при разделении жидких смесей. [c.43]

    Гиперфильтрация, или обратный осмос, лежит в самом конце спектра процессов разделения на пористых мембранах. В результате такого расположения ГФ-мембраны характеризуются меньшим размером пор, более низкой пористостью и повышенной плотностью пор по сравнению с УФ- и МФ-мембранами (см. табл. 2.7). Благодаря этому ГФ-мембраны способны удерживать растворенные микровещества (включая ионы), размер которых меньше, чем 10 А. Небольшие размеры и молекулярная масса этих частиц дают возможность оценить даже невысокие концентрации (в %) в мольных единицах. [c.66]

    Дифференциальная проницаемость ионов приводит к тому, что называется аномальным осмосом. Найдено, что при некоторых условиях вода будет течь от концентрированного раствора к разбавленному раствору соли, если оба раствора разделены пористой мембраной. Течение может продолжаться несколько часов и создавать значительное давление. По истечении некоторого времени, однако, давление, переводящее воду из концентрированного раствора в разбавленный, падает до О, и концентрации электрол Ита с обеих сторон мембраны становятся идентичными. Аномальный осмос представляет собой кинетическое, а не равновесное состояние. Если вода течет от разбавленного раствора соли к концентрированному, то процесс переноса называется положительным аномальным осмосом, если же течение направлено от концентрированного раствора к разбавленному, то оно называется отрицательным аномальным осмосом. На рис. 82 изображен ход отрицательного аномального осмоса между водой и раствором Е1С1, разделенными пористой мембраной из силиката магния. Гролман и [c.363]

    В газодиффузионных мембранах массоперенос обычно обусловлен тремя механизмами объемной диффузией, кнудсеновской диффузией и вязкостным течением. Поскольку известно, что объемная диффузия и вязкостное течение ухудшают процесс разделения, то процесс газоразделения следует проводить в режиме свободномолекулярного (кнудсеновского) течения, реализующегося при низких давлениях, когда средняя длина свободного пробега молекулы Л 2(1р т. е. параметр Кнудсена Кп = Х/ёр 1, где р = 2г — характерный размер пористой системы, (г — радиус поры для мембраны с одинаковыми параллельными капиллярами) или с1р = АП/З, где и — пористость, 3 — площадь поверхности пор в единице объема тепа. При этом поток вещества [c.389]

    Процесс газоразделения также уже достиг промышленной стадии развития. В этом процессе могут использоваться два различных типа мембран (хотя и в различных режимах применения) плотные мембраны, в которых транспорт реализуется как молекулярная диффузия, и пористые мембраны, в которых действует поток Кнудсена. Промышленное применение газоразделение нашло в процессах извлечения водорода другие примеры — процессы разделения кислорода и азота, а также метана и углекислого газа. [c.34]

    Прежде чем детально описать осгьждение путем погружения, дадим краткое описание термического осгьждения. Этот процесс позволяет приготовить пористые мембраны из бинарной системы, содержащей полимер и растворитель. В общем случае растворитель имеет высокую точку кипения, например сульфолан (тетраметиленсульфон, имеющий температуру кипения 287°С) или какое-либо масло (например, нуйол). Исходным является гомогенный раствор (например, состав А при температуре Т см. рис. 111-21). Этот раствор охлаждается медленно до температуры Т2. Когда достигается бинодаль, происходит фазовое разделение жидкость/жидкость и раствор разделяется на две фазы, одна — богатая полимером и другая — бедная полимером. Когда температура опускается далее до Т2, состав двух фаз следует по бинодали и в конечном счете достигает составов и ф . При некоторой температуре фаза, обогащенная полимером, отверждается посредством кристаллизации (полиэтилен), гелеобразования (ацетат целлюлозы) или в результате прохождения температуры стеклова- [c.125]

    Мембранные методы позволяют реализовать широкий спектр процессов ргьзделения, причем для решения ргьзных задач требуются мембраны различного типа и с разнообразными структурами. Таким образом, мембраны могут существенно различаться по структуре и функциям. Известны многочисленные попытки связать структуру мембран с их транпортными характеристиками, тем самым достигаются более глубокое понимание процессов разделения и возможность предсказания типа структур, необходимых для осуществления данного процесса разделения. Одновременно требуется создать методы испытания мембран с тем, чтобы можно было определить, насколько данная мембрана подходит для осуществления тех или иных процессов разделения. Небольшие изменения в одном из факторов, определяющих условия формования мембран, могут изменить структуру рабочего слоя и таким образом существенно повлиять на показатели ее работы. Часто важнейшей проблемой является воспроизводимость. Создание методов исследования мембран необходимо, чтобы связать структурные характеристики мембран, такие, как размер пор или распределение пор по размерам, свободный объем и кристалличность, с транспортными и разделительными свойствами мембран. Хотя обычно производители мембран представляют весьма конкретные значения таких параметров пористых мембран, как размер пор, их распределение по размерам, отсечение, не делается попыток более широкого и сопоставительного использования этих данных. В связи с этим возникает вопрос, какие из данных, получаемых при испытаниях мембран, могут помочь при прогнозировании рабочих характеристик мембран в конкретном процессе. При этом крайне важно делать различие между характерными свойствами мембраны и особенностями ее конкретного применения. Например, потоки через ультрафильтрационные мембраны, применяемые в пищевой и молочной промышленности, обычно составляют менее 10% от потока чистой воды. При использовании микрофильтрационных мембран различия в потоках очищаемых сред и чистой воды могут быть еще большими. Подобные различия в основном вызваны явлениями концентрацион- [c.164]

    В предыдущих разделах была сделана попытка сформулировать существенные различия принципов, лежащих в основе различных мембранных процессов, и то, как они реализуются в разных макроскопических моделях. Предельными случаями при этом являются процессы, в которых используются пористые (ультрафильтрация и микрофильтрация) и непористые мембраны (газоразделение и первапорация). Существующие модели можно классифицировать по тому, используется ли в них феноменологический подход или термодинамика необратимых процессов, с одной стороны, или подход, основаный на модели пор и механизме растворения и диффузии, с другой стороны. Во всех феноменологических моделях реализуется принцип черного ящика , т. е. они не дают информации о том, как в действительности протекает процесс разделения. В механистических моделях пытаются связать параметры процессов разделения со структурными параметрами мембран и описать на этой основе поведение смесей. Этот тип моделей уже дает определенную информацию о реальном процессе разделения и о факторах, которые на него влияют. [c.259]

    В газодиффузионных мембранах влияние матрицы на перенос массы определяется только характеристиками поровой структуры и, прежде всего функцией распределения пор. Свойства исходного материала не сказываются на кинетике процесса, хотя могут ограничивать область использования, рели спектр размеров пор достаточно широк, то в мембарне при заданных параметрах газовой смеси может одновременно реализоваться несколько режимов течения для каждого компонента. Если же учесть, что фильтрационный перенос и концентрационная диффузия не способствуют разделению смеси, то очевидно, что более целесообразны мембраны с монокапиллярной структурой типа пористого стекла Викор , в которых можно создать свободномолекулярный режим течения. Обсудим закономерности массопереноса при этом режиме. [c.54]


Смотреть страницы где упоминается термин Процессы разделения на пористых мембранах: [c.219]    [c.393]    [c.369]   
Смотреть главы в:

Синтетические полимерные мембраны Структурный аспект -> Процессы разделения на пористых мембранах




ПОИСК





Смотрите так же термины и статьи:

Пористость мембраны



© 2025 chem21.info Реклама на сайте