Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроосаждение на катоде и аноде

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и по разности массы находят массу металла. Некоторые вещества могут окисляться на платиновом аноде с образованием плотного осадка оксида, например РЬ + до РЬОг. Электролиз можно использовать также для разделения ионов. Методы анализа, основанные на электроосаждении как и другие гравиметрические методы, должны удовлетворять определенным требованиям определяемое вещество должно выделяться количественно, полученный осадок должен быть чистым (соосажде-ние примесей должно быть минимальным), мелкозернистым и плотно сцепленным с поверхностью электрода (чтобы последующие операции промывания, высушивания и взвешивания не вызвали потери осадка). Для получения осадков, удовлетворяющих этим требованиям, необходимо регулировать плотность [c.180]


    Существенную роль при электроосаждении сплавов играет правильный выбор материала анодов и режим анодного процесса. Для обеспечения постоянства состава электролита целесообразно применять аноды из сплава, компоненты которого при данных условиях растворяются с той же скоростью, с какой осаждаются на катоде. Однако практическое осуществление этого требования за редким исключением (латунь, желтая бронза) не удается, поэтому применяют комбинированные аноды из отдельных металлов, входящих в состав сплава, или один из этих металлов. [c.436]

    При электроосаждении белой бронзы аноды выполняют из меди и нержавеющей стали или графита. Оловянные аноды нежелательны из-за опасности появления в электролите ионов двухвалентного олова, вызывающих образование на катоде губчатых осадков. Кроме того, поддерживать режим анодного процесса таким образом, чтобы при растворении олова образовались ионы только четырехвалентного олова, очень трудно. [c.441]

    Напряжение на электролизере при анодном оксидировании алюминия значительно выше, чем во многих процессах электроосаждения металлов (см. табл. 13.1). Потенциалы выделения водорода из этих растворов на свинцовом катоде не превышают 1 В, падение напряжения в растворах при а = 100—300 A/м невелико. Вследствие высокого омического сопротивления пленок основное падение напряжения сосредоточено на аноде и зависит от толщины и пористости оксида. Этим объясняется значительно более высокое напряжение для процессов анодного оксидирования в электролитах №№ 2—5 в сравнении с электролитом № I. [c.82]

    Нанесение гальванических покрытий проводится в электролизере, называемом гальванической ванной. Электролизер имеет два электрода и раствор электролита. Катодом служит изделие, на которое наносится покрытие. На катоде идет процесс восстановления находящихся в растворе электролита ионов металла (электроосаждение металла) М" + пе М. Анодом обычно служит такой же металл, что и металл покрытия. Процесс на аноде противоположен процессу на катоде М — пе М" . [c.375]

    Электрофорез находит в настоящее время широкое применение в технике, в процессах электроосаждения частиц из золей, суспензий и эмульсий. Таким способом получают ровные и прочные покрытия на металлах, погруженных в качестве электродов в суспензию— например, декоративные и антикоррозийные покрытия (из лакокрасочных композиций), электроизоляционные пленки (из латексов), пленки окислов, испускающих электроны, на вольфрамовых нитях радиоламп. Метод электроосаждения развивается в работах Лаврова с сотрудниками (ЛТИ) . Разрабатывается технология получения тиглей, чашек и другой химической и бытовой посуды. С этой целью суспензию каолина наливают в медную чашку, соответствующую по форме изготовляемому изделию и соединенную с анодом. Катод вводят в виде медной сетки, также повторяющей форму изделия. Суспензию непрерывно перемешивают для устранения оседания. Через несколько секунд после включения тока на аноде образуется прочный слой, легко отделяемый при нагревании от медной формы и образующий после обжига фарфоровое изделие. [c.216]


    Поверхностно активные вещества широко применяют при электроосаждении металлов для получения плотных высококачественных осадков, обладающих блеском, мелкокристаллической структурой и т.д. Введение в электролит поверхностно активных веществ предотвращает образование на катоде шишек и дендритов, способствует коагуляции шлама, образующегося на аноде. Все многообразие применяемых поверхностно активных веществ можно разделить на три типа катионоактивные, анионоактивные и молекулярные. Многие из этих веществ содержат серу, азот и относятся к различным классам органических соединений. Существенное значение имеет структура поверхностно активных вещества. Так, например, активность алифатического ряда спиртов повышается по мере увеличения длины углеводородного радикала моно- и дикарбоновые кислоты обладают большей активностью, чем соответствующие спирты, а кислоты с большим числом полярных групп активнее кислот с меньшим числом полярных групп действие параизомеров фенола более эффективно, чем орто- и метаизомеров. Следовательно, чем больше число свободных пар электронов в органической молекуле, способных взаимодействовать с поверхностными атомами металла, тем большей активностью обладают эти вещества. [c.247]

    Покрытия получают электроосаждением на основном металле, служащем проводником. Металл, на который наносится покрытие, погружается в электропроводящий раствор, содержащий соли этого металла. Катодом служит основной металл при использовании ЭДС от внешнего источника, а анодом — стержень или лист покрывающего металла. В этом случае он переходит в раствор, как только на катоде происходит осаждение, поддерживая таким образом концентрацию ионов металла в растворе. [c.85]

    Электроосаждение — один из наиболее перспективных способов нанесения лакокрасочных материалов, заключающийся в осаждении лакокрасочного материала в виде концентрированного осадка на поверхности изделий под воздействием постоянного электрического тока. Осаждение осуществляется в результате придания частицам лакокрасочного материала, находящимся в электропроводящей жидкой среде, электрического заряда, противоположного по знаку заряду покрываемого изделия. Если лакокрасочный материал способен в данной среде переходить в ионное состояние, то его перенос осуществляется за счет заряда ионов — катионов, или анионов. В зависимости от того, чем служит окрашиваемое изделие — анодом или катодом — различают анодное осаждение (анафорез) или катодное (катафорез). Необходимым условием для электроосаждения является наличие электропроводящей среды. Этим способом наносят водные и органодисперсии полимеров и олигомеров. [c.219]

    В промышленности наиболее широко используется метод анодного электроосаждения, при котором изделие, находящееся в ванне, является анодом, а корпус ванны — катодом. Все большее применение начинает получать метод катодного электроосаждения. При данном методе окрашиваемое изделие является катодом, а в качестве анода применяются специальные пластины ванна при этом заземляется. Применяя метод катодного осаждения, удается получать покрытия с высокой коррозионной стойкостью и равномерное по толщине. Объясняется это тем, что при катодном осаждении не протекает окислительная реакция связующих с кислородом, поскольку на катоде выделяется водород. [c.219]

    При использовании вращающегося Pt-анода время электроосаждения рения существенно сокращается (до 60—75 мин.) [1178]. По окончании электролиза Pt-катод промывают водой, затем ацетоном, сушат на воздухе и в течение 30 сек. при 105° С. Тем не менее результаты гравиметрического определения систематически завышаются (ошибка определения -[-1%), очевидно, за счет образования окислов. [c.80]

    В анализах сталей, легированных Мп, Сг, Ni и другими металлами, можно < применять электрохимическое отделение Ре, служащее одновременно и для удаления некоторых примесей [152, 1176, 1327, 2035]. Для этого рекомендуется проводить электролиз в ванне с Pt-анодом и Hg-катодом, при катодной плотности тока 0,15— 0,2 а/сж и напряжении около 5—7 в. Об окончании электроосаждения судят по обесцвечиванию раствора пробы. Вместе с основной массой Ре отделяются Мп и Ni, однако перед количественным определением проводят дополнительные операции. Так, перед иодатным осаждением Се и определением остальных элементов рентгеноспектральным способом рекомендуется проводить осаждение гидроокисей раствором аммиака, осаждение оксалатов, а иногда дополнительно и фторидов [152]. Сочетание экстракции окрашенных комплексов и колориметрии дает возможность, например, при анализе Се также избавиться от мешающих влияний. Экстракция комплекса Се(П1) с оксихинолином из водной фазы с pH 10,2 в присутствии лимонной кислоты и цианид-ионов хлороформом >с добавкой 10% ацетона является благоприятным условием для [c.234]


    Условия электроосаждения. Для выделения различных элементов требуются разные условия (определенные температура, pH, состав электролита, разность потенциалов между анодом и катодом и т. д.). Так, например, количественное выделение металлической меди на катоде и осаждение свинца в виде двуокиси па аноде хорошо протекают в азотнокислой среде, в то время как никель в этой среде не выделяется. Такое различие условий объясняется тем, что различные ионы с неодинаковой легкостью принимают и отдают заряды на электродах. Например, для того чтобы ионы серебра восстановить на катоде в металлическое серебро, требуется меньшая разность потенциалов, чем для восстановления ионов меди ионы иода легче отдают свои электроны на аноде, чем ионы хлора [c.319]

    В процессах электроосаждения происходят следующие электрические явления. Вследствие высокой разности потенциалов на электродах и неоднородности электрического поля (сгущение силовых линий у электрода с меньшей поверхностью — катода) в слое газа у катода образуется односторонний поток электронов, направленный к аноду. В этом слое в результате соударений электронов с нейтральными молекулами газ ионизируется. Внешним признаком ионизации является свечение слоя газа или образование короны у катода. [c.56]

    Электроосаждение производят пост, током. Катодом служит покрываемое изделие, анодом — обычно тот же металл или сплав, к-рый выделяется на катоде. В кач-ве электролита примен. р-ры солей выделяемых на катоде металлов с добавлением к ним в-в, к-рые сообщают р-ру буферные св-ва, повышают его электрич. проводимость и обеспечивают получение равномерных по толщине покрытий с нужными свойствами. В зависимости от природы металла и состава электролита процесс проводят при комнатной или повышенной температуре и плотности тока от 100 до 500 А/м и выше, с перемешиванием или без перемешивания раствора. [c.120]

    Часто исследуемый электрод (катод или анод) готовят путем электроосаждения слоя металла на платиновую пластинку. Для этого предварительно очищенный в хромовой смеси и промытый платиновый электрод помещают в качестве катода в стаканчик, [c.344]

    Электролиз меди с растворимым медным анодом. Общая характеристика про-нессов электроосаждения металлов. В качестве катода берут химически чистую электролитическую медь. Если хотят осажденную электролизом медь отделить, чтобы не пользоваться каждый раз новыми катодами, то поверхность катода покрывают салом с графитом. Такая прослойка не препятствует прохождению тока и вместе с тем позволяет отделить катодный осадок от катода. Аноды делают из сырой меди с содержанием примесей (цинк, никель, железо, свинец, серебро, золото) 2—3%. В качестве электролита применяют водный раствор медного купороса Си804-5Н20, подкисленный серной кислотой. [c.172]

    Электроосаждсние меди проводят в потенциостатических условиях. В качестве электрода сравнения применяют медную проволочку, которую помещают в электролитический ключ с капилляром, подведенным к рабочей поверхности образца в электролите. Электролиз проводят с медным анодом при комнатной температуре в электролите состава (г/дм ) Си504-5Н20 — 70 НгЗО — 150 при катодном перенапряжении —100, —150, —200 и —250 мВ. Катод укрепляют на штанге, колеблющейся в вертикальном направлении с частотой около 50 кол/мин. Время электролиза рассчитывают согласно приложению IV. Ток измеряют спустя 1—2 мин после начала п юцесса электроосаждения. Результаты измерений и расчетов заносят в табл. 2.1. [c.20]

    Другим интересным применением электролиза является покрытие металлов. Если, например, в только что описашюй электролитической ячейке вместо меди сделать катодом какой-либо другой металл, в процессе электролиза на нем будет образовываться медное покрытие. Покрытие одного металла другим в электролитической ячейке называется электропокрытием (электроосаждением). Предмет, на который хотят нанести покрытие, делают катодом в электролитической ячейке. Металл, который наносят на. яругие поверхности, делают анодом, как показано на рис. 19.14. Электропокрытие защищает различные предметы от коррозии и улучшает их внешний вид. Многие наружные части автомобилей, например бамперы и дверные ручки, электролитически покрывают хромом. [c.227]

    Этот же закон можно выразить иначе. Пусть I— сила тока в амперах, протекающего через электролитическую ячейку в течение / сек. Количество металла в граммах, растворенного на аноде ячейки или электроосажденного на катоде, будет равно [c.29]

    Потенциал электроосаждения возникает вследствие иоддчи тока от внешнего источника и затрудд1еннй протека[[ия Э1ектродных реакций на аноде и катоде. Его величина зависит от плотности тока [c.18]

    Электроосаждение хрома почти всегда производят из растворов серной или хромовой кислот с использованием анодов из свинца. Рабочая температура меняется в пределах 37—65° С в зависимости от используемого электролита для нанесения гальванических покрытий. Хром периодически пополняют, заменяя использованный, за счет добавок хромовой кислоты. Покрытия блестящие, но рассеивающая способность слабая, что приводит к неравномерности покрытия по толщине и неполному заполнению углублений обрабатываемых изделий. Кроме того, КПД катода низкий (в пределах 8—18% в зависимости от используемого раствора и рабочих условий). Более высокий КПД катода можно получить в ваннах, катализуемых фторидом кремния (до 25%), или в ваннах (типа Борнхаузера) тетрахромата (до 30%). [c.92]

    Нанесение покрытий электроосаждением водоразбавленных ЛКМ осуществляют только в производственных условиях погружением изделий, движущихся на конвейере, в ванну с водоразбавленным лакокрасочным материалом. Изделия в ванне — анод, корпус ванны или специальные пластины — катод. На аноде осаждается плотная водонерастворимая пленка. [c.168]

    Наиб, прогрессивный метод нанесения В. л. м.-электроосаждение при его использовании получают покрытия равномерной толщины на изделиях сложной конфигурации, практически без потерь лакокрасочного материала. Изделие, на к-рое наносят В. л. м., может служить как анодом, так и катодом в соответствии с этим различают анафо-резные и катафорезные В. л. м. Последние обладают большей, чем аиафорезные материалы, способностью проникать в закрытые полости деталей сложной конфигурации и при меиьшей толщине образуют покрытия с более высокой коррозионной и хим. стойкостью. Однако произ-во и применение катафорезных В. л. м. связано с нек-рыми трудностями, обусловленными их кислым характером (pH 4-6) в частности, для нанесения этих материалов м. б. использовано только кислотостойкое оборудование. [c.399]

    Окунание в ванну, заполненную ЛКМ Традиционные (органоразбавляемые) ЛКМ удерживаются на пов-сти после извлечения изделия из ванны вследствие смачивания В случае водоразбавляемых ЛКМ обычно применяют окунание с электро-, хемо- и термоосаждением В соответствии со знаком заряда пов-сти окрашиваемого изделия различают ано- и катофоретич электроосаждение - частицы ЛКМ движутся в результате электрофореза к изделию, к-рое служит соотв анодом или катодом При катодном электроосаждении (не сопровождающемся окислением металла, как при осаждении на аноде) получают Л п, обладающие повыш коррозионной стойкостью Применение метода элект-роосажденК я позволяет хорошо защитить от коррозии острые углы и кромки изделия, сварные швы, внутр полости, но нанести можно только один слой ЛКМ, т к первый слой, являющийся диэлектриком, препятствует электроосаждению второго Однако этот метод можно сочетать с предварит нанесением пористого осадка из суспензии др тенко-образователя, через такой слой возможно электроосаждение [c.569]

    Анодное растворение (или катодное электроосаждение) используют в ртутном кулонометре, представляющем собой прозрачный капилляр, в к-рый помещены два столбика ртуги, разделенные р-ром на основе к.-л. из солей Hg(H). При прохождении электрич. тока через кулонометр на одном из pTjTHbrx столбиков (аноде) протекает ионизация ртуги, а на катоде - восстановление Hg(II) до металла. В результате объем электролита между электродами (индикатор прибора) перемещается по капилляру в сторону анода на величину, пропорциональную интегралу тока по времени протекания. Ртутные кулонометры применяют в разл. устройствах счетчиках времени наработки, счетчиках ампер-часов, времязадающих устройствах и др. Напр., разработаны ртутные кулонометры с полным зарядом 23 Кл, диапазоном рабочих т-р от -30 до 70 "С и погрешностью интефирования 2%, Существует водородный кулонометр, в к-ром при пропускании тока на катоде протекает разряд ионов водорода, на аноде - ионизация мол. водорода. В результате происходит перенос газообразного водорода через пористую перегородку, пропитанную серной к-той, из анодного отсека электродной камеры в катодный, возникает разность давлений, к-рая перемещает индикаторную жвдкость в сторону анодного отсека на величину, пропорциональную кол-ву прошедшего электричества. На основе водородного кулоно-метра разработан счетчик ампер-часов постоянного тока для измерения кол-ва электричества при заряде и разряде аккумуляторных батарей, к-рый имеет порог преобразования 35 ООО А ч при пофешности 4%. [c.461]

    Методы анализа, основанные на электроосаждении, должны удовлетворять некоторым требованиям, как и другие гравиметрические методы. Во-нервых, определяемое вещество должно выделяться количественно. Полнота его выделения зависит в основном от начального нотенциала катода (или анода, когда образуются РЬО и С02О3) и от нотенциала в момент завершения электролиза, иначе говоря, от их разности. Во-вторых, выделившийся металл должен быть чистым, поэтому состав раствора пробы нужно подбирать таким, чтобы препятствовать возможному соосаждению примесей. В-третьих, последующие операции промывания, высушивания и взвешивания не должны вызьшать значительных механических потерь или химического изменения состава выделившегося вещества. Осадок должен быть блестящим, мелкозернистым, плотно сцепленным с поверхностью электрода по возможности следует избегать условий электролиза, при которьк образуются губчато-пористые или рыхлые осадки. [c.117]

    Эфирногидридный электролит — основной неводный электролит алюминирования промышленного масштаба. Исходный вариант его был предложен и разработан А. Бреннером [702, 282, 764, 767] под названием ИБС (национальное бюро стандартов США). Состав эфирногидридного электролита следующий хлорид алюминия (1—4М), гидрид лития (0,5—1,0 М) или смешанный литиевоалюминиевый гидрид (0,1 —0,4 М), абсолютированный диэтиловый эфир. Ванну на основе электролита НБС обычно герметизируют сухим азотом или аргоном, рабочая температура — комнатная. Электроосаждение проведено на самые различные подложки от активных металлов (уран) до инертных конструкционных материалов (стали, латуни, медь, серебро), аноды — алюминиевые. В интервале плотностей тока до 0,1—0,15 А/см с 90—100 %-ным выходом катодно осаждается мелкокристаллический плотный эластичный осадок алюминия, при этом могут быть получены гальвано-пластические слои до 2—5 мм. Осадок алюминия содержит лишь следы тяжелых металлов. Процесс электроосаждення включает приемы, обеспечивающие выравнивание поверхности покрытия проточный, равномерно омывающий рабочий электрод электролит медленное вращение катода непрерывное фильтрование электролита и др. При тщательной герметизации, строгом соблюдении условий электролиза и корректировки ванна может работать непрерывно в течение 18 месяцев. Основным недостатком ванны на основе НБС является высокая летучесть и легкая воспламеняемость. [c.149]

    Примером оптимальных условий может служить получение циклотронных мишений из трансплутониевых и редкоземельных элементов электроосаждением из изобутанола [221] напряжение 600 В, концентрация по металлу — 300 мкг/мл, объем раствора 5—7 мл, площадь платинового анода — 0,25 мм , расстояние анода от катода —35 мм, подложки — А1, Т1, Та, V, температура 20— 25 °С, время — 40 мин. Получены толстые (до 2 мг/см ) однослойные покрытия, устойчивые при облучении ускоренными многозарядными ионами. [c.156]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Из изученных на сегодняшний день композиций лишь в случае некоторых растворителей возможно получение молибдена и вольфрама [414, 586, 46, 279, 669, 725]. Так, в работе А. Левинскаса [279] указывается, что из формамидных растворов высокой степени чистоты молибден и вольфрам могут быть электролитически выделены из анионов ЭО42- на медных катодах. Для успешного злектроосаждения растворы должны быть выдержаны не менее месяца, в таких растворах практически отсутствуют комплексные соединения низших степеней окисления молибдена или вольфрама. Если подвергнуть электролизу раствор, содержащий 1—5 г молиб-дата натрия на 100 мл формамида, при токе 0,02—0,08 А/дм , то за 30—60 мин катод покрывается коричневым осадком сложной смеси соединений молибдена и формамида (анод—графит). По данным спектрального анализа основой его является молибден. Добавка сульфат-ионов позволяет в некоторой мере разделить процесс выделения тонкого металлического слоя молибдена и процесс образования побочных продуктов. Электроосаждение молибдена быстро прекращается, и при дальнейшем электролизе на катоде идет образование побочных продуктов. Изменение концентра- [c.163]

    Рассеивающая способность электролита достаточно велика. Так, например, если принять количество металла, осажденного на наиболее близком к аноду участке, за 1007о> то при увеличении расстояния на 10, 20, ЗО" мм на катоде осаждается 90, 86, 847о индия, соответственно. Электролит рекомендуется для электроосаждения индия на германии для создания омического контакта р-типа и позерхностнэ-барьер-ного перехода л-тииа. [c.40]

    В работе [141] исследовано электроосаждение ряда металлов РЬ, 2г, 5е, образующих полианиоаы в жидком аммиаке со щелочными металлами. В качестве электролита для электроосаждеиия свинца использовали раствор йодида или ацетата свинца в жидком аммиаке, кислотность раствора регулировалась добавками амида натрия или нитрата аммония. Предполагалось, что в этих электролитах свинец может образовываться как на катоде, так и ча аноде из свинцовой фольги. При а = 0,22—0,26 А/дм на аноде образуется [c.41]

    В качестве катодов применяли медь, электролитически осажденну.ю на меди [16], свинец, электролитически осажденный на меди [18] и на свинце 16, 17], серебро на меди [19] и платиновую чернь на меди [20]. Медь можно удобно осаждать из сульфатной ванны. Блюм и Хогебум (см. стр. 290 в книге [21]) рекомендуют проводить электролиз раствора, содержащего в литре 250 г Си504 5Н20 и 75 г серной кислоты, с использованием медных анодов, поддерживая катодную плотность тока от 0,02 до 0,1 а см . Температура должна быть приблизительно 20—50°. Катод из свинца на свинце получали электроосаждением из раствора плумбата калия [17] и из горячего раствора хлорида свинца и соляной кислоты, содержащего солянокислый гидроксиламин [16], а катод [c.320]


Смотреть страницы где упоминается термин Электроосаждение на катоде и аноде: [c.213]    [c.135]    [c.135]    [c.77]    [c.256]    [c.140]    [c.153]    [c.164]    [c.20]    [c.65]    [c.190]    [c.348]    [c.209]   
Смотреть главы в:

Окраска электроосаждением -> Электроосаждение на катоде и аноде




ПОИСК





Смотрите так же термины и статьи:

Аноды

Катод

Электроосаждение

Электроосаждение на катоде



© 2024 chem21.info Реклама на сайте