Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ ртути и других элементов

    Экстракционные методы отделения ртути от других элементов получили распространение благодаря быстроте и простоте выполнения операций и большой избирательности при разделении. Отделение ртути экстракцией широко используется для анализа различных материалов при подготовке к различным методам определения. Ртуть может быть экстрагирована в виде ее внутри-комплексных соединений (хелатов), галогенидных и роданидных соединений, галогенидных соединений с основными красителями. [c.45]


    Для определения в ртутьсодержащих материалах других элементов (например, при анализе примесей в ртути, анализе ртут- [c.140]

    Особенно большое преимущество рентгено-флуоресцентного метода состоит в том, что.он позволяет проводить анализ уникальных предметов и образцов без их повреждения. Следует отметить также, что данные о наличии или отсутствии какого-то элемента практически не зависят от того,,связан ли этот элемент в соединениях с другими элементами, присутствующими в системе, а зависит только от атомных номеров этих элементов. Этим методом можно обнаружить галогены и серу, которые не обнаруживаются эмиссионно-спектральным анализом в близкой ультрафиолетовой области, а также очень летучие мышьяк и ртуть, эмиссионно-спектральное определение которых отличается низкой чувствительностью [c.194]

    Отделение меди. Электролитический метод редко применим непосредственно для отделения меди, потому что практически все другие элементы сероводородной группы в небольшом количестве осаждаются вместе с медью на катоде кадмий и свинец составляют исключение. Поэтому электролитический метод анализа должен применяться после предварительного отделения группы мышьяка, а из группы меди — ртути, серебра и висмута. [c.95]

    Термическое озоление можно проводить в приборе, схема которого показана на рис. 109. Этот прибор обеспечивает защиту от загрязнений [11]. Недостаток этого способа озоления состоит в том, что ртуть, кадмий и цинк могут быть потеряны вследствие улетучивания [60]. Для ускорения озоления пробу предварительно обрабатывают небольшим количеством окислителей азотной кислоты или нитрата аммония. Если при сухом озолении не добавить сульфата иона, то улетучивается свинец и при некоторых условиях теряются никель, ванадий и другие элементы [61]. После озоления золу смешивают с угольным порошком и подвергают спектральному анализу. [c.179]

    Соляная кислота, 35—38%-ный раствор хлористого водорода в воде — бесцветная прозрачная жидкость плотностью 1,17— 1,19 г/см . Соляная кислота занимает первое место среди бескислородных кислот и одно из первых мест среди всего класса кислот. Значение ее в синтезе и анализе огромно. Укажем лишь на главнейшие области применения соляной кислоты в аналитической химии осаждение серебра, свинца и двухвалентной ртути в виде хлоридов перевод в раствор неорганических продуктов анализа растворение осажденных гидроокисей, карбонатов, фосфатов и др., осаждение кремневой кислоты при анализе силикатов экстракционное отделение железа от других элементов и т.д. [c.27]


    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Примененная в работе [55] флуоресценция является лишь одни.м из ее видов и носит название резонансной флуоресценции. Для этого типа характерным является излучение той же линии, что и резонансная линия облучающего источника света. Для атомно-флуоресцентного анализа могут быть применены флуоресценция атомов, находящихся в метастабиль-ном состоянии (излучение линии Т1 535 ммк при поглощении линии Т1 378 ммк), однако, по мнению авторов [55], с меньшим успехом флуоресценция резонансных линий с большей длиной волны при поглощении резонансной линии с меньшей длиной волны (излучение линии Na 589 ммк при поглощении линии Na 303 ммк), а также сенсибилизированная флуоресценция, возникающая в результате передачи атомам определяемого элемента энергии атомов другого элемента, возбужденных свето.м его резонансной линии (свечение паров таллия в присутствии паров ртути при облучении светом ртутной дуги). [c.241]

    Области применения Р. а. весьма широки. Это, во-первых, анализ особо чистых веществ, используемых в полупроводниковой технике. Сюда же относится определение содержания микроэлементов в крови, в плазме, тканях животных и растений. Значительное применение Р. а. находит при геологоразведочных работах. Здесь основным достоинством метода является его экспрессность. Только в этой области замена химич. методов апализа на Р. а. дала значительную экономию средств. В пром-сти Р. а. применяют для быстрого анализа металлов и сплавов. Он нашел применение в судебной медицине, позволив определять с высокой чувствительностью в очень небольших образцах мышьяк, ртуть и пек-рые другие элементы. [c.225]

    Препятствующие анализу вещества. Мышьяк, церий, железо, таллий, кадмий, ртуть, олово и другие элементы, образующие с родамином окрашенные комплексы, мешают определению. Ионы фтора и брома, связывая сурьму, разрушают родаминовый комплекс. Нитрит, бром и другие сильные окислители, разрушая родамин, мешают определению сурьмы. [c.222]

    Препятствующие анализу вещества. Железо, бериллий, галлий, медь и многие другие элементы образуют с ализарином окрашенные соединения фосфат и фторид образуют комплексы с алюминием кремневая кислота, -сурьма, висмут, свинец, олово, титан и ртуть образуют в условиях колориметрического определения алюминия белые осадки и поэтому мешают определению. [c.296]

    Сожжение в кислородной колбе очень широко используется при определении галогенов, серы, фосфора и многих других элементов в органических соединениях, например ртути, цинка, марганца, никеля и кобальта. Метод сожжения в кислородной бомбе применим для окисления железа и сталей, но он не получил распространения [5.538]. Важное применение метода — определение радиоактивных изотопов, особенно Н, и в меченых органических и биологических материалах. Ниже приведены примеры применения метода сожжения, используемые в анализе органических материалов. [c.162]


    Трудности должны встретиться при анализе соединений, содержащих бор, фосфор, кремний и некоторые другие элементы, образующие трудновосстанавливаемые оксиды. Ряд публикаций посвящен определению кислорода в элементоорганических соединениях, содержащих бор [227], фтор [222, 228—232], фосфор [222, 225, 233, 234], ртуть [235, 236], щелочные и щелочноземельные металлы [237], другие металлы [222, 238]. [c.138]

    Реакции мешает присутствие аммонийных и щелочных солей некоторых органических кислот (уксусной, лимонной и др.), а также катионов, образующих труднорастворимые сульфаты (бария, кальция, стронция, ртути). Эта реакция в химическом анализе применяется для отделения свинца от железа, меди, цинка и других элементов, сульфаты которых хорошо растворимы в воде. [c.27]

    Анализ ртути и других элементов (см. также 60). Изотопный состав ртути недавно изучался с помощью интерферометра Фабри —Перо с механически перемещающимся зеркалом [12.25]. На рис. 201 показана [c.277]

    Элементный анализ используют для количественного определения органических и элементорганических соединений, содержащих азот, галогены, серу, а также мышьяк, висмут, ртуть, сурьму н другие элементы. Элементный анализ может быть также применен для качественного подтверждения нгшичия этих элементов в составе исследуемого соединения или для установления или подтверждения брутто-формулы вещества. [c.126]

    В Институте геологических наук АН КазССР разработаны чувствительные спектральные методы определения благородных металлов, висмута, рения, ртути и других элементов составлена серия атласов спектральных линий и ряд методических пособий, широко используемых в лабораториях СССР. Разрабатываются в институте и химические методы фазового анализа минералов. [c.208]

    Ряд работ выполнен по применению 1-(2-пиридилазо)-2-наф-тола (ПАН) в качестве экстракционного реагента в фотометрическом анализе. Определены константы распределения ПАН между водой и четыреххлористым углеродом (Ю4), между водой и хлороформом (105 4), а также константы кислотной диссоциации реагента (10 п>2). Установлен состав экстрагирующихся комплексов ПАН с марганцем, медью и цинком [57] и другими элементами. Выявлена оптимальная область рН образования и экстракции комплексов марганца, кадмия, ртути (II), галлия, железа и иттрия, составляющая 5—9 7—10 6—7,5 3,6—5 4—8 и 8,5—11,0 соответственно. Изучены оптические свойства экстрактов. Разработаны методики определения железа, марганца и никеля при их совместном присутствии [58], иридия и родия [59], иттрия в присутствии лантана и церия [58]. Предложена методика определения палладия в титановых сплавах [60]. Изучено отношение комплексов ПАН с редкоземельными элементами к различным органическим растворителям [61]. Имеются работы по применению 1-(2-пиридилазо)-резорцина, а также других пиридиновых азо-красителей в качестве экстракционных реагентов [62, 63]. [c.136]

    Как уже указывалось, в присутствии ионов роданида краситель дает малорастворимые соединения с рядом других элементов (кобальт, молибден, олово), в присутствии ионов иода трудиорастворимые соединения дают ртуть, кадмий, висмут. Таким образом, применение только одного красителя уже создает возможность разработки нескольких методов ти-триметрических определений. Вводя в практику аналитической химии красители с теми или другими специфическими группировками и используя твердофазные цветные реакции, можно значительно расширить область титриыетрических определений и создать новые методы объемного анализа. [c.56]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    История металлоорганических соединений началась, как обычно полагают, со знаменитых исследований Р. Бунзена, посвященных какодилу (СНз)4А82 (1841 г.). Несомненно, однако, Что с органическими производными металлов приходилось сталкиваться еще задолго до этого, но они не были опознаны. Бунзен считал, что найденное им интересное соединение метильных групп с мышьяком представляет собой хороший пример органического элемента (который в настоящее время обычно называют радикалом), и тем самым он внес существенный вклад в теорию химического строения. В течение последующих 30 лет был сделан еще ряд столь же важных открытий, как, например, открытие органических соединений ртути, кадмия, цинка, олова, свинца, кремния и многих других элементов, что значительно пополнило наши познания о них. Прежде всего определение первых точных атомных весов этих элементов было значительно облегчено изучением их алкильных соединений. Следует напомнить, что в прошлом столетии, когда совершенство весовых методов анализа уже позволяло точно определять пайные веса, существовала все же путаница между пайными и атомными весами, так как не были известны главные или характеристичные валентности элементов. В этой путанице нельзя было разобраться при помощи обычных методов неорганической химии в том случае, если рассматриваемый элемент, как это часто бывает, образует два или большее число хлоридов или окислов. В то же время каждый элемент из числа металлов образует, как было установлено, только одно летучее соединение с этиль-ными или метильными группами (если он вообще образует подобные соединения), и это единственное этильное или метиль-ное производное можно очистить перегонкой до любой желательной степени. Затем, определив содержание углерода и водорода при помощи хорошо разработанных аналитических методов сожжения, можно однозначно установить число нормальных валентностей металла и отсюда прийти к не вызывающему сомнений выбору атомного веса. Надежно установленные атомные [c.11]

    Описанный способ разложения позволяет опреде нять галоид в органических веществах, содержащих кроме С, Н, О еще серу, азот, фосфор, ртуть и другие элементы. Определения хлора в гек-сахлорэтане и гексахлорциклогексане дают превосходные результаты. Определение галоидов в летучих жидкостях ничем не отличается от анализа твердых веществ и может быть выполнено для любого вещества, навеску которого удается взять в запаянной ампуле. [c.87]

    Экстракция. макрокомпонента из бромидных п иодидных растворов (табл. 10) эффективна при анализе индия (в виде Н1пВг4), висмута, золота, кадмия, ртути и некоторых других элементов. [c.105]

    По-видимому, впервые экстракционное концентрирование в спектральном анализе было применено в 1938 г. Ронером который экстрагировал примеси меди, серебра, золота, цинка, кадмия, ртути, таллия и других элементов в виде дитизонатов четыреххлористым углеродом. Экстракты, являющиеся концентратом примесей, распылялись непосредственно в искру. В 1945 г. Вульф и Фаулер использовали экстракцию макрокомионента (железа) ди-изопроннловым эфиром из 6 М соляной кислоты. В водной фазе после выпаривания определяли спектральным методом А1, Ag, В1, Со, Сг, Мп, Мо, N1, РЬ, Т1, V (10" — [c.166]

    Определение ртути и других микроэлементов в объектах окружаю шей среды представляет собой весьма сложную процедуру, выполнение ко торой требует использования высокочувствительных методик высокой ка тегории точности [51], а также строгого постоянного контроля за возмож ными загрязнениями проб или потерями определяемых элементов и анализируемых объектов на всех стадиях отбора, хранения, пробоподготов ки и анализа. Наиболее трудными объектами при анализе ртути яиляютс природные воды, содержание металла в которых находится в весьма шире ком диапазоне от ультрамалого (пикограммового) в водах фоновых райе нов до п мг/л в загрязненных и сточных водах [116]. При хранении в вс дных пробах происходят различные физико-химические, химические микробиологические процессы, приводящие к нестабильности концентр ций растворенных и взвешенных форм металлов. [c.42]

    В результате применения рентгеновского анализа в работах В, И. Данилова и др. было установлено, что и в жидкостях при комнатных температурах может наблюдаться, некотор ая упорядочен н о с т ь в расположении частиц. Это явление было установлено при высоких температурах в стеклах (А. А. Лебедевым, 1921), а при комнатных температурах — в воде, бензоле, ртути и других жидкостях (принадлежащих к различным классам веществ). Имеются и другие наблюдения, подтверждающие ту или другую степень упорядоченности в расположении частиц, в особенности при температурах, не слишком отдаленных от температуры их отвердевания (А, 3. Голик и др.). Все это заставило в последнее время признать, что в подобных условиях внутреннее строение жидкостей оказывается более близким к строению кристаллов, чем к строению газов, и отличается от строения кристаллов главным образом тем, что упорядоченность расположения охватывает много меньшие элементы объема, чем в кристаллах (это называ10Т ближней упорядоченностью). [c.163]

    Важным этапом анализа является выбор растворителя цля растворения анализируемого вещества. Некоторые вещества растворимы в воде, но чаще для растворения приходится использовать другие вещества, их нужно выбирать так, чтобы растворение было полным. При выборе растворителя нужно считаться и с химическим составом анализируемого материала. Например, не рекомендуется применять соляную кислоту, если анализируемый объект содержит мышьяк, ртуть (И), так как при растворении эти элементы могут быть частично псугвряны из-за летучести их хлоридов. Наиболее часто для растворения используют кислоты соляную, серную, азотную, хлорную или их смеси реже применяют растворы гидроксидов щелочных металлов. [c.24]

    При сероводородном методе анализа можно наблюдать потерю до 70"о марганца и хрома, потерять малые количества марганца, кадмия и ртути. Длительное время велись работы по замене систематического хода анализа другими метода ш. Наибольшего внимания заслуживает дробный метод, предложенный Н. А. Тананаевым. Дробные реакции гюзволяют обнаруживать достаточно надежно элементы в широком интервале концентраций. Предложено много высокоселективных реакций на отдельные элементы. Важное значение имеют соединения, которые дают различные химические элементы с органическими реагентами, например дитизоном, дифенилкарбазидом, диэтилдитиокар-баминатом. Эти соединения легко экстрагируются органическими [c.150]

    Титриметрический анализ. Комплексонометрия — один из широко распространенных методов анализа, основанный на применении комплексонов — органических соединений, содержащих азот и карбоксильные группы. Титрование комплексонами различного состава позволяет определять многие элементы цирконий, железо, висмут, кадмий, медь, цинк, магний, кальций и др. Известны и другие титриметрические методы, в которых используют комплексные соединения. Так, существует метод титрования фторидами— фторометрия, солями ртути (II) — меркуро-метрия и др. [c.24]


Смотреть страницы где упоминается термин Анализ ртути и других элементов: [c.572]    [c.199]    [c.20]    [c.679]    [c.111]    [c.213]    [c.390]    [c.310]    [c.292]    [c.101]    [c.136]    [c.118]    [c.89]    [c.356]    [c.111]    [c.213]    [c.115]    [c.286]    [c.559]   
Смотреть главы в:

Основы спектрального анализа -> Анализ ртути и других элементов




ПОИСК







© 2025 chem21.info Реклама на сайте