Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие предела теории

    Понятие предела теории [c.108]

    Таким образом, при чисто механическом подходе на основе понятий механики сплошных сред или с учетом молекулярного строения твердых тел описание прочностных свойств сводится к оперированию понятиями предела прочности, предельных состояний и к системе расчетов потери устойчивости изделий из тех или иных материалов. Основная задача механики разрушения — определить те предельные критические условия, при которых наступает разрушение. Соответствующие теории называют теориями предельных состояний. К ним относятся теории максимального нормального напряжения, максимального удлинения, предельного значения упругой энергии и другие, более сложные. В этих теориях разрушение рассматривается как критическое событие при достижении предельного состояния (предельной поверхности разрушения), которое описывается в общем случае комбинацией компонентов тензора деформаций и тензора напряжений. [c.284]


    Одним из основных понятий в теории надежности является отказ. Отказом называется событие, после появления которого определяющие характеристики системы выходят за допустимые пределы, в результате этого система не выполняет возложенные на нее функции. Момент наступления отказа не может быть заранее определен, он является случайным. Отказы могут быть независимыми и зависимыми, появляющимися при отказе других элементов. [c.324]

    Дифференциация есть также неизбежное явление и в силу действия внутренних законов развития самой науки с момента ее возникновения. Все более и более глубокое проникновение в сущность явлений влечет за собой открытие новых законов, уточнение содержания и пределов действия существующих, создание новых понятий и теорий для объяснения вновь обнаруженных фак- [c.75]

    Хотя Менделеев ушел из профессуры Технологического института еще в декабре 1866 г., однако некоторое время (до 1872 г.) он продолжал в нем чтение лекций это могло быть связано с тем, что как раз в 1868 г. он писал главы, посвященные углероду и углеродистым соединениям, в том числе и углеводородам для своих Основ химии (см. ч. 1, гл. XVI). Главным вопросом и в этих лекциях и в соответствующих главах Основ химии было стремление противопоставить ставшему уже господствующим среди органиков теоретическому представлению об атомности эмпирическое (иЛи, как его называл Менделеев, — реальное) понятие предела. При этом свою теорию пределов (см. доб. 4j и 4к), которая первоначально была выдвинута лишь для органических соединений, Менделеев стремится распространить теперь и на неорганические. В этой связи он особое внимание уделяет металлоорганическим соединениям, которые представляют собой как бы естественный мост, переброшенный между обоими классами химических веществ. Между тем учение об атомности в том виде, как оно развивалось в 60-х годах, было ограничено лишь областью органической химии и базировалось на признании, что атомность С=4, Н = 1, 0 = 2, N = 3. Поскольку перед Менделеевым к концу 60-х годов все настойчивее возникала задача — охватить единой системой все элементы, он, естественно, должен был опираться на такие представления, которые охватывали бы все вообще классы химических веществ, а не только одни соединения углерода. Вот почему от первой статьи о пределах (1861 г.) (доб. 4j) идет прямая линия через лекции по органической химии (1868 г.) (доб. 2п) и соответствующие главы Основ химии (1868 г.) к статье О количестве кислорода в соляных окислах и об атомности элементов (1869 г.) (ст, 4), в которой Менделеев впервые связал с периодическим законом общее свойство кислородных, а затем и водородных соединений всех элементов достигать точно установленного предела. [c.613]


    Начнем с вопроса, зачем естествоиспытателям новейшего времени понадобилась теория иррациональных чисел Думается, что причиной явилось вторжение в науку понятия предела. Это одно из фундаментальных понятий, лежащих в основе современной математики. Неизбежность его возникновения вытекает из его поразительной способности определять фундаментальные понятия многих прикладных наук. Чтобы не ломиться в открытую дверь , ограничимся несколькими примерами. Без понятия предела невозможно определить, что такое мгновенная скорость точки или вообще мгновенная скорость любого процесса, нельзя определить касательную к кривой. Для определения производной функции также не обойтись без понятия предела и т. д. и т. п. [c.29]

    Понятие предела числовой последовательности является весьма тонким. Хотим еще раз напомнить, что это одно из основополагающих понятий математики, а значит, и всего современного естествознания. Мы не будем предполагать, что оно знакомо читателю, и дадим его определение. С этой целью предварительно введем два более простые понятия окрестность числа и почти вся последовательность . Определяя первое из них, мы используем теорию Дедекинда. [c.35]

    Эксплуатационная прочность - это усовершенствованное и обобщающее понятие в теории прочности. В своей старой форме определение размеров опиралось с одной стороны на статическую прочность, а с другой-на предел усталости, то есть в обоих случаях принимались во внимание наибольшие нагрузки. Эти максимальные величины обеспечивали долговечность и исключали возможность разрушения на все времена. [c.170]

    Существование пределов теории следует уже из того факта, что все, что нарождается, достойно гибели . Вообще любая физическая теория имеет свои пределы применимости, и неограниченно экстраполировать ее нельзя. Рано или поздно становится необходимым введение существенно новых физических понятий, сообразно свойствам изучаемых объектов и применяемым средствам их познания, а тогда выявляются и пределы применимости теории и возникают новые гносеологические проблемы  [c.110]

    Теория автоматического регулирования стала в наше время фундаментальной научной дисциплиной. Поэтому изложение ее на нескольких страницах (как сделано в этой главе) неизбежно ведет к серьезным упрощениям. Так, понятия линейных и нелинейных систем требуют существенного уточнения. Эти понятия пришли в теорию автоматического регулирования вместе с дифференциальными уравнениями. Под линейными понимают такие системы, которые адекватно описываются линейными дифференциальными уравнениями. Но адекватность часто субъективна. В зависимости от того, какие стороны изучаемой системы исследователь желает описать дифференциальными уравнениями, а также в зависимости от интересующих его пределов изменения параметров и переменных один и тот же объект можно представлять разными уравнениями — линейными и нелинейными. Поэтому разделение реальных систем на линейные и нелинейные и классификацию их свойств необходимо проводить прежде всего по тем дифференциальным уравнениям, которые их представляют. [c.107]

    Из (1.7.2) следует, что С имеет размерность энергии, деленной на температуру, и измеряется в джоулях на кельвин. И опыт, и теория говорят, что в общем случае теплоемкость зависит от температуры С — f (Т). Поэтому, кроме понятия средняя теплоемкость в температурном интервале , целесообразно ввести представление о так называемой истинной теплоемкости системы при температуре Т. По определению истинной теплоемкостью С называется предел отношения (1.7.2), когда разность температур стремится к нулю  [c.24]

    Дебаевский радиус — это такое расстояние, за пределами которого заряд отдельной частицы практически экранирован зарядами других заряженных частиц. Это понятие впервые введено немецким ученым Дебаем в 1923 г. при разработке теории электролитов и широко используется в теории плазмы. Для простой термической плазмы радиус Дебая определяется соотношением [c.248]

    Поясним смысл понятия энергии активации. В химической кинетике для объяснения механизма химических реакций широкое распространение получила теория активных соударений, согласно которой для возникновения химического взаимодействия необходимо столкновение молекул, при этом принимается, что реагируют лишь только те молекулы, энергия которых не ниже некоторого предела Е, называемого энергией активации. Средняя энергия молекул, особенно при невысоких температурах, обычно ниже этого предела. Энергия активации является тем избыточным количеством энергии (по сравнению со средней величиной энергии молекул), которой должны обладать сталкивающиеся молекулы, чтобы быть способными к химическому взаимодействию. Такое активирование должно предшествовать ослаблению или разрушению внутренних связей реагирующих молекул, без чего невозможна перегруппировка атомов и образование новых молекул. [c.222]

    Математической основой теории симметрии является теория групп, детальное рассмотрение которой выходит за пределы задач, поставленных в настоящей книге. В данной главе будут представлены лишь некоторые главные понятия, используемые в последующих разделах, нашедшие широкое приложение в структурной химии. [c.184]


    Кристаллохимическое строение — порядок расположения и природа связи атомов в пределах элементарной ячейки, их взаимное влияние друг на друга, а также распределение электронной плотности, величины эффективных зарядов. Как видно из этого определения, понятие кристаллохимического строения представляет собой превращенную форму химического строения молекул применительно к координационным решеткам. Вот почему теория химического строения Бутлерова — общехимическая теория, в одинаковой степени приложимая как к органическим, так и неорганическим объектам. На рис. 6, а приведена кристаллическая структура высокотемпературной модификации стехиометрического оксида титана ТЮ. Она показывает только порядок размещения атомов в элементарной ячейке и не отображает природу межатомных связей, а также их взаимное влияние. Вообще кристаллическая структура в той мере отражает кристаллохимическое строение вещества, в какой структурная формула — химическое строение молекулы. В действительности химическое и кристаллохимическое строение — понятия динамические, а не статические. [c.26]

    Для формирования творческого мышления важно ознакомление с основными методами научного познания. Поэтому в пособии имеется ряд задач на освоение важнейших действий и операций научного познания и исследования сравнение, выделение существенных признаков, систематизация, классификация, формулирование понятия, определение пределов применимости закона или теории и др. [c.6]

    Под надежностью понимают способность технического объекта выполнять заданные функции в течение заданного отрезка времени или заданной наработки [6]. В понятие надежности входят ряд свойств объекта безотказность, долговечность, ремонтопригодность, сохраняемость. Термины и определения по надежности стандартизированы [7]. Одним из центральных понятий теории надежности является отказ - событие, которое заключается в нарушении работоспособного состояния объекта. В теории надежности отказ трактуют как случайное событие, принимая за один из основных показателей надежности вероятность безотказной работы в течение заданного отрезка времени или в пределах заданной наработки [8]. [c.13]

    Законы механики могут быть использованы на двух уровнях для расчета свойств больших количеств вещества. На первом уровне (кинетическая теория, рассматриваемая в данной главе) применяется сравнительно простая процедура математического усреднения. На втором уровне (статистическая механика, гл. 17) используется более абстрактный статистический подход. Из кинетической теории можно вывести законы идеального газа и найти распределение молекул по скоростям на основе очень простой модели газа. Величины теплоемкостей газов могут быть рассчитаны вплоть до предела, где проявляются квантовые эффекты. Таким образом, кинетическая теория помогает нам понять термодинамические свойства с молекулярной точки зрения, а также скорости разнообразных процессов. С помощью понятия поперечного сечения столкновения можно для простой модели рассчитать частоту молекулярных столкновений и скорости переноса массы, энергии и количества движения в газе. [c.259]

    Сплошная среда — материальное тело, бесконечное деление которого не приводит к изменению его физических свойств, т. е. тело, непрерывно распределенное в части пространства. Это понятие является главным допущением теории механики сплошных сред. Принятие его допускает применение дифференциального и интегрального исчислений при математической постановке и решении задач. В этом подразделе приведены соотношения лишь для жидких сред, т. е. для таких, в которых напряжения превышают предел текучести. [c.64]

    Такой подход вполне соответствует нашей схеме развития знания. В этой схеме нашлось место для понятия предела теории, т. е. в ней указывается, что экстенсивное развитие любой области знания пе безразлично. Исследователь должен иметь в виду, что экстенсивное развитие знания неминуемо когда-нибудь перейдет в интенсивное. Естественнонаучному редукционизму противопоставляются и натурфилософские и антиредукционистские концепции. В настояш ее время эти выступления происходят из-за неправильного понимания задач философского исследования. Философия стремится сконструировать свою собственную картину природы, подменяющую естественнонаучные теории. Правда, современная натурфилософия пытается опереться на данные естествознания. Однако главное отличие натурфилософии от подлинно философского обобщения развития знания все же остается. Натурфилософские построения оказываются расположенными в одном ряду с частнопаучными концепциями, могут конкурировать с ними и оказывать на них давление . [c.130]

    Для формирования творческого мышления важно ознакомление обучаемых с основными методами научного познания, хотя бы в минимальном объеме. Поэтому в сборнике имеется ряд задач на осуществление важнейших действий и операций научного познания и исследования сравнение, выделение сущесг-венных признаков, систематизация, классификация, формулирование определения понятия, предел применимости закона или теории и т. п. Подобного типа задачи не менее важны по сравнению с проблемными и расчетными. [c.6]

    Движущей силой развития науки, химических знаний является постоянное возникновение и разрещение противоречия между непрерывным развитием материального производства и данным уровнем знаний противоречия между новыми химическими фактами, получаемыми в процессе развития практики, экспериментального исследования, и прежними способами их объяснения. Необходимость истолковывать эти факты, не укладываюпщеся в рамки существующих понятий, гипотез и теорий, ведет к углублению последних, к уточнению пределов их действия, к отбрасыванию устаревших положений. Возникают новые, более общие и прогрессивные понятия, гипотезы, теории. На их основе переосмысливается весь накопленный ранее научный материал, совершенствуется теоретическая сторона науки, развивается сам эксперимент, появляются новые факты. [c.326]

    Взаимодействие кислот с основаниями, вообще говоря, отличается от всех других реакций лишь постольку, поскольку мы придерживаемся очень узкого определения понятий кислота и основание . Если перейти от определений Брёнстеда [17] к определениям Льюиса [18], особенно в обобщенной форме [19, 20], то все нуклеофилы могут быть отнесены к основаниям, а все электрофилы (в том числе, ионы металлов) к кислотам. Мы считаем, однако, что здесь будет полезнее воздержаться от далеко идущих обобщений и остаться в пределах теории Брёнстеда. С этой точки зрения общекислотный катализ можно определить как ускорение реакции вследствие частичного переноса протона от любой брён-стедовой кислоты к реагенту, находящемуся в переходном состоянии. Аналогично общеосновный катализ наблюдается в том случае, когда брёнстедово основание ускоряет реакцию, частично отбирая протон от переходного комплекса. Известно, что значительное число органических и неорганических реакций катализируется таким образом. [c.106]

    В кн. Д. И. Менделеев. Научный архив , т. 1 (см. № 1501) сообщается также (см. примеч. к 19-й публикации, с. 713) об исключительном интересе изложения бутлеровских идей , которое дает М-в в этих лекциях. Приводятся в связи с этим соответствующие отрывки из лекций (см. с. 713—716), подтверждающие эту мысль, причем отмечается (с. 716), что М-в не только проводил основные идеи бутлеровской теории строения, но и ввел свой оригинальный способ графического обоаначения связей между атомами, при котором линии валентности располагаются в одном направлении (как бы в виде щеточек ) . Развитие М-вым в 1869—1871гг. своего собственного учения о формах соедийений на основе разработанного им представления о предельных п непредельных форумах соединений. (Об этом учении см. Основы химии , вып. 4). Критика М-вым (с. 716—718) структурной теории и понятия атомности (валентности) правильность и неправильность этой критики (с. 718). В этих же примечаниях освещается отношение М-ва к теории строения и делается вывод (см. с. 718), что у него нет разногласий с Бутлеровым в самом главном — в признании взаимного влияния атомов как основы теории хим. строения , а есть полное единство (см. также с. 719—720). Отрицание М-вым лишь метафизического, механистического истолкования этой теории со стороны Кекуле и его последователей (с. 718—719). В сб. 1960 г. (см. № 1506, прим., К доб. 2п , с. 612—614) дается перечень тематических разделов, на которые разбиты этп лекции, причем указывается, что, по-видимому, это было лишь начало целого курса , т. к. в конце текста упоминается о следующем цикле — Спирты . Упоминается (с. 613) о продолжении чтения М-вым лекций в СПб. Технологич. ин-те до 1872 г., несмотря на его уход из профессуры этого учебного заведения еще в декабре 1866 г., и дается возможное объяснение этого факта. Подчеркивается, что главным вопросом и в этих лекциях, и в соответствующих главах Основ химии было стремление противопоставить ставшему уже господствующим среди органиков теоретическому представлению об атомности эмпирическое. .. понятие предела . Отмечается стремление М-ва распространить свою теорию пределов и на неорганические соединения, в связи с чем он уделяет особое внимание металлоорганическим соединениям, представляющим собой как бы естественный мост , переброшенный между обоими классами хим, веществ. Указывается таюке, что от первой статьи о пределах 1861 г. (см. Доб. 4j ) идет прямая линия через описываемые лекции по органич. химии 1868 г. к статье О колич. кислорода... 1869 г. (см. № 178), в которой М-в впервые связал с периодич. законом общее свойство кислородных, а затем и водородных соединений всех элементов достигать точно установленного предела. Сообщается, что описываемые лекции 1868 г. интересны и в том отношении, что в нпх М-в показывает себя отнюдь не противником, а скорее сторонником того теоретического истолкования наблюдаемых фактов в органической химии, которые дает теория химического строения Бутлерова . Упоминается (с. 614) о некотором отношении содержания части лекций к составлению Опыта системы элементов (см. № 176). [c.324]

    О таланте А. М. Бутлерова как популяризатора науки"можно судить по помещенным в нервом разделе настоящего тома докладам и статьям. Доклад О практическом значении научных химических работ , прочитанный в Общем собрании Академии наук в 1870 г., является прекрасным пояснением на историко-химическом материале связи между чистыми химическими исследованиями и их техническим иснользованием. С предель-]гой простотой объясняет А. М. Бутлеров основные нонятия химии в работе под тем же названием. Эта работа интересна еще и тем, что в ней А. М. Бутлеров очень хорошо показывает диалектический путь развития научных понятий и теорий. [c.3]

    С кислородом Где причина того, что этот предел изменчив для разных элементов и для разных их соединений Этот вопрос относился непосредственно к Менделееву потому, что Менделеев еще в 1861 г. разработал теорию пределов для соединений углерода и намеревался распространить ее по крайней -мере на соединения азота но тогда он ограничился лишь эмпирической трактовкой понятия предела, не вдаваясь ни в какие теоретические объяснения возможных причин этого явления. Позднее же, открыв периодический закон, Менделеев увидел в атом-1ЮМ весе причину изменения атомности у элементов, расположенных по величине атомного веса, но эту причину он еще не распространил на объяснение высшей ато мности элементов (т. е. явления предела соединений с одним определенным элементом), поскольку в одном случае он брал водородные соединения, а в другом кислородные. Для того, чтобы раскрыть химическую функцию атомных весов элементов, необходимо было сделать только одно распространить на явление предела, т. е. в данном случае на все высшие солеобразующие окислы элементов, то самое объяснение, опирающееся на периодический закон, которое Менделеев уже принял в статье Соотношение свойств с атомным весом элементов для некоторых значений атомности. Сообщение Бекетова, поставившее вопрос о причине предела, прямо наводило на мысль о том, что и здесь следует применить принцип периодичности, уже ранее примененный к объяснению аналогичного же случая. Тем самым приводились в связь две линии развития творческой мысли Менделеева, до тех пор еще не. находившие в полной мере точек соприкосновения друг с другом одна, идущая от теории пределов, другая, идущая от периодического закона. [c.67]

    В 1861 г. при написании курса Органической химии Менделеев создал оригинальную теорию пределов, которая явилась развитием идей Франкланда. Суть этой теории состоит в том, что признается высшая, или предельная, атомность элемента, в данном случае углерода, и стремление соединений, не достигших этой высшей атомности, достигнуть ее. Правда, сам Менделеев вообще не признавал понятия атомности, заменяя его эмпирическими понятиями предела и форм соединений, тем не менее его теория по сути дела сводится именно к тому, что сказано выше. [c.116]

    Вопросы взаимоотношения науки и общества, вопрос о пределах знаний и науки о природе особенно актуальны в XX веке, когда техногенная энергия, я имею ввиду энергию промышленных и военных процессов, сопоставима с энергией природных процессов и катаклизмов. Несмотря на разумные доводы, разрушение тончайшей пленки живого вещества Земли продолжается. Апокалипсис начинается сегодня с разрушения природы и человека. В этой книге я анализирую некоторые итоги и пути развития науки о сложных природных и ноосферных системах в методологическом и феноменологическом физико-химических аспектах, анализируя границы и тупиковые ветви познания, применяя феноменологический - неатомарный подход к веществу. По моему мнению, сложные техногенные и природные системы не могут быть полностью поняты с позиции атомно-молекулярного учения, материализма и существующей теории эксперимента. В развиваемой в книге физико-химической теории, предлагается недискретный взгляд на вещество, как единую непрерывную среду. Приведены соответствующие примеры такого подхода к сложным объектам природы и общества. Эта книга является итогом многолетней работы и содержит фрагменты физико-химической теории многокомпонентных сложных природных и техногенных систем. Первый вариант книги был издан в Москве в 1991 году под названием Физико-химические основы новых методов исследования сложных многокомпонентных систем. Перспективы практического использования . С того времени многие мысли, развиваемые в этой работе иашли практическое подтверждение. [c.5]

    Эта книга посвящена физико-химической теории многокомпонентных органических природных и техногенных систем. В ней обобщается многолетняя работа, проведенная нами в ИПНХП АН РБ и кафедре технологии полимеров Уфимского технологического института сервиса. Первый вариант работы был издан в 1991 году в издательстве ЦНИИТЭнефтехим под названием Физико-химические основы новых методов исследования сложных многокомпонентных систем. Перспективы практического использования . С того времени многие идеи, развиваемые в этой работе, нашли экспериментальное подтверждение. В работе Пределы науки и фрагменты теории многокомпонентных природных систем , изданной в 1998 году, были рассмотрены методологические и философские аспекты теории. В данном издании я намеренно исключаю дискуссионные философско-методологические вопросы и пытаюсь сосредоточить внимание на естественнонаучных и прикладных аспектах теории. Предпринята гкшытка создания феноменологической физико-химической теории многокомпонентных органических систем, к которым относятся геохимические органические системы, углеводородные системы, нефти, газоконденсаты, полимерные и олигомерные смеси, сложные биогеохимические и космохимические системы. Эти хаотические системы являются не только сложными смесями, но и средой, за счет взаимодействия с которой существуют более упорядоченные структуры, включая живые существа. По моему мнению, многие техногенные и природные системы из-за своей сложности и многокомпонентности не могут быть полностью поняты с позиции дискретного атомно-молекулярного подхода. При этом я не уменьшаю значимость атомно-молекулярной теории, а только констатирую пределы ее применимости при изучении сложных веществ. Кроме того, развивается недискретный, статистический взгляд на любое вещество как единую непрерывную многокомпонентную систему. [c.3]

    В истории химии были длительные периоды, когда это понятие развивалось в русле одной системы теорий. И тогда оно оставалось в принципе тем же самым, изменяясь лишь количественно за счет некоторого расширения его фактического содержания. Так было, например, в период господства классического атомно-молекулярного учения, основанного на аддитивном способе мышления и потому запрещавшего выход за пределы стехиометрии. Но были также и другие периоды, когда понятие о химическом соединении должно было претерпевать качественные изменения, ибо этого требовала новая система теорий, отражающая более глубокую сущность химизма. Так случилось, например, в связи с появлением гидратной теории растворов Д. И. Менделеева, которая отвергла подозрения в неистинности химических соединений переменного состава типа сольватных комплексов. [c.58]

    Разработка структурных теорий твердого тела. Проблемой но мер 1 структурной химии применительно к неорганическим соединениям является разработка структурных теорий твердого тела. Эти теории уже сейчас начинают создаваться на принципиально иной основе по сравнению со структурными теориями органических соединений. Последние базируются на представлениях о молекулах как замкнутых системах с сильными локализованными межатомными связями, на представлениях о взаимном влиянии атомов, которое изменяет в некоторых — в общем незначительных — пределах энергию попарных межатомных связей. Даже квантово-механические теории строения органических молекул с их основным понятием неразличимости обобщенных электронов приходят к необходимости устанавливать ква1ггово-меха нические аналоги классическим поня- [c.98]

    Развитие химии полупроводникхзвых материалов позволило расширить представление о полупроводниковом состоянии вещества. Многие некристаллические твердые тела (стекла) и даже некоторые жидкости обладают ярко выраженными полупроводниковыми свойствами. К стеклообразным полупроводникам относятся, например, сплавы на основе халькогенидов мышьяка (АзгЗ , АзгЗез), стеклообразный селен и т. п. Типичными примерами жидких полупроводников служат расплавы халькогенидов германия, например СеТе. С открытием этого класса полупроводниковых веществ стало возможным более глубоко представить природу явления полупроводимости. К этим веществам неприменимо понятие о дальнем порядке, составляющее основу зонной теории. Таким образом, полу-проводимость определяется не столько наличием упорядоченной кристаллической решетки ковалентного типа, сколько преимущественно ковалентным взаимодействием атомов в пределах ближнего порядка. Полупроводимость определяется характером химического взаимодействия атомов вещества. [c.320]

    С диаметром трубы), то можно считать, что вдоль каждого поперечного сечения трубы все величины (скорости, давления и т. п.) постоянны, а направление распространения волн возмущений совпадает с направлениел оси трубы. Конечно, понятия достаточно длинной трубы и достаточно низкой частоты колебаний довольно неопределенны и степень выполнения этих условий нужно оценивать в каждом конкретном случае, исходя из физической сущности рассматриваемого явления и из требований, предъявляемых к теоретическому анализу. В зависимости от того, должна ли теория дать точные количественные результаты или только указать на качественную сторону явления, эти ограничения могут изменяться в широких пределах. Здесь существенно лишь то, что в случае справедливости принятых допущений можно ограничиться рассмотрением задачи в одномерной постановке. [c.30]

    Для практич. вычислений широко используются также модельные решеточные теории-своб. объема, дырочные, кластерные и др., основанные на представлении о квазикристаллич. строении Ж. Каждая частица считается движущейся независимо от других в нек-ром силовом поле, обусловленном взаимод. с остальными частицами, находящимися в узлах пространств решетки. Это поле ограничивает возможность перемещения частицы пределами определенной ячейки разность объемов ячейки и самой частицы представляет собой своб. объем ячейки, а сумма этих величин-свободный объем всей Ж. Понятие о своб. объеме оказывается полезным при рассмотрении процессов переноса в нек-рых Ж. Дальнейшим развитием решеточных теорий являются т. наз. дырочные теории, допускающие возможность отсутствия частиц в нек-рых ячейках. Несмотря на то что решеточные теории переоценивают упорядоченность Ж., многие св-ва Ж. (плотность, внутр. энергия и др.) передаются ими при правильном выборе параметров модели удовлетворительно. [c.155]

    Это замечание Гиббса относится и к формуле (5), а также и к правилам Неймана и Юнга, как мы далее покажем. Интересно заметить, что нижний предел применимости (4) по размерам Гиббс не ограничивает ни молекулярными размерами, ни наличием в капле вещества со свойствами большой фазы, хотя во всех других случаях, когда речь идет об очень малых фазах, такая оговорка делается. По-видимому, Гиббс имел в виду не особенности малых фаз в этом смысле, а то, что в трехфазной системе необходимо учитывать и линейные параметры, отсутствующие в системе из двух фаз. В этом смысле идея о линейной термодинамике, сопряженной с дву- и трехмерной, в системе из трех фаз развивается подробно Гиббсом в примечании [1, стр. 288] Мы можем отметить здесь, что в теории равновесия и устойчивости можно достигнуть более близкого приближения, если в наших общих уравнениях специально принять во внимание линии, по которым пересекаются поверхности разрыва. Эти линии можно было бы трактовать по способу, совершенно аналогичному тому, которым мы трактовали поверхности разрыва. Мы могли бы ввести понятия о линейной плотности энергии, энтропии и отдельных веществ, которые присутствуют около этой линии, а также и определенное линейное натяжение . [c.278]

    Целью настоящего учебника является последовательное изложение основ теории и расчетных методов квантовой химии Упор делается на изложении лищь тех вопросов, которые получили в настоящее время широкое применение в практике физикохимиков, химиков, биологов и других специалистов, работающих с обьектами молекулярного мира Основное внимание уделяется физическим основам методов квантовой химии и разъяснению смысла вводимых при расчетах понятий С целью знакомства в ограниченных пределах с математическим аппаратом теории, авторы сочли необходимым конспективно изложить математическую сторону вопроса Чтобы сделать чтение понятным, изложению этого материала предшествует краткое математическое введение Разъясняются также некоторые основные понятия квантовой механики [c.7]

    Развитие естественных наук далеко не сразу достигло уровня, необходимого для установления фундаментальных зависимостей между явлениями живой и неживой природы. Долгое время, вплоть до второй четверти XX в., физическое, химическое и особенно биологическое мировоззрения развивались в значительной мере независимо. Это был период раздельного естествознания, т.е. в значительной мере автономного существования трех его основных областей. Совершенствование их структурных организаций здесь происходило главным образом за счет локальных, возщкающих в пределах отдельных областей, бифуркационных изменений, резко обрывавших термодинамические ветви кумулятивного накопления научных данных. Локальными физическими бифуркациями можно считать, например, становление термодинамики и статистической физики, создание теории электромагнитного поля и теории относительности, разработку квантовой механики. Эти и ряд других выдающихся достижений физики открывали пути к изучению совершенно новых явлений, приводили к качественно новым понятиям, к коренному пересмотру существовавшего физического мировоззрения. Конечно, локальными они оставались недолго, но их воздействие на другие области естествознания осуществлялось через изменение структурной организации физических знаний, физического мировоззрения. [c.29]

    В упомянутой работе таилось, однако, более глубокое содержание, выходящее за пределы вопроса о взрыве. Только спустя много лет была понята плодотворность постановки задачи о критических условиях как о границе существования решения. На примере теплового взрыва Давид Альбертович развил теорию подобия процессов выделения и отвода энергии. Он предложил асимптотическое выражение ку ехр [а Т—Ту) ], заменяющее экспоненциальную зависимость 2схр —А1КТ), при котором решение, относящееся к некоторой температуре, получается преобразованием подобия из решения, относящегося к другой температуре. По современной терминологии Давид Альбертович использовал групповые свойства уравнений и сознательно выбрал аппроксимацию, необходимую для возникновения группы, аддитивной по температуре и мультипликативной по координатам. [c.497]


Смотреть страницы где упоминается термин Понятие предела теории: [c.117]    [c.92]    [c.20]    [c.224]    [c.544]    [c.79]    [c.6]    [c.304]    [c.132]    [c.132]    [c.16]   
Смотреть главы в:

Методологические проблемы развития квантовой химии -> Понятие предела теории




ПОИСК







© 2025 chem21.info Реклама на сайте